用户名: 密码: 验证码:
受限空间气体爆炸传播及其动力学过程研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
工业过程中,特别是化工和石油化工生产中,可燃性气体得到广泛应用。由于装置设备本身的缺陷或人为因素常常会发生受限空间气体爆炸事故。在受限空间的约束作用下,气体爆炸会产生较高的压力和压力增长速率,以至于很多装置或设备不能承受而造成人员伤亡和财产损失,甚至导致灾难性的后果。因此,开展受限空间气体爆炸的研究,对于预防和控制此类工业灾害性事故具有重要的实际意义和科研价值。
     对建国以来我国已经发生的42起典型化工装置爆炸事故原因进行了分类和统计分析,根据统计分析结果确定以可燃性气体与空气混合物爆炸作为本论文研究对象。作为研究工作的基础,本论文首先对受限空间气体爆炸压力和温度进行了热力学计算研究,采用化工热力学的分析方法建立了计算密闭容器气体爆炸和小空间局部可燃气体爆炸温度和压力的计算模型。针对可燃气体与空气混合物多组份的特点,考虑爆炸时高温高压等条件对物性参数和输运参数的影响,将真实气体状态方程和气体混合规则引入到数值模型中,提高了气体爆炸数值模型的精度。
     通过理论分析和前人研究成果,建立了描述受限空间气体爆炸过程的物理模型和数学模型,并给出了受限空间气体爆炸的初始条件和边界条件。采用EBU-Arrhenius混合反应模型模拟气体爆炸过程,解决了以往数值模型中不能合理地计算湍流燃烧反应速率的问题,提高了数值模拟的精度。为了捕捉气体爆炸涉及到的复杂激波、旋涡结构和移动的火焰面,模拟计算中采用网格自适应加密技术。利用公开发表的文献中的实验数据和已有的气体爆炸理论模型以及热力学模型对建立的数学模型的有效性进行了考核。数值模拟结果与实验数据基本吻合,与理论模型计算值偏差也较小,说明了本论文建立的气体爆炸的数学模型的适用性和准确性。
     对管道中均匀混合气体和局部可燃气体爆炸以及障碍物和多爆源条件下气体爆炸传播及其动力学过程进行了数值模拟研究。对于密闭管道内均匀混合气体爆炸,管道内压力和温度随时间增加而增加。火焰阵面前出现膨胀流,火焰面后密度降低。随着爆炸的进行,火焰在管道中从点火端向另一端传播,当火焰传播
Flammable gases are widely used in industries especially in chemical or petroleum chemical industry. Accidental gas explosion in confined space often occurs because of defection of installations or mistaken operations. High pressure and rate of pressure rise caused by confinement of explosion energy are intolerable for most industrial equipment. Many injuries and much financial loss are caused, and even environmental damage. So importance of the research work on gas explosion in confined space is obvious, which is valuable and referable for prevention and control of such hazardous industrial disaster.Classification and statistics of gas explosion accidents in chemical equipment happened from 1949 and 2000 in our country are analyzed. The results show that gas explosion is the major source of risk in chemical industry. So gas explosion in confined space is decided as the object of the research work in this thesis. Firstly computation methods of gas explosion pressure and temperature are presented based on analysis of chemical engineering thermodynamics. The thermodynamics models of local combustible gas explosion pressure and temperature in enclosed space are also investigated. Considering the characteristic of multicomponent for the mixture and effect of high pressure and high temperature on fundamental properties for the mixture of flammable gas and air, calculation methods of thermal and transport properties for single component and multicomponent are recommended. The precision of mathematical model of gas explosion is thus improved by the use of state equations and the mixture regulation for real gas.Physical model and mathematical model of gas explosion in enclosure are established on the basis of theoretical investigation and previous studies. Then initial and boundary conditions are presented. EBU-Arrhenius model is used to simulate the reaction of gas mixture which can solve the problem of not calculating turbulent combustion rate accurately. In order to obtain the information of flame propagation, shock wave and gas flow turbulence in explosion process, adaptive grid technique is adopted. The gas explosion models are validated by experimental data in literatures and calculated data by typical theoretical models previously. Fair agreement between simulation results and experimental data or calculated data by theoretical models shows that it is applicable and accurate to use the mathematical models to simulate
    gas explosion in confined space.The behavior of gas explosion partially and fully filled with methane-air mixture in pipe, gas explosion with obstacles and by multi-resources have been revealed. Explosion pressure variation and flame propagation is built up after ignition in enclosed pipe. Pressure and temperature rise appears in the pipe. And dilatant flow appears ahead of flame front. Density of resultants is lower than reactants. Flame propagates from the ignition end to another end of the pipe which stops when the flame arrives at another end of the pipe and the maximum pressure is obtained. Gas explosion pressure partially with methane-air mixture in pipe is lower than fully filled with methane-air mixture. However very high pressure is still caused by lower filling rate of flammable gas. Acceleration mechanism of flame transmission in methane-air explosion is due to mutual feedback of turbulent combustion and gas flow which is induced by obstacles in pipe. More obstacles cause higher explosion pressure, rate of pressure rise and gas velocity. Different from single explosion resource, gas explosion pressure is not uniform with multi-sources in pipe by the influence of interaction of explosion waves. Two explosion waves develop ahead of flame front which move towards each other. When the two waves encounter, gas flow in two directions piled up where gas density and temperature rise rapidly. Pressurized gas flow piled up starts to flow in two directions and pressure in pipe is gradually uniform.Dynamics of unrestricted and restricted venting of gas explosion in pipe are numerically investigated. Explosion pressure rises slowly with unrestricted venting. Vent area is one of the most important influence factors. Explosion pressure decreases with increment of vent area. Unlike unrestricted venting, two stages are involved in restricted venting of gas explosion in pipe, including gas explosion in enclosed pipe and vented deflagration. Restricted venting of gas explosion is influenced by vent area and relief pressure.Effects on gas explosion behavior in enclosed pipe are simulated. Ignition position, concentration of flammable gas, gas type, initial pressure, initial temperature, ratio of length and diameter of pipe, obstacles, water content and inert gases play a great role in gas explosion in pipe. More over, fineness of calculation grids also affect the simulation results.Gas explosion in two linked vessels are numerically simulated. Dynamics characteristics and the mechanism of higher explosion strength compared to isolated vessel are investigated. Characteristics of flame propagation, pressure variation and
    gas flow are obtained. After ignition in the first vessel, a laminar flame front develops which, when it enters the pipe, is accelerated and becomes turbulent. The jet of flame which then enters the second vessel, is related to precompressed mixture of unburned gas, since the displacement of unburned mixture ahead of the flame front caused precompression and turbulence in the second vessel. This is a local dynamic effect called as pressure piling which can cause high local explosion pressure. The flame is accelerated during gas explosion especially when it enters the pipe from ignition vessel and leaves the pipe to enter the second vessel. Gas mixture in the vessels starts to flow backward because of the difference of pressure induced by gas combustion in the vessels. Transition of flame propagation from laminar combustion to turbulent combustion occurs in the course of gas explosion in such vessels. So compression, backflow and jet flame of unburned gas mixture represent a major factor affecting the explosion violence. Influence factors of gas explosion in linked vessels with the same volumes and different volumes are investigated, including ignition position, diameter and length of pipe, volume of vessels, transmission directions of flame and ratio of volumes of the two vessels.Strength analysis of pressure shock resistant vessel subjected to different gas explosion loads is made by using the finite element analysis software ANSYS. The maximum equivalent stress of the vessel subjected to detonation load is much higher than under deflagration load because of higher peak pressure and rate of pressure rise. Detonation load can cause bigger deformation than deflagration load. And the vessel and connecting pipe firstly expands outward under dynamic explosion load. The support plates also deforms outward and bends which cause the vessel falls. At last the vessel is inclined due to plastic deformation. Based on strength analysis of pressure shock resistant vessel under gas explosion, a simulating method for safety design of such vessels is put forward.
引文
[1] 毕明树.开敞空间可燃气云爆炸压力研究[D].大连:大连理工大学,2001
    [2] W. BartKnecht. Explosion course prevention protection[M]. Springer-Verlag, Berlin, 1981
    [3] T. J. A. Brown. Tech. Rep. Br. Elec. Allied Ind. Res. Assoc. D/T 109, 1959
    [4] H. Phylaktou, G. E. Andrews. Gas explosions in linked vessels[A]. 13th ICDERS, Japan, July, 1999
    [5] J. Singh. Gas explosions in inter-connected-vessels: pressure piling[A]. Presented at I ChemE Hazards Ⅻ Symposium, 19-21 April 1994, UMIST, Manchester, UK
    [6] P. Holbrow, G. A. Lunn, A. Tyldesley. Dust explosion protection in linked vessels: guidance for containment and venting[J]. Journal of Loss Prevention in the Process Industries, 1999, 12(3): 227-234
    [7] G. A. Lunn, P. Holbrow, S. Andrews, J. Gummer. Dust explosions in totally enclosed interconnected vessel systems[J]. Journal of Loss Prevention in the Process Industries, 1996, 9(1): 45-58
    [8] P. Holbrow, S. Andrews, G. A. Lunn. Dust explosion in interconnected vented vessels[J]. Journal of Loss Prevention in the Process Industries, 1996, 9(1): 91-103
    [9] 蒋军成,潘旭海,王志荣,邢志祥.典型化工过程灾害性事故预测与防治技术基础研究[R].国家自然科学基金项目研究报告,2004
    [10] 王志荣,蒋军成.受限空间工业气体爆炸研究进展[J].工业安全与环保,2005,31(3):43-46
    [11] 赵衡阳.气体和粉尘爆炸原理[M].北京:北京理工大学出版社,1996
    [12] 李刚.工业设备抗粉尘爆炸性能研究[D].沈阳:东北大学,2001
    [13] Shengjun Zhong. Modeling and numerical simulation of coal dust-air explosions[Dissertation]. Poland: Warsaw University of Technology, 2002
    [14] 汪佩兰,王海福,李盛,曾象志.含能材料粉尘爆炸压力和压力上升速率的研究[J].兵工学报,1995,3(3):59-63
    [15] 范宝春,丁大玉,浦以康,汤明钧.球形密闭容器中铝粉爆炸机理的研究[J].爆炸与冲击,1994,14(2):148-156
    [16] 徐景德,周心权,吴兵.瓦斯浓度和火源对瓦斯爆炸传播影响的实验分析[J].煤炭科学技术,2001,29(11):15-17
    [17] 徐景德,周心权,吴兵.矿井瓦斯爆炸传播的尺寸效应研究[J].中国安全科学学报,2001,11(6):36-40
    [18] 费国云.独头巷道中瓦斯爆炸引爆沉积煤尘的实验[J].煤炭工程师,1997(4):16-19
    [19] 费国云.瓦斯爆炸沿巷道传播特性探讨[J].煤矿安全,1996,2(2):32-34
    [20] 王汉良,周凯元,夏昌敬.气体爆轰波在弯曲管道中传播特性的实验研究[J].火灾科学,2001,10(4):209-212
    [21] 周凯元.气体爆燃火焰在狭缝中的淬熄[J].火灾科学,1998,8(1):22-33
    [22] 郭长铭,李剑.爆轰波在阻尼管道中声吸收的实验研究[J].爆炸与冲击,2000,20(4):289-295
    [23] Ritsu Dobashi. Experimemal study on gas explosion behavior in enclosure[J]. Journal of Loss Prevention in the Process Industries, 1997, 10(2): 83-89
    [24] A. Masri, S. Ibrahim, N. Nehiat, A. Green. Experimental study of premixed flame propagation over various solid obstructions[J]. Experimental Thermal and Fluid Science, 2000, 21:19-116
    [25] S. S. Ibrahim, A. R. Masri. The effects of obstructions on overpressure resulting from premixed flame deflagration[J]. Journal of Loss Prevention in the Process Industries, 2001, 14: 213-221
    [26] 王三明.化工过程爆炸灾害模拟分析及防灾决策支持系统研究[D].南京:南京工业大学,2002
    [27] 林柏泉,桂晓宏.瓦斯爆炸过程中火焰传播规律的模拟研究[J].中国矿业大学学报,2001,31(1):6-9
    [28] 林柏泉,桂晓宏.瓦斯爆炸过程中火焰厚度测定及其温度场数值模拟分析[J].实验力学,2002,17(2):227-233
    [29] 韩启祥,王家骅,王波.预混气爆震管中爆燃到爆震转捩距离的研究[J].推进技术,2003(1):63-66
    [30] 邵卫,毕明树,丁信伟,任振峰.可燃气云爆炸火焰加速机制的探讨[J].化工机械,2002,29(2):113-115
    [31] 王淑兰,宋永锋,丁信伟,贺匡国.气相爆炸压力的安全泄放[J].中国锅炉压力容器安全,1992,8(2):25-27
    [32] 王淑兰,丁信伟.化工设备紧急泄爆的安全设计[J].石油化工设备,1994, 23(1):28-29
    [33] 王淑兰,丁信伟,贺匡国.液化石油气燃爆泄放特性的实验研究[J].化工机械,1994,21(2):71-73
    [34] 王淑兰,喻健良,李岳,丁信伟.球形容器可燃气爆炸超压泄放设计[J].化工装备技术,1999,20(3):4-7
    [35] 胡俊,浦以康,万士昕,贾复.柱形容器开口泄爆过程中压力发展特性的实验研究[J].爆炸与冲击,2001,21(1):47-52
    [36] 王振成,小川辉繁.管状容器的泄压[J].工业安全与防尘,1995(1):13-16
    [37] M. G. Zabetakis. Flammability characteristics of combustible gases and vapors[J]. U S Bureau of Mines Bullet, 1965
    [38] S. Chippett. Modeling of vented deflagration[J]. Combustion and Flame, 1984, 55(2): 127-140
    [39] 王淑兰,丁信伟,贺匡国.容器内烃类气体燃爆温度和压力的数值解[J].大连理工大学学报,1992,32(2):163-169
    [40] 邢志祥.密闭容器内液化石油气燃爆特性的计算[J].消防科学与技术,2000(2):61-62
    [41] A. Ogle Russell. Explosion hazard analysis for an enclosure partially filled with a flammable gas[J]. Process Safety Progress, 1999, 18(3): 170-177
    [42] 张艳春,喻健良,丁信伟,刘润杰.预测密闭容器内可燃气体爆燃最大压力的方法[J].化工机械,2002,29(6):333-337
    [43] Ulrich Bielert, Martin Sichel. Numerical simulation of premixed combustion processes in closed tubes[J]. Combustion and Flame, 1998, 114(3): 397-419
    [44] M. Falrweather, G. K. Hargrave, S. S. Ibrahim, D. G. Walker. Studies of premixed flame propagation in explosion tubes[J]. Combustion and Flame, 1999, 116(4): 504-518
    [45] 郭文军,崔京浩,雷全立.密闭空间燃气爆炸升压计算[J].煤气与热力,1999,19(2):42-44
    [46] 毕明树,尹旺华,丁信伟.密闭容器非理想爆源爆炸过程的数值模拟[J].化学工业与工程技术,2003,24(3):1-3
    [47] 毕明树,尹旺华,丁信伟,王淑兰.管道内可燃气体爆燃的一维数值模拟[J].天然气工业,2003,23(4):89-92
    [48] 沈玉玲,宁建国,卢捷.一些典型管道煤气爆炸的数值模拟研究[J].安全与环境学报,2001,1(3):11-16
    [49] 杨宏伟,范宝春,李鸿志.障碍物和管壁导致火焰加速的三维数值模拟[J].爆炸与冲击,2001,21(4):259-264
    [50] 范宝春,姜孝海,谢波.障碍物导致甲烷-氧气爆炸的三维数值模拟[J].煤炭学报,2002,27(4):371-373
    [51] 魏引尚,常心坦.沼气爆燃向爆轰转变的化学动力学研究[J].西安科技学院学报,2000,20(1):21-24
    [52] 陈绍仲.一个理想的爆燃转爆轰过程[J].宁波大学学报,2002,15(4):1-6
    [53] 张艳,任兵,常熹钰,熊国清.激波诱导可燃气体爆燃的数值模拟[J].国防科技大学学报,2001,23(2):33-37
    [54] 胡湘渝,张德良.易燃混合气体爆炸完全基元反应模型数值模拟[J].安全与环境学报,2001,5(1):22-27
    [55] Michele Maremonti, Gennaro Russo, Emesto, Vincenzo Tufano. Numerical simulation of gas explosion in linked vessels[J]. Joumal of Loss Prevention in the Process Industries, 1999, 12(3): 189-194
    [56] R. K. Abdullin, V. S. Babkin, P. K. Senachin. Combustion, Explosion and Shock waves, 24, 123-132
    [57] J. Singh. Trans. IchemE B, 72, 220-228
    [58] E. Salzano, F. S. Marra, G. Russo, J. H. S. Lee. Numerical simulation of tttrbulent gas flames in tubes[J]. Jottrnal of Hazardous Materials, 2002, 95(3): 233-247

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700