用户名: 密码: 验证码:
氢键吸附树脂体系的建立及其应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在天然产物化学中,天然产物的提取分离扮演着重要的角色,它不仅是天然产物及其衍生物化学发展的基础,同时它制约着天然产物的应用。而大孔吸附树脂以其高吸附容量,简单的工艺流程,吸引了许多研究者的关注。商品化大孔吸附树脂以苯乙烯等单体为骨架,其吸附作用以强疏水性为主,选择性较低,在工业应用上以天然产物的粗提取为主,无法进行更精细的分离提纯。为了使树脂能在更广泛的范围应用,必须对传统树脂进行改进,引入更多的吸附作用,同时在更大程度上优化其解吸条件。本论文从天然产物提取分离的需求出发,合成了以氢键吸附为主的几个系列吸附树脂,系统性的研究了以氢键作用为主的弱吸附作用应用于不同层次的天然产物分离纯化的过程。主要内容包括以下四个部分:
     第一部分:通过两种方法在疏水骨架的树脂上引入极性的酯基链段,通过对其红外的表征,验证了极性基团成功引入。然后,以汉防己生物碱为模型对两系列树脂及商品化树脂进行了静态吸附试验,其中DM和NDM系列树脂的吸附量均随极性单体的加入不断提高,但当其疏水骨架疏水性降低到一定程度时吸附量随之减小,这证明了疏水-偶极协同作用的存在,而NDM系列树脂因为极性链段相对集中大大增强了其偶极作用,所以其吸附量比DM系列树脂有明显增加。随后,在总碱的纯化过程中上述疏水-偶极协同作用再次得到验证,经NDM-20树脂纯化后,汉防己总生物碱的浓度达到93.2%。并通过精细调控pH和解吸附条件,根据汉防己甲素乙素PKa的差异设计了在不同pH下的分离试验,从而得到在pH=5.75时,其分离效果最好,因为这时处于分子态的汉防己甲素和离子态的乙素的比例最大,使得其在树脂上的保留能力出现明显的差别。最终得到汉防己甲素的纯度为93%以上。
     第二部分:在第一部分研究疏水-偶极协同作用的基础上,以疏水-协同作用为对照,研究了疏水-氢键的协同作用。合成了DE、DV两系列树脂,并以甜菊糖总苷的提取为实例,在静态吸附下计算了其等量吸附焓,发现疏水-氢键协同的DV系列树脂吸附焓明显高于疏水-偶极协同的DE系列树脂,证明在疏水作用相同时,疏水-氢键协同作用比疏水-偶极协同作用力强,增加其吸附作用。动态吸附中DV-20表现出了更高的吸附量更好的解吸附能力,与商品化树脂相比较,其吸附量增加了近一倍,而纯化后甜菊糖总苷纯度较商品化树脂有所提高。疏水-氢键协同树脂适合具有形成氢键能力的天然产物从动植物原料中大规模提取,由于疏水作用的存在,无法消除疏水作用广谱的吸附,所以不适合对单一组分的分离。
     第三部分:为了进行单一组分的分离我们需要摆脱疏水作用的限制,突出氢键吸附选择性吸附的优点,我们合成了以单一氢键吸附为主的树脂。为得到具有氢键吸附能力的聚乙烯醇链段我们选择了醋酸乙烯酯为聚合单体,选用与其结构相近的三烯丙基异氰脲酸酯(TAIC)为交联剂进行悬浮聚合,聚合完成后进行水解得到具有聚乙烯醇链段的VT系列树脂。通过红外表征发现醋酸乙烯酯树脂成功合成,并成功水解得到聚乙烯醇链段。以去除茶多酚提取物中的咖啡因为例,静态吸附表明:茶多酚上的酚羟基可与聚乙烯醇链段形成较强的氢键吸附作用,而咖啡因不能形成,与商品化树脂对照发现在咖啡因与树脂之间的吸附作用力为疏水吸附,而茶多酚既可以和树脂以疏水作用结合,也可以以氢键作用结合。因此,为了特异性的吸附茶多酚而去除咖啡因,应尽量降低树脂的疏水作用,同时增加其氢键作用。吸附热力学试验进一步说明VT树脂与茶多酚之间的氢键作用。我们利用动态吸附试验研究了VT-80树脂的动态吸附曲线,确定了其最佳上柱容量,并在此基础上做了梯度解吸。据此我们建立了基于VT-80树脂用来去除茶多酚提取物中的咖啡因的生产工艺。最后,我们检测了不同比例的茶多酚提取物中咖啡因的去除试验,并检测了树脂的再生性能和重复使用性能。最终产物中茶多酚的回收率大于92%,而其中咖啡因则被完全去除。
     第四部分:为了进行更为精细的分离,水体系下,由于水分子对氢键的干扰氢键作用不能完全发挥,对形成氢键能力相近的物质单一氢键吸附不能满足其分离的要求,因此需要在非水体系下进行多氢键协同吸附。为此我们选择了较为亲水的骨架,为了便于合成不同链长的功能基链,我们以丙烯酸酯系交联剂与甲基丙烯酸缩水甘油酯(GMA)聚合,通过调节交联剂的比例,选了合适的交联度,并在此基础上通过调控致孔剂的比例和用量,得到环氧含量最大的GT-3-4树脂作为树脂前体。首先以不同的功能基团对环氧开环,发现胺基作为受体能与羟基形成较强的氢键作用。通过不同长度柔性多胺链对树脂进行功能基化,得到GTN系列树脂,通过静态吸附试验发现在柔性链增长时树脂接枝链和甜菊糖总苷糖环间可形成多氢键协同吸附作用,形成氢键的个数与接枝链长和糖环个数有关。同时,研究了各种不同链长的低级醇溶剂对树脂氢键作用的影响,发现随着溶剂醇链长的增加,树脂与甜菊苷(SS苷)之间的氢键吸附焓绝对值越来越大,而在水溶液中其吸附焓为正值,说明水是树脂与SS苷之间氢键良好的破坏剂。在对甜菊糖总苷溶液动态分离实验中,选用了不同溶剂的上柱液研究溶剂对其分离性能有明显影响,通过不同比例的水作为氢键的破坏剂可特异解吸SS苷和RA苷(莱鲍迪苷A),但水对氢键的破坏过于强烈使得分离不容易控制,于是选用破坏能力稍弱的甲醇作为其破坏溶剂,进行解吸附,最终得到SS苷纯度为92.3%,RA苷纯度为91.4%,收率为73.2%。
     综合以上,疏水-偶极、疏水-氢键协同树脂适合对天然产物的大规模提取,但由于疏水作用的存在树脂对单体分离的难度较大,为了进行天然产物单体分离,我们设计了以氢键吸附作用为主的VT系列树脂,并用它成功的去除了茶多酚提取物中的咖啡因,但水溶液中由于水分子干扰势必影响氢键的发挥,同时对氢键形成能力相近但氢键个数不同物质的分离,单一氢键吸附很难发挥作用,为此我们在非水体系下,合成并研究了柔性多胺链的接枝树脂对甜菊糖总苷中SS苷与RA苷的分离,证明了多氢键协同吸附的存在,并在此体系下优化其分离工艺,最终得到较纯的RA苷。三种不同类型的树脂适用于不同层次的天然产物的分离提取。
Extraction and separation of natural products play an important role in the chemistry of natural products. It is not only the basis for the research of natural products and their derivatives, but also restricts the application of natural products. Macroporous resin, which has high adsorption capacity and simple process, attracted the attention of many researchers. Commercial macroporous adsorption resins which were synthesized by monomers such as styrene, had a hydrophobic skeleton and its adsorption force was strong hydrophobic interaction. Their selectivity was low, which were mainly used in crude extracts of natural products in industrial applications. Commercial macroporous adsorption resins could not be used in a rigorous separation. In order to make resins applied in a wider range, traditional resin must be improved. More adsorption interactions should be introduced into adsorption resins, at the same time, optimizations should be researched on the analysis conditions. This thesis based on the natural product extraction and separation requirements, several series of hydrogen bonding adsorption resins were synthesized. Hydrogen bonding interaction of adsorption, which was applied to different levels of process of separation and purification of natural products, was studied systematically. The main contents include the following four parts:
     Part Ⅰ:Two methods were introduced in synthesis of the hydrophobic skeleton resin with the polarity of the ester group segments, the polar group segments was validated successful introduced into the resins by FT-IR characterization. Then, Tetrandrine alkaloids, as a model, were used to characterize two series of resins and commercial resins by static adsorption tests. Adsorption capacity of DM and NDM series resins rose as the addition of polar monomer improving, continuously. When the hydrophobicity of the hydrophobic skeleton was reduced to a certain extent, the adsorption capacity decreased suddenly, which proved the presence of a hydrophobic-dipole synergistic effect. NDM series resin had higher adsorption ratio than DM Series, because the high concentration polar segments of NDM series greatly enhanced its dipole interaction. The adsorption ratio of NDM resins has increased significantly. Subsequently, the hydrophobic-dipole synergy was verified again in the purification process of the alkaloids. After purification by NDM-20resin, the purification of tetrandrine alkaloids reached93.2%. Based on different PKA of the the TET and FAN, separation tests were designed at different pH and desorption conditions. The separation had a best result in pH=5.75, because TET was in molecular state and FAN was in ionic state in this pH, making its retention different on the resin, significantly. TET purity of product was more than93%, finally.
     Part II:based on the study of the hydrophobic-dipole synergy in the first part, the hydrophobic-hydrogen synergistic effect was researched as the hydrophobic-dipole synergy, in this part. DE and DV Series resins were synthesized and Extraction of stevia glycosides was used as a model. The static adsorption was used to calculate the adsorption enthalpy, which showed the hydrophobic-hydrogen synergy existed in DV series resin. The adsorption enthalpy of hydrophobic-hydrogen synergy was significantly higher than the hydrophobic-dipole synergy in DE series resins, to prove that in the same of the hydrophobic interaction, hydrophobic-hydrogen bonds synergy was stronger than the hydrophobic-dipole synergy, which increased the adsorption of DV resins. Dynamic adsorption on the DV-20showed higher adsorption and better desorption compared with the commercial resins. The adsorption amount was nearly doubled, and the purity of stevioside was higher than the purity of commercial resins. The hydrophobic-hydrogen synergistic resins were suitable for large-scale extraction of natural products from plant or animal raw. Impurity, which could form hydrogen bonds, could not be eliminated due to the presence of a hydrophobic interaction, hydrophobic interaction broad spectrum of adsorption. It was not suitable for the separation of a single component.
     Part III:In order to obtain single component, we need to get rid of the limitations of the hydrophobic effect and project advantage of hydrogen adsorption which had high selectivity in adsorption. A series of resins were synthesized based on single were polymerizable monomers for suspension polymerization. Hydrolysis carried out after the completion of polymerization, to give the VT series resin. The synthesis of vinyl acetate resin and s hydrolyzed to obtain the polyvinyl segments were successful, which was showed in FT-IR characterization. Take removing the caffeine from the tea polyphenol extract for example. The static adsorption showed:there was a strong hydrogen adsorption interactive between a phenolic hydroxyl group on tea polyphenols and polyvinyl alcohol segments, while the caffeine cannot form. The adsorption of commercial resins showed there was hydrophobic adsorption between the caffeine and the resin, while the tea polyphenols also could form it. Accordingly, for the specific adsorption of tea polyphenols removed and the resin, the hydrophobic effect of the resin should be minimized, while hydrogen bonding interactions should be increased the adsorption thermodynamics tests further illustrated the role of hydrogen bonds between the VT resin and polyphenols. Dynamic adsorption curve of VT-80resin was plotted to determine the best capacity of the dynamic adsorption, and the gradient desorption carried out, based on this. Accordingly, we established the production process of VT-80resin used to remove the caffeine in the tea polyphenols extract. Finally, we examined the different proportions of caffeine in tea polyphenols extracts removal tests, and detected regeneration of resin and re-use performance. The recovery of the final product polyphenols was more than92%and caffeine was completely removed.
     Part Ⅳ:For rigorous separation, due to the interference hydrogen bonding of water molecules, hydrogen adsorption cannot take full advantage of adsorption in water system. The single hydrogen bonds adsorption cannot meet the requirements of the separation of similar substances forming similar hydrogen bonds. Multi-hydrogen bonds adsorption was required in the non-water system. To this purpose, more hydrophilic skeleton were chosen. Polymerizable acrylate ester-based cross-linker agent and GMA were chosen as monomers, in order to facilitate the synthesis of different chain length of functional groups. Then the proportion of cross-linker agent and the pore-foaming agent were adjusted, to select the appropriate degree of crosslink. GT-3-4resin was chosen as the resin precursor for the most amount of epoxy group. First, different functional groups were used in epoxy opening reaction, and the static adsorption showed that amino group was the best hydrogen acceptor and could form strong hydrogen bonding interaction with the hydroxyl. GTN series resins were synthesized through different length of the flexible function agents. Static adsorption tests showed as the flexible chain growth in grafted resins, stevia glycosides could form more hydrogen bonds with the GTN resins. The number of hydrogen bonds formed between resins and adsorbate, was related with the grafted chain length and the number of sugar ring. A variety of different length of the alcohol solvents were studied, and found that with the increase length of solvent, absolute value of hydrogen bonding adsorption enthalpy between resin and SS glycosides was larger. The adsorption enthalpy in the aqueous solution was positive, which showed that water was destructive agent to hydrogen bond between resin and SS glycosides. In dynamic separation tests, the choice of the type of glycosides solutions had obvious influence on its separation performance. Different proportions of water could be used as the destruction agent of the hydrogen bonds, then SS and RA were specific desorption. But water as the destruction agent of the hydrogen bonds was too strong to control. So a weaker destruction agent methanol was selected as destruction solvent. In this desorption, we could obtain the product. The purity of SS was92.3%and the purity of RA was91.4%, yield was73.2%.
     Based on the analyze above, the hydrophobic-dipole synergy, hydrophobic-hydrogen synergy resins were suitable for large-scale extraction of natural products, but it's difficult for rigorous separation, due to the presence of the hydrophobic interaction in resins. To rigorous separated natural products, we have designed a single hydrogen adsorption resins, VT series resins, and it was successfully used to remove the caffeine from tea polyphenols extracts. but due to the interference of water molecules in the aqueous solution, hydrogen bonds couldn't be expressed. Sometimes, adsorbates had similar abilities in the formation of hydrogen bonds but different number. It's hard to separate by single hydrogen bond adsorption resins. In non-aqueous system, we synthesized and studied flexible polyamine chains grafted resin on the separation of the SS and RA, demonstrated the presence of multiple hydrogen adsorption, and optimized the separation process of this system. Four different types of resins are suitable for the separation and extraction of natural products at different levels.
引文
[1]Cragg G M, Newman D J, Snader K M. Natural products in drug discovery and development [J]. Journal of natural products,1997, (60):52-60
    [2]杨鑫,张华,董爱军.分子印迹技术在天然产物分离纯化中的应用[J].东北农业大学学报,2011,42(8):146-153
    [3]Chen F, Wang Z F, Zhao G H, et al. Purification process of octacosanol extracts from rice bran wax by molecular distillation [J]. Journal of Food Engineering,2007,79 (1):63-68
    [4]Cermark S C, John A L, Evangelista R L. Enrichment of decanoic acid in cuphea fatty acids by molecular distillation [J]. Industrial Crops and Products,2007,26(1):93-99
    [5]许松林,郑弢.短程蒸馏提纯胡麻籽油中A2亚麻酸的工艺研究[J].中草药,2004,35(3):264-266
    [6]郑弢,许松林.分子蒸馏提纯A2亚麻酸的研究[J].化学工业与工程,2004,21(1):25-28
    [7]郑剑.超临界萃取技术的进展[J].安徽农学通报,2007,13(21):39.
    [8]Casas L., Mantell C., Rodriguez M., et al., Extraction of natural compounds with biological activity from sunflower leaves using supercritical carbon dioxide [J]. Chemical Engineering Journal,2009,152 (2-3):301-306
    [9]Tao Fang, Motonobu Goto, Xianbao Wang, et al. Separation of natural tocopherols from soybean oil byproduct with supercritical carbon dioxide [J]. Journal of supercritical fluids, 2007,40 (1):50-58
    [10]Loredana Ciurlia, Mauro Bleve, Leonardo Rescio. Supercritical carbon dioxide co-extraction of tomatoes (Lycopersicum esculentum L.) and hazelnuts (Corylus avellana L.):A new procedure in obtaining a source of natural lycopene [J]. Journal of supercritical fluids,2009, 49 (3):338-344
    [11]屠鹏飞.八大问题掣肘中药质量标准提高.中国医药报,2005,15(1):4-6
    [12]Emmanuel Amukohe Shikanga, Alvaro Viljoen, Sandra Combrinck, et al. Isolation of Sceletium alkaloids by high-speed countercurrent chromatography, Phytochemistry Letters, 2011,4(2):190-193
    [13]Guanglei Song, Qizhen Du. Isolation of a polysaccharide with anticancer activity from Auricularia polytricha using high-speed countercurrent chromatography with an aqueous two-phase system. Journal of Chromatography A,2010,1217 (38):5930-5934
    [14]Slawomir Wybraniec, Pawel Stalica, Gerold Jerz, et al. Separation of polar betalain pigments from cacti fruits of Hylocereus polyrhizus by ion-pair high-speed countercurrent chromatography. Journal of Chromatography A,2009,1216 (41):6890-6899
    [15]Yoichiro Ito. Spiral column configuration for protein separation by high-speed counter current chromatography. Chemical Engineering and Processing:Process Intensification, 2010,49(7):782-792
    [16]雷小佳.现代膜分离技术的研究进展.广东化工,2012,(8):5 1-52.
    [17]林开建.膜分离技术及其在医药工业中的应用.化学工程与装备,2006,3(2):48-51.
    [18]SONG Wen-he, RAVINDRAN V, KOEL B E, et al. Nanofiltration of natural organic matter with H202/UV pretreatment:fouling mitigation and membrane surface characterization. Journal of Membrane Science,2004,241 (1):143-160.
    [19]何炳林,黄文强.离子交换与吸附树脂[M].上海:上海科技教育出版社,1995:319-324.
    [20]朱爱松,吴景东.中医在国外发展状况及其给我们的启示.世界中医药,2007,7(2):250-251
    [21]周艳琼.我国植物提取物市场发展综述.中国医药技术与市场,2006,6(1):36-38
    [22]Willun G, et al. Abstracts of short lectures and poster presentation 41st Annual Congreses on Medicine Plan Research [M]. Germany:Heinrich-Heine University:,1993:532-535
    [23]华君.中药提取物产业现状及中国企业发展策略[M].成都:西南财经大学,2005:213-221
    [24]顾铭.天然产物分离纯化技术.见:中国医药化工网主编.(第二届)全国医药化_工技术开发与市场分析研讨会论文集.青岛:青岛大学出版社,2006:8-11
    [25]何惠芳,赵庆国,郑绯.中药质量控制因素分析.中国煤炭工业医学杂志,2009,12(5):805-809
    [26]马建标.功能高分子材料[M].北京:化学工业出版社,2010:145-150
    [27]Okay O. Macroporous copolymer networks. Progress in Polymer Science,2000,25(6): 711-779
    [28]史作清,施荣富.吸附分离树脂在医药工业中的应用[M].北京:化学工业出版社,2008:257-264
    [29]何炳林,黄文强.离子交换与吸附树脂.上海:上海科技教育出版社,1995:345-351
    [30]何炳林.吸附与吸附树脂.石油化工,1977,6(3):263-283
    [31]Adams B A, Holmes E L. Synthetic ionexchange resins. Journal of the Society of Chemical Industry,1935,54(1):23-29
    [32]KuninR[美],朱秀昌译.离子交换树脂[M].北京:科学出版社,1960:124-131
    [33]王跃生,王洋.大孔吸附树脂研究进展.中国中药杂志,2006,31(12):691-695
    [34]王德中.功能高分子材料[M].北京:中国物资出版社,1998:13 1-134
    [35]Kun K A, Kunin R. Hole structureproperties of resins, J Polym Sci,1968,6 (1):2689-2695
    [36]Fiona S M, David C S. Control of Porous Morphology in Suspension Polymerized Poly(divinylbenzene) Resins Using Oligomeric Porogens. Macromolecules,2004,37 (20): 7628-7636
    [37]李铭杰,李仲谨,郝明德,等.反相悬浮聚合法制备XG-g-PAA高吸水性树脂.精细化工,2011,28(1):39-44
    [38]谢建军,梁吉福,何新建,等.丙烯酸系高吸水树脂反相悬浮聚合法制备及其吸附性.功能高分子学报,2008,21(4):448-451
    [39]杜荣军,王槐三,孙晓珑,等.采用重复互贯聚合用废弃白球末合成凝胶型阳离子交换树脂的研究.离子交换与吸附,2003,19(1):77-82
    [40]李彦锋,张树江,李耀增,等PS/PVC互贯大孔吸附树脂对脲酸的吸附研究.高分子学报,2002(2):153-156
    [41]侯世祥,田恒康.大孔吸附树脂在中药复方分离纯化工艺中的应用.中药新药与临床药理,2005,11(3):131-133
    [42]周丽,姜文花,史作清;选择性吸附树脂ADS-22制备高含量大豆异黄酮;离子交换与吸附2009,25(1):84-90
    [43]Ren P, Zhao X L, Zhang J, et al. Synthesis of high selectivity polymeric adsorbent and its application on the separation of ginkgo flavonol glycosides and terpene lactones. Reactive & Functional Polymers,2008,68 (4):899-909
    [44]任萍.水体系中高选择性氢键吸附树脂的结构设计、吸附机理及应用研究:[博士学位论文].天津:南开大学,2008
    [45]耿啸天.高选择性吸附树脂结构设计及在中药复方有效成分提取中的应用:[博士学位论文].天津:南开大学,2010
    [46]Wang P, Geng X T, Pi G P, et al. Preparative separation of four individual flavonoids in Scutellaria barbata D. Don based on high selectivity polymeric adsorbents with different polarities. Journal of Chromatography B,2010,878 (32):3375-3381
    [47]王刚,杨松松,曹阳.大孔吸附树脂法富集菟丝子总黄酮的实验研究.中华中医药学刊,2007,25(9):1964-1965
    [48]欧贤红,刘华钢,徐恒.天然生物碱及衍生物抗肿瘤机制研究进展.中国药理学通报,2010,26(6):708-710
    [49]刘韶,章伟,雷鹏,等.大孔吸附树脂纯化两面针总生物碱.中国中药杂志,2008,33(4):377-379
    [50]Pi G P, Ren P, Yu J M, et al. Separation of sanguinarine and chelerythrine in Macleaya cordata (Willd) R. Br. based on methyl acrylate-co-divinylbenzene macroporous adsorbents. Journal of Chromatography A,2008,1192 (1):17-24
    [51]王元清,严建业,罗堃,等,NKA-9型大孔树脂纯化蟾皮总生物碱工艺[J],中国实验方剂学杂志,2011,17(22):6-8
    [52]周文威,叶益,萍.大孔吸附树脂分离纯化延胡索总生物碱.中国现代应用药学,2010,27(3):268-270
    [53]周先礼,陈东林,王锋鹏.三小叶翠雀花中生物碱成分的研究[J].华西药学杂志,2005,20(1):1-3.
    [54]刘凤艳,张二勇,周波,等.皂苷提取分离新技术研究进展.辽宁化工,2009,38(1):59-61
    [55]刘睿,武春密,王春红,等.高比表面季铵基树脂的结构调控及在三七叶总皂甙纯化中的应用研究.高分子学报,2008,(7):679-685
    [56]石忠峰,陈蔚文,李卫民,等.大孔吸附树脂纯化黄芪总皂苷的研究.中草药,2005,36(9):1322-1324
    [57]郑军献,浦锦宝,胡轶娟,等.大孔吸附树脂分离纯化白芍总皂苷的研究.医学研究杂志,2010,39(11):38-40
    [58]刘晓超,马丽丽.大孔吸附树脂在有机废水处理中的应用的研究进展.交通环保,2004,25(4):35-38
    [59]Collins G, Foy C, McHugh S, et al. Anaerobic Biological Treatment of Phenolic Wastewater at 15~18℃. Water Research,2005,39(5):1614-1620
    [60]Moussavi G, Mahmoudi M, Barikbin B. Biological Removal of Phenol from Strong Wastewaters Using a Novel MSBR. Water Research,2009,43 (5):1295-1302
    [61]Huang C P, Huang Y H. Application of an Active Immobilized Iron Oxide with Catalytic H2O2 for the Mineralization of Phenol in a Batch Photo-fluidized Bed Reactor. Applied Catalysis A:General,2009,357 (2):135-141
    [62]Christoskova S, Stoyanova M. Degradation of Phenolic Waste Waters over Ni-oxide. Water Research,2001,35 (8):2073-2077
    [63]Wibowo N, Setyadhi L, Wibowo D, et al. Adsorption of Benzene and Toluene from Aqueous Solutions onto Activated Carbon and Its Acid and Heat Treated Forms:Influence of Surface Chemistry on Adsorption. Journal of Hazardous Materials,2007,146 (2):237-242
    [64]Huang Y, Ma X Y, Liang G Z, et al. Adsorption of Phenol with Modified Rectorite from Aqueous Solution. Chemical Engineering Journal,2008,141 (1/3):1-8
    [65]Huang J H, Wang X G, Jin Q Z, et al. Removal of Phenol from Aqueous Solution by Adsorption onto OTMAC-modified Attapulgite. Journal of Environmental Management, 2007,84 (2):229-236
    [66]张全兴,陈金龙,李爱民,等.树脂对化工废水中有毒有机化合物的吸附作用机理与技术研究.高分子学报,2008,(7):651-655
    [67]王槐三,寇晓康,刘玉鑫,等.树脂吸附法处理2,4-D丁酯氯化含酚废水.石油化工,2002,31(6):468-471
    [68]王昌花,向福如,赵修贤,等.苯并恶嗪中间体生产中含酚污水的处理技术研究.四川大学学报(工程科学版),2001,33(3):72-74
    [69]肖吉敏,王槐三,刘玉鑫,等.树脂吸附处理模拟双酚A生产中含酚废水的研究.四川大学学报(工程科学版),2003,35(2):64-67
    [70]徐建晖,刘海东,段为,等.废水中苯酚处理用大孔树脂的合成及性能研究.塑料工业,2010,38(1):83-87
    [71]周立,钟宏,李超,等.H-103树脂处理含酚废水的实验研究.过程工程学报,2010,10(3):462-469
    [72]魏瑞霞,庞睿智,李艳霞.树脂吸附法回收焦化废水中的酚.工业水处理,2008,28(12):65-69
    [73]李喜梅,樊李红,胡志红.对NKA树脂处理含酚废水的静态吸附研究.黄河水利职业技术学院学报,2000,12(3):37-39
    [74]朱兆连,陈金龙,李爱民等.树脂吸附法处理邻甲苯胺生产废水的研究.环境污染与防治,2004,26(1):60-62
    [75]戚品豹.树脂吸附苯胺废水的研究.化学工业与工程技术,2001,22(3):27-29
    [76]Zheng K, Pan B C, Zhang Q J, et al. Enhanced adsorption of p-nitroaniline from water by a carboxylated polymeric adsorbent. Separation and Purification Technology,2007,57 (2): 250-256
    [77]Cai J G, Li A M, Shi H Y, et al. Adsorption characteristics of aniline and 4-methylaniline onto bifunctional polymeric adsorbent modified by sulfonic groups. Journal of Hazardous Materials, B,2005,124 (1-3):173-180
    [78]陆朝阳,王学江,张全兴,等.树脂吸附法处理分散蓝NKF脱碘母液.化工环保,2002,22(6):342-3461
    [79]张海珍.大孔树脂对邻苯二甲酸的吸附研究.广州环境科学,2006,21(2):23-26
    [80]Zhang W M, Zhang Z W, Pan B C, et al. Assessment on the removal of dimethyl phthalate from aqueous phase using a hydrophilic hyper-cross-linked polymer resin NDA-702. Journal of Colloid and Interface Science,2007,311(2):382-390
    [81]Pan B C, Zhang Q X, Meng F W, et al. Sorption enhancement of aromatic sulfonates onto an aminated hyper-cross-linked polymer. Environmental Science & Technology 2005, (39): 3308-3313
    [82]张丽轩,麻宁,于丽等.高选择性吸附树脂结构设计及在天然产物提取分离中的应用.高分子通报,2013,(1):1-11.
    [83]何炳林,吸附与吸附树脂,石油化工,1977,(3):263-283
    [84]钱庭宝,刘维林,李金和,吸附树脂及其应用[M],北京:化学工业出版社,1990:77-82
    [85]N. Maity, G F. Rayne, The Effects of Surface Chemistry on the Adsorption Affinity and Adsorption Enthalpy, Reactive polymers,1992,17 (3):273-284
    [86]G. F Payne, Y. Ninomiya, Selective adsorption of solutes based on hydrogen bonding, separation Science and Technology,1990,25 (11&12):1117-1129
    [87]N. Maity, G F. Payne, et.al, Adsorptive separations based on the differences in solute-sorbent hydrogen-bonding strengths. Industrial and Engineering Chemistry Research,1991, (30): 2456-2463
    [88]林种玉,傅锦坤等,聚酰胺/硅胶吸附剂吸附分离茶多酚的红外光谱,厦门大学学报(自然版),1999,38(5):716-720
    [89]傅锦坤,刘金波,金来等,负载型吸附剂及其用于从茶叶中提取茶多酚的方法,中国专利,CN1186717A.1998-6-12
    [90]史作清、范云鸽、王重等,非水体系中磺酸铜型树脂对有机碱的配位吸附,中国食品添加剂,1996,(3):38-42
    [91]许名成、范云鸽等,8—羟基喹啉树脂的制备及应用研究进展,离子交换与吸附,2000,16(1):16-20
    [92]胡冠时,中草药除鞣质方法的研究,中草药,1991,(22):489-491
    [93]G. F. Payne, N. N.. Payne, et.al, Selective adsorption of solutes based on hydrogen bonding, Separation Science and Technology,1989,24 (5&6):457-465
    [94]Lay choo Tan, P. W. Carr, et al, Liquid chromatographic study of solute hydrogen bond basicity. Analitical Chemistry,1994,66 (4):450-457
    [95]AR Fersht, The hydrogen bond in molecular recognition, Trends in Biochemical Sciences, 1987,12 (3):301-304
    [96]N. Maity, G. F. Payne, et al, Adsorptive separations based on the differences in solute-sorbent hydrogen-bonding strengths. Industrial and Engineering Chemistry Research,1991,30 (11): 2456-2463
    [97]徐满才,姚似锦,曾盈等,大孔交联聚甲基丙烯酸甲酯对酚类物质的氢键吸附研究.湖南师大学报(自然版),1998,21(2):45-48
    [98]A. J. Glemza, J. A. Koehler, etal, Selective adsorption of methoxyphenol positional isomers. Industrial and Engineering Chemistry Research,1998,37 (9):3685-3690
    [99]G. F Payne, Y. Ninomiya,, Selective adsorption of solutes based on hydrogen bonding, Separation Science and Technology,1990,25 (11&12):1117-1129
    [100]Payne G. F., Shuler M. L.,Selective adsorption of plant products, Biotech, and Bioengin., 1988,31(9):922-928
    [101]Canda M., Rempel G. L.,Separation of hydroxycitric acid lactone from fruit pectins and polyhydroxyphenols on polybenzimidazole weak-base resin. I Industrial and Engineering Chemistry Research,1999,38 (6):2474-2481
    [102]Choubal M. V., Payne G. F., et al,Equilibria for the adsorption of antibiotics onto neutral polymeric sorbents:experimental and modeling studies, Biotech. and Bioengin.,1995,47 (2):215-226
    [103]卞江,陈志达等.氢键和质子传递研究进展.化学通报,1997,4(1):12-14
    [104]徐满才,姚似锦,曾盈等.大孔交联聚甲基丙烯酸甲酯对酚类物质的氢键吸附研究.湖南师大学报(自然版)1998,21(2):45-48
    [105]王庆文,杨玉恒等.有机化学中的氢键问题[M].天津:天津大学出版社,1993:5-12
    [106]陈浩桉,徐国钧,金蓉鸾等.粉防己药材中汉防己甲素和乙素含量测定.中国中草药杂志,1993,(18):232-233
    [107]Y.J. Chen. Potential role of tetrandrine in cancer therapy. Acta Pharmacol. Sin,2002,23 (12):1102-1106.
    [108]胡皓.汉防己治疗毒品戒断中诸痛.JTCM,2004,45(11):816-820
    [109]J.L. Nortier, J.L. Vanherweghem. Renal interstitial fibrosis and urothelial carcinoma associated with the use of a Chinese herb (Aristolochia fangchi). Toxicology,2002,181 (2): 577-580.
    [110]戈升荣,崔岚,王平全.汉防己甲素药理作用的研究进展.中草药,2000,31(8):附4-附6
    [111]Ma, J.Y., Barger, M.W., Use of tetrandrine to differentiate between mechanisms involved in silica-versus bleomycin-induced fibrosis. Journal of Toxicology and Environmental Health, Part A:Current Issues,1999,57(4):247-253.
    [112]Wang, G, Lemos, J.R., Iadecola, C., Herbal alkaloid tetrandrine:from an ion channel blocker to inhibitor of tumor proliferation. Trends in Pharmacological Sciences.2004,25 (3), 120-123.
    [113]H.S. Choi, H. S. Kim, K.R. Min, Y. Kim, et al. Anti-inflammatory effects of fangchinoline and tetrandrine. Journal of Ethnopharmacology,2000,69(2):173-179.
    [114]J.M. Wu, Y. Chen, J.C. Chen, et al. Tetrandrine induces apoptosis and growth suppression of colon cancer cells in mice. Cancer Letters,2010,287 (2):187-195.
    [115]D. Feng, Y.H. Mei, Y. Wang, et al. Tetrandrine protects mice from concanavalin A-induced hepatitis through inhibiting NF-κB activation. Immunol Letter,2008,121 (1):127-128.
    [116]J.Y. Ma, M.W. Barger, et al. Use of tetrandrine to differentiate between mechanisms involved in silica-versus bleomycin-induced fibrosis. Journal of Toxicology and Environmental Health, Part A:Current Issues 1999,57(4):247-266.
    [117]黄浔阳.从粉防己植物中提取汉防己甲素.中成药研究,1998,(3):36-37
    [118]富力.不含苯的汉防己甲素及其制备方法.中国发明专利,CN 1850824A.2007-01-31
    [119]王明奎,崔文峰,鲍玲,等.粉防己生物碱的制备工艺.中国发明专利,CN 101288695A.2008-10-22
    [120]Hodge P, Waterhouse J. Chemical modification of chloromethylated crosslinked polystyrene via phase transfer catalysed Wittig reactions. Polymer,1981,22 (9):1153-1154
    [121]Farrall M J, Alexis M, Trecarten M. Chemically modified polystyrene containing pendant vinyl groups:a photosensitive polymer exhibiting chemical amplification. Polymer,1983,24 (1):114-116
    [122]Obrecht W, Seitz U, Funke W. Macromolecular Colloquium. Angew. Chem., Int. Ed. Engl., 1974,13 (3):412-419
    [123]Okubo M, Nakagawa T. Preparation of micron-size monodisperse polymer particles having highly crosslinked structures and vinyl groups by seeded polymerization of divinylbenzene using the dynamic swelling method. Colloid and Polymer Science,1992,270 (9):853-858
    [124]Gao J P, Morin F G, Darling G D. Functional polymers containing dimethylene spacers Characterization by solid-phase carbon-13 NMR. Macromolecules,1993,26 (5):1196-1198
    [125]金鑫,张政朴,李贺先,等.含有悬挂双键的苯乙烯-二乙烯苯大孔共聚物的合成及吸附性能研究.离子交换与吸附,1992,8(6):508-512
    [126]袁青,阚成友,刘伟良,等.含双键大孔径苯乙烯2二乙烯基苯微球的合成与表征.应用化学,1998,15(2):103-105
    [127]Nirmalya Maity, Gregory F. Payne. Adsorptive Separations Based on the Differences in Solute-Sorbent Hydrogen-Bonding Strengths. Industrial and Engineering Chemistry Research,1991,30 (11):2456-2463
    [128]Soejarto, D.D., Kinghom, A.D., Farnsworth, N.R. Potential sweetening agents of plant origin. Ⅲ:Organoleptic evaluation of Stevia leaf herbarium samples for sweetness. Journal of natural products,1982,45 (5):590-599.
    [129]Munish Puri, Deepika Sharma, Ashok K. Tiwari. Downstream processing of stevioside and its potential applications. Biotechnology Advances,2011,29 (6):781-791.
    [130]赵永良,朱焕铃,刘景彬.不同产地甜菊叶中莱鲍迪甙A含量比较研究.安徽农学通 报,2009,15(21):82-83
    [131]李晓瑜.甜菊糖苷的安全性研究进展.中国食品添加剂,2003,(2):5-11.
    [132]G. Th. Kroyer. The Low Calorie Sweetener Stevioside:Stability and Interaction with Food Ingredients. Lebensmittel-Wissenschaftund-Technologie,1999,32 (8):509-51
    [133]A. Roberts, A.G. Renwick. Comparative toxicokinetics and metabolism of rebaudioside A, stevioside, and steviol in rats. Food and Chemical Toxicology 2008,46 (1):31-39
    [134]Gardana, C., Simonetti, P., Canzi, E., et al. Metabolism of stevioside and rebaudioside A from Stevia rebaudiana extracts by human microflora. Journal of Agricultural and Food Chemistry,2003,51 (22):6618-6622.
    [135]Koyama, E., Kitazawa, K., Ohori, Y., Izawa, O., Kakegawa, K., Fujino, A., Ui, M.,. In vitro metabolism of the glycosidic sweeteners, stevia mixture and enzymatically modified stevia in human intestinal microflora. Food and Chemical Toxicology,2003,41 (3):359-374.
    [136]Renwick, A.G. The use of a sweetener substitution method to predict dietary exposures for the intense sweetener rebaudioside A. Food Chem. Toxicol.,2008,46 (7):61-69.
    [137]胡献丽,董文宾,郑丹,等.甜菊及甜菊糖研究进展.食品研究与开发,2005,13(3):38-40.
    [138]P.B. Jeppesen, S. Gregersen, C.R. Poulsen. Stevioside Acts Directly on Pancreatic 13 Cells to Secrete Insulin:Actions Independent of Cyclic Adenosine Monophosphate and Adenosine Triphosphate-Sensitive K+-Channel Activity. Metabolism,2000,49 (2):208-214
    [139]张文芝.美国FDA公开表示甜菊糖可以安全使用.山东农业,2002,(5):45-47.
    [140]邱洪冰,吴一华.甜菊糖甙在食品饮料工业中的应用.添加剂,2010,26(1):36-38.
    [141]赵永良.膜分离技术改进传统甜菊糖苷生产工艺的研究.广东化工,2010,(1):40-41
    [142]Aehle E, Grandic S Z, Ralainirina R. Development and evaluation of an enriched natural antioxidant preparation obtained from aqueouspinach (Spinaciaoleracea) extracts by an adsorption procedure. Food Chemistry,2004,86 (4):579-585.
    [143]罗艳玲,欧仕益.大孔树脂在食品活性成分分离中的应用.食品与机械,2005,21(5):177-179.
    [144]Rongfu Shi, Mancai Xu, Zuoqing Shi, et al., Synthesis of bifunctional polymeric adsorbent and its application in purification of stevia glycosides. Reactive & Functional Polymers, 2002,50(2):107-116.
    [145]陈天红,张杨,史作清,等.PYR树脂对甜菊糖的吸附与洗脱性能研究.离子交换与吸附,1998,14(6):521-525.
    [146]Douglas A. Balentine, Sheila A. Wiseman, Liesbeth C. M. Bouwens. The chemistry of tea flavonoids. Critical Reviews in Food Science and Nutrition,1997,37 (8):693-704.
    [147]Roberts, E. A. Wood, D. J. Separation of tea polyphenols on paper chromatogram. Biochem. J.1953,53 (2):332-336.
    [148]Haruhiko Tokuda, Shinji Takai, Rie Matsushima-Nishiwaki. (-)-epigallocatechin gallate enhances prostaglandin F2a-induced VEGF synthesis via upregulating SAPK/JNK activation in osteoblasts. Journal of Cellular Biochemistry,2007,100 (5):1146-1153.
    [149]Khan, N., Mukhtar, H. Tea polyphenols for health promotion. Life Sciences,2007,81(7): 519-533.
    [150]Astill, C., Birch, M.R., Dacombe, C. Factors affecting the caffeine and polyphenol content of black and green tea infusions. Journal of Agricultural and Food Chemistry,2001,49 (11): 5340-5347.
    [151]Sawynok, J., Yaksh, T.L. Caffeine as an analgesic adjuvant:a review of pharmacology and mechanisms of action. Pharmacol Rev,1993,45 (1):43-85.
    [152]Smith A. Effects of caffeine on human behavior. Food and Chemical Toxicology,2002 (9): 1243-1255.
    [153]Shilo L, Sabbah H, Hadari R, et al. The effects of coffee consumption on sleep and melatonin sectretion. Sleep Medicine,2002,3(3):271-273.
    [154]Lane JD, Pieper CF, Phillips-Bute BG, et al. Caffeine affects cardiovascular and neuroendocrine activation at work and home. Psychosomatic Medicine,2002,64(4): 595-603.
    [155]N. Savitri Kumar, W.M.A. Maduwantha, B. Wijekoon. Separation of proanthocyanidins isolated from tea leaves using high-speed counter-current chromatography. Journal of Chromatography A,2009,1216(19):4295-4302.
    [156]Xi, J., Zhao, S., Lu, B. Separation of major catechins from green tea by ultrahigh pressure extraction. International Journal of Pharmaceutics,2010,386(1-2):229-232.
    [157]Row, K.H., Jin, Y. Recovery of catechin compounds from Korean tea by solvent extraction. Bioresource Technology,2006,97 (5):790-793.
    [158]Borse, B.B., Kumar, H.V., Rao, L.J.M. Radical Scavenging Conserves from Unused Fresh Green Tea Leaves. Journal of Agricultural and Food Chemistry,2007,55 (5):1750-1754.
    [159]Perva-Uzunalic, A., Skerget, M., Knez, Z. Extraction of active ingredients from green tea (Camellia sinensis):Extraction efficiency of major catechins and caffeine. Food Chemistry, 2006,96 (4):597-605.
    [160]Senol, A., Aydin, A. Solid-liquid extraction of caffeine from tea waste using battery type extractor:Process optimization. Journal of Food Engineering,2006,75 (4):565-569.
    [161]Copeland, E.L., Clifford, M.N., Williams, C.M. Preparation of (-)-epigallocatechin gallate from commercial green tea by caffeine precipitation and solvent partition. Food Chemistry, 1998,61(1-2):81-87.
    [162]Dong, J., Ye, J., Lu, J.,et al. Isolation of antioxidant catechins from green tea and its decaffeination. Food and Bioproducts Processing,2011,89 (1):62-66.
    [163]Ge, Y., Jin, H. Extraction of tea polyphenols by precipitation method Chin. J. Appl. Chem. 1995,12(1):107-112.
    [164]Zhao, R. Yan, Y., Li, M. Selective adsorption of tea polyphenols from aqueous solution of the mixture with caffeine on macroporous crosslinked poly(N-vinyl-2-pyrrolidinone). Reactive and Functional Polymers,2008,68 (3),768-774.
    [165]Lu, J., Wu, M., Yang, X. Decaffeination of tea extracts by using poly (acrylamide -co-ethylene glycol dimethylacrylate) as adsorbent. Journal of Food Engineering,2010,97 (4):555-562.
    [166]Ye, J., Wang, L., Chen, H., et al. Preparation of tea catechins using polyamide. Journal of Bioscience and Bioengineering,2011,111 (2):232-236.
    [167]Xu, J., Tan, T., Janson, J. One-step purification of epigallocatechin gallate from crude green tea extracts by mixed-mode adsorption chromatography on highly cross-linked agarose media. Journal of Chromatography A,2007,1169(1-2):235-238.
    [168]Young, D.M., Crowell, A.D. Physical Adsorption of Gases [M]. London:Butterworths, 1962:426-428.
    [169]Payne, G.F., Maity, N. Solute adsorption from water onto a "modified" sorbent in which the hydrogen binding site is protected from water. Thermodynamics and separations. Industrial & Engineering Chemistry Research,1992,31 (8):2024-2033.
    [170]Li, H.T., Xu, M.C., Shi, Z.Q. Isotherm analysis of phenol adsorption on polymeric adsorbents from nonaqueous solution. Journal of Colloid and Interface Science,2004,271 (1):47-54.
    [171]Do, D.D., Do, H.D. A new adsorption isotherm for heterogeneous adsorbent based on the isosteric heat as a function of loading. Chemical Engineering Science,1997,52(2):297-310.
    [172]王德骥.关于甜菊糖苷的纯度、甜味和苦涩后味的成因机理.中国食品添加剂,2007,(3):46-53
    [173]Fu jita E, et al. Progress in the chemistry of Organic Natural products. Springer-Veslag, 1984,46(1):78-90
    [174]张杨,陈天红,孙君坦等.甜菊糖的组分分离与味质改进研究进展.化学通报,1998,(6):11-16.
    [175]陈天红,张杨,史作清等.含酮基吸附剂对莱鲍迪甙A的吸附选择性研究.高分子学报,1999,(4):398-403.
    [176]AK Yadav, S Singh, D Dhyani, et al. A review on the improvement of stevia [Stevia rebaudiana (Bertoni)]. Canadian Journal of Plant Science,2011,91(1):1-27.
    [177]赵永良,朱焕铃,刘景彬,等.不同产地甜菊叶中莱鲍迪甙A含量比较研究.安徽农学通报,2009,15(21):82-83.
    [178]Mosettig, E., Beglinger, U., Dolder, F., et al. The absolute configuration of steviol and isosteviol. Journal of the American Chemical Society,1963,85(15):2305-2309.
    [179]Ruddat, M., Heftmann, E., Lang, A. Biosynthesis of steviol. Archives of Biochemistry and Biophysics,1965,110 (3):496-499.
    [180]Hemmerlin, A., Hoeffler, J.F., Meyer, O., et al. Cross-talk between the cytosolic mevalonate and the plastidial methylerythritol phosphate pathways in tobacco bright yellow-2 cells. The Journal of Biological Chemistry,2003, (278):26666-26676.
    [181]Totte, N., Van den Ende, W., Van Damme, et al. Cloning and heterologous expression of early genes in gibberellin and steviol biosynthesis via the methylerythritol phosphate pathway in Stevia rebaudiana. Can. J. Bot.2003,81(4):517-522.
    [182]Munish Puri, Deepika Sharma, Colin J. Barrow. Enzyme-assisted extraction of bioactives from plants. Trends in Biotechnology,2012,30 (1):37-44.
    [183]Yang Yu C, Li Ji, Zu YG, et al. Optimisation of microwave-assisted enzymatic extraction of corilagin and geraniin from Geranium sibiricum Linne and evaluation of antioxidant activity. Food Chemistry,2010,122 (1):373-80
    [184]Sharma D, Puri M, Tiwari A, et al. Anti-amnesic effect of Stevioside in scopolamine treated rats. Ind J Pharmacol,2010,42 (3):164-167.
    [185]胡静,陈育如,魏霞,等.大孔树脂D107和D108对甜菊糖中SS和RA的分离研究.食品研究与开发,2008,29(6):1-4.
    [186]陈天红,张杨,史作清等.含酮基吸附剂对莱鲍迪甙A的吸附选择性研究.高分子学报,1999,(4):398-403.
    [187]Young, D.M., Crowell, A.D. Physical Adsorption of Gases [M]. London:Butterworths. 1962:426-428.
    [188]Payne, G.F., Maity, N. Solute adsorption from water onto a" modified" sorbent in which the hydrogen binding site is protected from water. Thermodynamics and separations. Industrial & Engineering Chemistry Research,1992,31 (8):2024-2033.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700