用户名: 密码: 验证码:
功能化环丙氨嗪分子印迹聚合物的制备、表征和应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
分析仪器的不断发展使食品中有害物质检测取得了巨大进步,然而样品预处理技术的不足常常会制约分析仪器检测的准确度和精密度。固相萃取在样品预处理技术中具有举足轻重的地位,但其存在选择性差的缺点,导致处理后的检测样品存在大量干扰成分。分子印迹聚合物是一类对目标分子具有特异性识别和选择性吸附的新型固相吸附材料,能有效降低基质干扰,在复杂样品预处理领域具有广泛应用前景。
     当前,大量化学物质通过各种途径进入到人类的食物中,其中包括饲料添加剂、农药、兽药、食品添加剂等,其中一些具有致癌、致畸、致突变作用,对人类的健康安全造成了严重的威胁。环丙氨嗪是一种三嗪类杀虫剂,其毒性虽较小,但在动物体内可代谢为三聚氰胺。人体摄入三聚氰胺会导致肾衰竭,甚至尿石症和膀胱癌,所以同时检测食品中的环丙氨嗪和三聚氰胺十分重要。二者同时检测方法很多,但是其样品预处理方法也存在选择性差、分析基质中存在大量干扰杂质的问题。因此本文以环丙氨嗪和三聚氰胺为检测模型,制备了环丙氨嗪分子印迹聚合物、准模板分子印迹聚合物、亲水疏水平衡分子印迹聚合物和磁性分子印迹聚合物,并将其应用于复杂样品中环丙氨嗪和三聚氰胺的连续定量检测。具体研究成果如下所述:
     (1)合成对环丙氨嗪和三聚氰胺均具有特异选择性的环丙氨嗪分子印迹聚合物,利用红外光谱、扫描电镜、电导滴定羧基等表征其性质,将其作为固相萃取材料,首次用于同时富集、分离实际样品中环丙氨嗪和三聚氰胺。用于湖水样品检测时,两者平均回收率为90.7%-98.0%;用于牛奶样品时,平均回收率为86.3%-91.5%。结果显示,与传统的固相萃取材料相比,在同时富集、分离环丙氨嗪和三聚氰胺的过程中,本研究中的环丙氨嗪分子印迹聚合物能有效降低基质干扰,提高检测环丙氨嗪和三聚氰胺的准确度。
     (2)环丙氨嗪分子印迹聚合物在用于检测环丙氨嗪时,存在模板泄露的风险,为了避免其对检测结果的影响,我们选择合理的准模板,制备对环丙氨嗪和三聚氰胺均具有特异识别能力的准模板分子印迹聚合物。以其作为吸附材料制备固相萃取柱,优化固相萃取过程,与高效液相色谱联用,检测食品中的环丙氨嗪和三聚氰胺。在标准添加实验中,二者的回收率为89.8%-98.8%。结果显示,与环丙氨嗪分子印迹聚合物相比,准模板分子印迹聚合物作为固相萃取材料不仅能有效排除基质对检测结果的干扰,还能完全避免分子泄露引起的假阳性结果。同时,准模板分子印迹聚合物可大量生产,易于推广使用。
     (3)上述准模板分子印迹聚合物以甲苯为致孔剂制备,在水溶液中对靶标分子识别能力差,为了增加分子印迹聚合物在水中的识别能力,引入甲基丙烯酸缩水甘油酯作为共聚单体,聚合后开环,制备对环丙氨嗪和三聚氰胺具有特异选择性的亲水疏水平衡分子印迹聚合物。将其作为固相萃取材料,与高效液相色谱联用,检测实际样品中的环丙氨嗪和三聚氰胺。通过湖水中的标准添加实验可知,在添加浓度为0.1μg/mL时,亲水疏水平衡分子印迹聚合物萃取环丙氨嗪和三聚氰胺的回收率分别比(2)中的方法高1.5%和3.6%,与(1)中的方法基本一致。证明亲水疏水平衡分子印迹聚合物更适合萃取水溶液中的环丙氨嗪和三聚氰胺,且不存在模板泄露的风险。
     (4)为了实现检测的快速化、自动化和高通量,在(2)的基础上,我们制备了对环丙氨嗪和三聚氰胺均具有特异识别能力的球形磁性分子印迹聚合物。利用振动样品磁强计、电镜、红外等手段表征了制备的磁性准模板分子印迹聚合物。并将此种磁性分子印迹聚合物用于磁性分子印迹固相萃取,优化萃取条件,与高效液相色谱联用,检测鸡蛋和牛奶中的环丙氨嗪和三聚氰胺。标准添加实验中,二者的平均回收率为71.86%-80.57%。与上述三种分子印迹固相萃取方法相比,磁性分子印迹固相萃取可明显缩短分析时间,且易高通量、微型化、自动化。
In recent years, a huge progress of determination of harmful substances in foodhas achieved with the development of analytical instrumentation. Sample pretreatment,as one of the critical procedures in quantitative analysis, directly influences theprecision and accuracy of the analytical method. However, large amounts of matrixinterferences being extracted simultaneously with the target analyte, known as thematrix-effect, leads to poor selectivity of the conventional solid phase extraction (SPE)technique, as well as low separation and enrichment efficiency. Molecularly imprintedpolymers can specifically recognize the imprinted molecules. When acting as SPEmaterial, molecularly imprinted polymers are selectively capable of enrich targetmolecules on the matrix without matrix interference, which makes it a potentialmaterial in the field of pretreatment of complex sample.
     Recently, a large number of chemicals were brought into human foods, includingfeed additives, pesticides, veterinary drugs and food additives. Some of them werecarcinogenic, teratogenic and mutagenic, which was a grave threat to public health.Cyromazine, which possesses less toxicity, is an insect growth regulator used for flycontrol in crop production and protecting animal feed by inhibiting insects growing. Itcan also be metabolized to melamine through environmental degradation viadealkylation reaction in both plants and animals. Melamine would lead tocrystallization and subsequent renal failure and even cause urolithiasis and bladdercancer by forming insoluble complexes with cyanuric acid in the kidneys. So it is veryimportant to determine cyromazine and melamine simultaneously. There are manymethods for their determination, but they all involve in poor selectivity and a largenumber of interfering substance. In the thesis, some molecularly imprinted polymerfor cyromazine and melamine were prepared and used to determine cyromazine andmelamine in complex sample. The details of this thesis are outlined as follows:
     1) Cyromazine imprinted polymers were prepared, and used as SPE materials.The combination of cyromazine imprinted polymer solid-phase extraction with highperformance liquid chromatography has been developed to isolate, enrich anddetermine cyromazine and its metabolic melamine in some samples. In lake watersamples, good recoveries of cyromazine and melamine were obtained as 98.0%-90.7%; in the milk samples, good recoveries were obtained as86.3%-91.5%.These results show that cyromazine imprinted polymer could effectively reduce thematrix interference and improve the accuracy in determining cyromazine andmelamine.
     2) To avoid the possible risk of template leakage for using cyromazine imprintedpolymer to determine cyromazine and melamine, psuedo template molecularlyimprinted polymers for cyromazine and melamine were firstly prepared, The resultingpseudo molecularly imprinted polymers were used as a solid-phase extraction materialto enrich cyromazine and melamine, and different protocols were optimized. Thecombination of pseudo template molecularly imprinted solid-phase extraction withhigh performance liquid chromatography has been developed to determinecyromazine and melamine in egg and milk samples. In the standard addingexperiment, the mean recoveries ranged from89.80to98.14%for cyromazine andmelamine, respectively. Compared to cyromazine imprinted polymer, pseudo templatemolecularly imprinted polymers could effectively reduce the matrix interference, butalso completely avoid the possible risk of template leakage. And it would be easy tomass produce and extende
     3) The above pseudo template molecularly imprinted polymers were prepared byusing toluene as a porogen, so it had a poor affiniting and selectivity in water solution.For this reason, hydrophilic-hydrophobic balance molecules imprinted polymers werefirstly prepared with glycidilmethacrylate as co-monomer. In water solutions, thepolymer had more excellent affinity and selectivity for cyromazine and melamine thanpseudo molecularly imprinted polymers. The hydrophilic-hydrophobic balancemolecules imprinted polymers were used as a solid-phase extraction material to enrichcyromazine and melamine in lake water. When cyromazine and melamine were allspiked at0.1μg/g, the recoveries of hydrophilic-hydrophobic balance moleculesimprinted solid-phase extraction were improved1.5%and3.6%compared topseudo template molecules imprinted solid-phase extraction respectively.Hydrophilic-hydrophobic balance molecules imprinted solid-phase was more suitablefor extraction cyromazine and melamine in water and could avoid the possible risk oftemplate leakage.
     4) In order to realize quickly high-throughput and automated detection, magneticmolecularly imprinted polymers for cyromazine and melamine were prepared bysimple suspension polymerization. It was characterized by VSM, TEM, FT-IR and used as a solid-phase extraction material. A method based on molecularly imprintedsolid-phase extraction assisted by magnetic separation was developed to extractcyromazine and melamine from egg and milk samples. When cyromazine andmelamine were at different fortified concentrations, the mean recoveries ranged from71.86%to80.56%. Compared to above three kinds of molecularly imprintedpolymers, magnetic molecularly imprinted polymers could shorten the analytical timeand was suitable for high-throughput selection, miniaturization and automation.
引文
[1] Polyakov, M. V., Adsorption properties and structure of silica gel. Zhur. Fiz.Khim.1931,2:799-805.
    [2] Wulff G.; Sarhan A., The use of polymers with enzyme-analogous structuresfor the resolution of racemates. Angew. Chem. Intl. Ed. Engl.1972,11:314.
    [3] Vlatakis G.; Andersson LI.; Muller R, et a1., Drug assay using antibodymimics made by molecular imprinting. Nature.1993,361:645-647.
    [4] http://mipdatabase.com/Database.html
    [5] Turiel E.; Esteban A. M., Molecularly imprinted polymers for solid-phasemicroextraction. J. Sep. Sci.2009,32:3278-3284.
    [6] Kempe, M.; Mosbach, K., Molecular imprinted polymer used for chiralseparations. J. Chromatogr. A.1995,694:3-13.
    [7] Lee, D.; Choi, Y. K.; Kim, M. J., Enhancing the enantioselectivity of lipase intransesterification by substrate matching: An enzyme memory based approach.Org. Lett.2000,2(16):2553-2555.
    [8] Puoci, F.; Iemma, F.; Picci, N., Stimili-responsive molycularly imprintedpolymers for drug delivery: A review. Curr. Drug. Deliv.2008,5:85-96.
    [9] Karmalkar R. N; Kulkarni M. G.; Mashelkar R. A., Pendent chain linkeddelivery systems: II. Facile hydrolysis through molecular imprinting effects. J.Control. Release.1997,43:235-243.
    [10] Piletsky, S. A.; Piletska, E. V.; Bossi, A., et al., Substitution of antibodies andreceptors with molecularly imprinted polymers in enzyme-linked andfluorescent assays. Turner. APF. Biosens. Bioelectron.2001,16:701-707.
    [11] Alexander, C.; Andersson, H. S.; Andersson, L. I., et al., Molecular imprintingscience and technology: a survey of the literature for the years up to andincluding2003. J. Mol. Recognit.2006,19:106-180.
    [12] Arshady, R.; Mosbach, K., Synthesis of substrate-selective polymers byhost-guest polymerization. Makromol. Chem.1981,182(2):687-692.
    [13] Okutucu, B.; Onal, S.; Telefoncu, A., Noncovalently galactose imprintedpolymer for the recognition of different saccharides. Talanta.2009,78:1190-1193.
    [14] Whitcombe, M. J.; Rodriguez, M. E.; Villar, P., et al., A new method for theintroduction of recognition site functionality into polymers prepared bymolecular imprinting: synthesis and characterization of polymeric receptors forcholesterol. J. Am. Chem. Soc.1995,117(27):7105-7111.
    [15]胡小刚,李攻科,分子印迹技术在样品前处理中的应用,分析化学,2006,7(4):1035-1041.
    [16] Turiel, E.; Esteban, A. M., Molecularly imprinted polymers for samplepreparation: A review. Anal. Chim. Acta.2010,668:87-99.
    [17] Masque, N.; Marce, R. M.; Borrull, F., et al., Synthesis and evaluation of amolecularly imprinted polymer for selective on-line solid-phase extraction of4-nitrophenol from environmental water. Anal. Chem.2000,72(17):4122-4126.
    [18] Theodoridis, G.; Zacharis, C. K.; Tzanavaras, P. D., et al., Automated samplepreparation based on the sequential injection principle: Solid-phase extractionon a molecularly imprinted polymer coupled on-line to high-performanceliquid chromatography. J. Chromatogr. A.2004,1030(1-2):69-76.
    [19] Ou, J. J.; Hu, L. H.; Hu, L. G., et al., Determination of phenolic compounds inriver water with on-line coupling bisphenol A imprinted monolithic precolumnwith high performance liquid chromatography. Talanta.2006,69(4):1001-1006.
    [20] Sellergren, B., Direct drug determination by selective sample enrichment on animprinted polymer. Anal. Chem.1994,66(9):1578-1582.
    [21] Turiel, E.; Tadeo, J. L.; Cormack, P. A. G., et al., HPLC imprinted-stationaryphase prepared by precipitation polymerisation for the determination ofthiabendazole in fruit. Analyst.2005,130(12):1601-1607.
    [22] Zhang, Y.; Liu, R. J.; Hu, Y. L., et al., Microwave heating in preparation ofmagnetic molecularly imprinted polymer beads for trace triazines analysis incomplicated samples. Anal. Chem.2009,81(3):967-976.
    [23] Jing, T.; Du, H. R.; Dai, Q., et al., Magnetic molecularly imprintednanoparticles for recognition of lysozyme. Biosensors Bioelectron.2010,26:301-306.
    [24] Kempe, M.; Mosbach, K., Molecular imprinting used for chiral separations. J.Chromatogr. A.1995,694:3-13.
    [25] Ramstrom, O.; Nicholls, I. A.; Mosbach, K., Synthetic peptide receptor mimicshighly stereoselective recognition in noncovalent molecularly imprintedpolymers. Tetrahedron. Asymmetry.1994,5(4):649-656.
    [26] Yin, J. F.; Yang, G. L.; Chen, Y., et al., Rapid and efficient chrial separation ofnateglinide and its l-enantiomer on monolithic molecularly imprinted polymer.J. Chromatogr. A.2005,1090(1-2):68-75.
    [27] Fishcher, L.; Muller, R.; Ekberg, B., et al., Direct enantioseparation ofbeta-adrenergic blockers using a chiral stationary phase prepared by molecularimprinting. J. Am. Chem. Soc.1991,113(24):9358-9360.
    [28] Haginaka, J.; Kagawa, C., Chiral resolution of derivatized amino acids usinguniformly sized molecularly imprinted polymers in hydro-organic mobilephases. Anal. Bioanal. Chem.2004,378(8):1907-1912.
    [29] Yilmaz, E.; Haupt, K.; Mosbach, K., et al., The use of immobilizedtemplates-A new approach in molecular imprinting. J. Mater. Chem.2002,12(5):1577-1581.
    [30] Kriz, D.; Kriz, C. B.; Andersson, L. I., et al., Thin-layer chromatography basedon the molecular imprinting technique. Anal. Chem.1994,66:2636-2639.
    [31] Wistuba, D.; Schweitz, V., Enantiomer separation of chiral pharmaceuticals bycapillary electrochromatography. J. Chromatogr. A.2000,875:255-276.
    [32] Spegel, P.; Schweitz, L.; Nilsson, S., Molecularly imprinted polymers incapillary electrochromatography: recent developments and future trends.Electrophoresis.2003,24:3892-2899.
    [33] Vallano, P. T.; Remcho, V. T., Highly selective separations by capillaryelectrochromatography: molecular imprint polymer sorbents. J. Chromatogr. A.2000,887:125-135.
    [34] Huang, Y. P.; Zheng, C.; Liu, Z. S., Molecular imprinting polymers for theseparation of organic compounds in capillary electrochromatography. Current.Organic. Chemistry.2011,15:1863-1870.
    [35] Dickert, F. L.; Tortschanoff, M.; Bulst, W. E., et al., Molecularly imprintedsensor layers for the detection of polycyclic aromatic hydrocarbons in water.Anal. Chem.1999,71(20):4559-4563.
    [36] Wulff, G., Enzyme-like catalysis by molecularly imprinted polymers. Chem.Rev.2002,102(1):1-27.
    [37] Wulff, G.; Knorr, K., Stoivhiometric noncovalent interaction in molecularimprinting. Bioseperation.2002,10:257-276.
    [38] Wullf, G.; Gross, T.; Schonfeld, R., Enzyme models based on molecularlyimprinted polymer with stong esterase activity. Angew. Chem. Int. Ed.1997,36(18):1962-1964.
    [39] Sellergren, B.; Allender, C. J., Molecularly imprinted polymers: A bridge toadvanced drug delivery. J. Adv. Drug Deliv. Rev.2005,57:1733-1741.
    [40] Norell, M. C.; Andersson, H. S.; Nicholls, I. A., Theophylline molecularlyimprinted polymer dissociation kinetics: a novel sustained release drug dosagemechanism. J. Mol. Recognit.1998,11:98-102.
    [41] Cai, W. S.; Gupta, R. B., Molecularly-imprinted polymers selective fortetracycline binding. Sep. Purif. Tech.,2004,35:215-221.
    [42] Lasakova, M.; Jandera, P., Molecularly imprinted polymers and theirapplication in solid phase extraction. J. Sep. Sci.2009,32:799-812.
    [43] Kawaguchi, M.; Hayatsu, Y.; Nakata, H., et al., Molecularly imprinted solidphase extraction using stable isotope labeled compounds as template and liquidchromatography-mass spectrometry for trace analysis of bisphenol A in watersample. Anal. Chim. Acta.2005,539(1-2):83-89.
    [44] Berggren, C.; Bayoudh, S.; Sherrington, D., et al., Use of molecularlyimprinted solid-phase extraction for the selective clean-up of clenbuterol fromcalf urine. J. Chromatogr. A.2000,889(1-2):105-110.
    [45] Ellwanger, A.; Berggren, C.; Bayoudh, S., et al., Evaluation of methods aimedat complete removal of template from molecularly imprinted polymers. Analyst.2001,126(6):784-792.
    [46] Kubo, T.; Hosoya, K.; Sano, T., et al., Selective separation of brominatedbisphenol A homologues using a polymer-based medium prepared by thefragment imprinting technique. Anal. Chim. Acta.2005,549:45-50.
    [47] Kubo, T.; Hosoya, K.; Nomachi, M., et al., Preparation of a novel molecularlyimprinted polymer using a water-soluble crosslinking agent. Anal. Bioanal.Chem.2005,382:1698-1701.
    [48] Liu, X. J.; Liu, J. Z.; Huang, Y. Y., et al., Determination of methotrexate inhuman serum by high-performance liquid chromatography combined withpseudo template molecularly imprinted polymer. J. Chromatogr. A.2009,1216:7533-7538.
    [49] Watabe, Y.; Hosoya, K.; Tanaka, N., et al., Novel surface modified molecularlyimprinted polymer focused on the removal of interference in environmentalwater samples for chromatographic determination. J. Chromatogr. A.2005,1073(1-2):363-370.
    [50] Wu, P. J.; Yang, J.; Su, Q. D., et al., Rapid removal of template frommolecularly imprinted polymers by accelerated solvent extration. Chinese. J.Anal. Chem.2007,35:484-488.
    [51] Guan, G. J.; Zhang, Z. P.; Wang, Z. Y., et al., Single-hole hollow polymermicrospheres toward specific high-capacity uptake of target species. Adv.Mater.2007,19(17):2370-2374.
    [52] Hu, Y. L.; Liu, R. J.; Zhang, Y., et al., Improvement of extraction capability ofmagnetic molecularly imprinted polymer beads in aqueous media viadual-phase solvent system. Talanta.2009,79(3):576-582.
    [53] Sun, H. W.; Qiao, F. X., Recognition mechanism of water-compatiblemolecularly imprinted solid-phase extraction and determination of ninequinolones in urine by high performance liquid chromatography. J.Chromatogr. A.2008,1212(1-2):1-9.
    [54] Puoci, F.; Lemma, F.; Cirillo, G., et al., New restricted access materialscombined to molecularly imprinted polymers for selective recognition/releasein water media. Eur. Polym. J.2009,45(6):1634-1640.
    [55] Gai, Q. Q.; Qu, F.; Zhang, T., et al., The preparation of bovine serum albuminsurface-imprinted superparamagnetic polymer with the assistance of basicfunctional monomer and its application for protein separation. J. Chromatogr.A.2011,1218:3489-3495.
    [56] Tai, D. F.; Lin, C. Y.; Wu, T. Z., et al., Recognition od dengue virus proteinusing epitope-mediated molecularly imprinted film. Anal. Chem.2005,77(16):5140-5143.
    [57] Bereli, N.; Andac, M.; Baydemir, G., et al., Protein recognition viaion-coordinated molecularly imprinted supermacroporous cryogels. J.Chromatogr. A.2008,1190(1-2):18-26.
    [58] Tan, T. W.; He, X. J.; Du, W. X., et al., Adsorption behavior of metalions onimprinted chitosan resin. J. Chem. Tech. Biotech.2001,76(2):191-195.
    [59] Hawkins, D. M.; Stevenson, D.; Reddy, S. M., Investigation of proteinimprinting in hydrogel-based molecularly imprinted polymers (HydroMIPs).Anal. Chim. Acta.2005,542(1):61-65.
    [60] Zhang, W.; Qin, L.; He, X. W., et al., Novel surface modified molecularlyimprinted polymer using acryloyl-beta-cyclodextrin and acrylamide asmonomers for selective recognition of lysozyme in aqueous solution. J.Chromatogr. A.2009,1216(21):4560-4567.
    [61] Chen, L. G.; Zhang, X. P.; Sun, L., et al., Fast and selective extraction ofsulfonamides from honey based on magnetic molecularly imprinted polymer. J.Agric. Food. Chem.2009,57:10073-10080.
    [62] Li, F.; Li, J.; Zhang, S. S., Molecularly imprinted polymer grafted onpolysaccharide microsphere surface by the sol-gel process for proteinrecognition. Talanta.2008,74(5):1247-1255.
    [63] Li, Y.; Yang, H. H.; You, Q. H., et al., Protein recognition via surfacemolecularly imprinted polymer nanowires. Anal. Chem.2006,78(1):317-320.
    [64] Tai, D. F.; Lin, C. Y.; Wu, T. Z., et al., Recognition of dengue virus proteinusing epitope-mediated molecularly imprinted film. Anal. Chem.2005,77(16):5140-5143.
    [65] Caro, E.; Masque, M.; Marce, R. M., et al., Non-covalent and semi-covalentmolecularly imprinted polymers for selective on-line solid-phase extraction of4-nitrophenol from water samples. J. Chromatogr. A.2002,963(1-2):169-178.
    [66] Klein, J. U.; Whitcombe, M. J.; Mulholland, F., et al., Template-mediatedsynthesis of a polymeric receptor specific to amino acid sequences. Angew.Chem. Int. Ed.1999,38(13-14):2057-2060.
    [67] Ki, C. D.; Oh, C.; Oh, S. G., et al., The use of a thermally reversible bond formolecular imprinting of silica spheres. J. Am. Chem. Soc.2002,124:14838-14839.
    [68] Manesiotis, P.; Hall, A. J.; Courtois, J., et al., An artificial riboflavin receptorprepared by a template analogue imprinting strategy. Angew. Chem. Int. Ed.2005,44(25):3902-3906.
    [69] Bereli, N.; Andac, M.; Baydemir, G., et al., Protein recognition viaion-coordinated molecularly imprinted supermacroporous cryogels. J.Chromatogr. A.2008,1190(1-2):18-26.
    [70] Tan, T. W.; He, X. J.; Du, W. X., et al., Adsorption behavior of metalions onimprinted chitosan resin. J. Chem. Tech. Biotech.2001,76(2):191-195.
    [71] Reddy, K. R. N.; Salleh, B.; Saad, B., et al., An overview of mycotoxincontamination in foods and its implications for human health. Toxin Reviews.2010,29:3-26.
    [72] Murphy, P. A.; Hendrich, S.; Landgren, C., et al., Food mycotoxins: An update.J. Food. Sci.2006,71: R51-R65.
    [73] Mayer, A. M. S., Special issue on marine toxins. Mar. Drugs.2009,7:19-23.
    [74] Aráoz, R.; Molgó, J.; Tandeaude, M. N., Neurotoxic cyanobacterial toxins.Toxicon.2010,56:813-828.
    [75] Parzefall, W., Risk assessment of dioxin contamination in human food. Food.Chem. Toxicol.2002,40:1185-1189.
    [76] Alaejos, M. S.; González, V.; Afonso, A. M., Exposure toheterocyclic aromaticamines from the consumption of cooked red meat and its effect on humancancer risk: A review. Food. Addit. Contam.2008,25:2-24.
    [77] Stolker, A. A. M.; Brinkman, U. A. T., Analytical strategies for residueanalysis of veterinary drugs and growth-promoting agents in food-producinganimals: A review. J. Chromatogr. A.2005,1067:15-53.
    [78] Jing, T.; Gao, X. D.; Wang, P., et al., Determination of trace tetracyclineantibiotics in foodstuffs by liquid chromatography–tandem mass spectrometrycoupled with selective molecular-imprinted solid-phase extraction. Anal.Bioanal. Chem.2009,393:2009–2018.
    [79] Kempe, H.; Kempe, M., Development and Evaluation of Spherical MolecularlyImprinted Polymer Beads. Anal. Chem.2006,78:3659-3666.
    [80] Matuszewski, B. K., Standard line slopes as a measure of a relative matrixeffect in quantitative HPLC-MS bioanalysis. J. Chromatogr. B.2006,830:293-300.
    [81] Simon, S.; Jack, H., Liquid-Liquid extraction in the96-well plate format withSRM LC/MS quantitative determination of methotrexate and its majormetabolite in human plasma. Anal. Chem.1999,71:2340-2345.
    [82] Rozemeijer, M. J. C.; Olie, K.; Voogt, P., Procedures for analysing phenolicmetabolites of polychlorinated dibenzofurans,-dibenzo-p-dioxins and-biphenyls extracted from a microsomal assay: optimising solid-phaseadsorption clean-up and derivatisation methods. J. Chromatogr. A.1997,761(1-2):219-230.
    [83] Hakan, C.; Conny, O., Clean-up and analysis of carbazole and acridine typepolycyclic aromatic nitrogen heterocyclics in complex sample matrices. J.Chromatogr. A.1997,790(1-2):73-82.
    [84] Liang, K.; Albert, J. L., Evaluation of Column Cleanup for Chlorobenzenes,Polychlorinated Biphenyls, Polychlorinated Dibenzo-p-dioxins, andPolychlorinated Dibenzofurans in MM5Flue Gas Analysis. Anal. Chem.1998,70(1):191-198.
    [85] Hennion, M. C.; Cau-Dit-Coumes, C.; Pichon, V., Trace analysis of polarorganic pollutants in aqueous samples: Tools for the rapid prediction andoptimisation of the solid-phase extraction parameters. J. Chromatogr. A.1998,823(1-2):147-161.
    [86] Pichon, V.; Coumes, C.; Chen, L., et al., Solid phase extraction, clean-up andliquid chromatography for routine multiresidue analysis of neutral and acidicpesticides in natural waters in one run. Int. J. Environ. Anal. Chem.1996,65(1-4):11-25.
    [87] Haginaka, J., Molecularly imprinted polymers as affinity-based separationmedia for sample preparation. J. Sep. Sci.2009,32:1548-1565.
    [88]高连存,崔兆杰,超临界流体萃取环境模拟样品中多环芳烃的收集方法研究.色谱,1996,14(1):1-4.
    [89] Francis, A.W., Ternary systems of liquid carbon dioxide.Phys. Chem.1954,58:1099-1114.
    [90] Barnabas, I. J.; Dean, J. R.; Hitchen, S. M., et al., Selective extraction oforganochlorine and organophosphorus pesticides using a combined solid phaseextraction-supercritical fluid extraction approach. Anal. Chim. Acta.1994,291:261-267.
    [91]卜玉兰,郭振库,微波萃取技术.色谱,1997,15(6):499-450.
    [92] Harry, M. P.; Terri, L. A.; Christine, M. T., et al., Suitabillity of microwaveassisted extraetion for multi-residue Pestieide analysis of produce. J. Agric.Food. Chem.1997,45(9):3522-3528.
    [93]陈猛,袁东星,许鹏翔,微波萃取辣椒中辣椒素的研究.食品科学,1999,10(2):25-27.
    [94]王力,王琳玲,赵天珍,超声萃取沉积物中六氯苯的研究.分析科学学报,2006,22(6):663-666.
    [95]李萍,氨基甲酸酯农药残留分析方法.国外医学(卫生学分册),1999,26(6):366-370.
    [96]刘虎威,气相色谱方法及应用.化学工业出版社,北京,2000.12.
    [97] Campins-Falco, P.; Herraez-Hernandez, R.; Sevilano-Cabeza, A., Column-switching techniques for high-performance liquid chromatography of drugs inbiological samples. J. Chromatogr.1993,619(2):177-190.
    [98] McFeeters, R. F.; Barish, A. O., Sulfite analysis of fruits and vegetables byhigh-performance liquid chromatography (HPLC) with ultravioletspectrophotometric detection. J. Agric. Food. Chem.2003,51:1513-1517.
    [99]蒋新明,蔡道基,高效液相色谱柱后衍生化法用于氨基甲酸酯类农药的测定.色谱,1994,12(1):32-34.
    [100]Liu, J. F.; Peng, J. F.; Chi, Y. G., et al., Determination of formaldehyde inshiitake mushroom by ionic liquid-based liquid-phase microextraction coupledwith liquid chromatography. Talanta.2005,65(3):705-709.
    [101]Hantash, J.; Bartlett, A.; Oldfield, P., et al., Use of an on-line imprintedpolymer pre-column, for the liquid chromatographic-UV absorbancedetermination of carbaryl and its metabolite in complex matrices. J.Chromatogr. A.2006,1125:104-111.
    [102]吴平谷,气质连用仪(GC-MS)法测定蔬菜中7种氨基甲酸酯类杀虫剂.中国公共卫生,2009,15(6):534-536.
    [103]赵云峰,陈建民,有机氯农药多残留GC-MS分析方法研究.卫生研究,1998,27(6):425-428.
    [104]Jing, T.; Gao, X. D.; Wang, P., et al., Determination of trace tetracyclineantibiotics in foodstuffs by liquid chromatography–tandem mass spectrometrycoupled with selective molecular-imprinted solid-phase extraction. Anal.Bioanal. Chem.2009,393:2009–2018.
    [105]Knappe, P. S.; Zucht, H. D.; Heine, C., et al., Peptidomics: the comprehensiveanalysis of peptides in complex biological mixtures. Comb. Chem. HighThroughput Screen.2001,4(2):207-217.
    [106]Sealey-Voyksner, J. A.; Khosla, C.; Voyksner, R. D., et al., Novel aspects ofquantitation of immunogenic wheat gluten peptides by liquidchromatography-mass spectrometry/mass spectrometry. J. Chromatogr. A.2010,1217:4167-4183.
    [107]Xia, J. G.; Zhou, N, Y.; Liu, Y. J., et al., Simultaneous determination ofmelamine and related compounds by capillary zone electrophoresis. Food.Control.2011,21:912-918.
    [108]Yan, N.; Zhou, L.; Zhu, Z. F., et al., Determination of melamine in dairyproducts, fish feed, and fish by capillary zone electrophoresis with diode arraydetection. J. Agr. Food. Chem.2009,57:807-811.
    [109]Scaravelli, E.; Brohée, M.; Marchelli, R., et al., The effect of heat treatment onthe detection of peanut allergens as determined by ELISA and real-time PCR.Anal. Bioanal. Chem.2009,395:127-137.
    [110]Sampson, H. A., Update on food allergy. J. Allergy. Clin. Immun.2004,113:805-819.
    [111]Lee, P. W.; Niemann, L. M.; Lambrecht, D. M., et al., Detection of Mustard,Egg, Milk, and Gluten in Salad Dressing Using Enzyme-LinkedImmunosorbent Assays (ELISAs). J. Food. Sci.2009,74: T46–T50.
    [112]Ramstrom, O.; Ye, L.; Krook, M.; et al., Applications of molecularly imprintedmaterials as selective adsorbents: Emphasis on enzymatic equilibrium shiftingand library screening. Chromatographia.1998,47(7-8):465-469.
    [113]Becalski, A.; Lau, B. P.; Lewis, D., et al., Acrylamide in foods: Occurrence,sources, and modeling. J. Agr. Food. Chem.2003,51:802-808.
    [114] Tareke, E.; Rydberg, P.; Karlsson, P., et al. Acrylamide: A cookingcarcinogen? Chem. Res. Toxicol.2000,13:517-522.
    [115] Castle, L., Acrylamide and other hazardous compounds in heat-treated foods.Wool head Pub. Ltd, Cambridge,2006.
    [116]Rosen, J.; Nyman, A.; Hellenas, K. E., Retention studies of acrylamide for thedesign of a robust liquid chromatography tandem mass spectrometry methodfor food analysis. J. Chromatogr. A.2007,1172:19-24.
    [117]Zhou. S.; Zhang, C.; Wang, D., et al. Antigen synthetic strategy andimmunoassay development for detection of acrylamide in foods. Analyst.2008,133:903-909.
    [118]Preston, A.; Fodey, T.; Elliot, C., Development of a high throughputenzyme-linked immunosorbent assay for the routine detection of thecarcinogen acrylamide in food, via rapid derivatisation pre-analysis. Anal.Chim. Acta.2008,608:178-185.
    [119]Goodson, A.; Summerfield, W.; Cooper, I., Survey of bisphenol A andbisphenol F in canned foods. Food. Addit. Contam.2002,19:796-802.
    [120]Thomson, B. M.; Grounds, P. R., Bisphenol A in canned foods in New Zealand:an exposure assessment. Food. Addit. Contam.2005,22:65-72.
    [121]United States Environmental Protection Agency (US EPA). Bisphenol A.(CASRN80-05-7), Integrated Risk Information System (IRIS),1993.Available at http://www.epa.gov/iriswebp/iris/subst/0356.htm
    [122]European Food Safety Authority (EFSA). Opinion of the Scientific Panel onfood additives, flavourings, processing aids and materials in contact with food(AFC) related to2,2-bis(4-hydroxyphenyl)propane. EFSA Journal.2006,428:1-6.
    [123]Health Canada. Health risk assessment of bisphenol A from food packagingapplications.2008. Available at http://www.hc-sc.gc.ca/fn-an/securit/packaemball/bpa/bpa_hra-ers-eng.php
    [124]Biles, J. E.; McNeal, T. P.; Begley, T. H., Determination of bisphenol Amigrating from epoxy can coatings to infant formula liquid concentrates. J.Agric. Food. Chem.1997,45:4697-4700.
    [125]Munguia-Lopez, E. M.; Gerardo-Lugo, S.; Peralta, E., et al. Migration ofbisphenol A (BPA) from can coatings into a fatty-food stimulant and tuna fish.Food. Addit. Contam.2005,22:892-898.
    [126]Ji, Y. S.; Yin, J. J.; Xu, Z. G., et al., Preparation of magnetic molecularimprinted polymer for rapid determination of bisphnol A in environmentalwater and milk samples. Anal Bioanal Chem.2009.395:1125-1133.
    [127]Durand, B.; Dufour, B.; Fraisse, D., et al., Levels of PCDDs, PCDFs anddioxin-like PCBs in raw cow’s milk collected from France in2006.Chemosphere.2008,70:689-693.
    [128]Behrooz, R. D.; Sari, A. E.; Bahramifar, N., et al., Organochlorine pesticidesand polychlorinated biphenyl residues in human milk from Tabriz, Iran.Toxicol Environ. Chem.2009,91:1455-1468.
    [129]Stockholm Convention Secretariat. Stockholm convention on persistentorganic pollutants (POPs). What are POPs?2010. http://chm.int/Convention/The POPs/tabid/673/language/en-US/Default.aspx. Accessed28June2010
    [130]Voorspoels, S.; Covaci, A.; Neels, H., Dietary PCB intake in belgium. Environ.Toxicol. Pharmacol.2008,25:179-182.
    [131]Covaci, A.; Roosens, L.; Dirtu, A. G., et al., Brominated flame retardants inBelgian home-produced eggs: levels and contamination sources. Sci. Tot.Environ.2009,407:4387-4396.
    [132]Roosens, L.; Abdallah, M. E.; Harrad, S., et al., Factors influencingconcentrations of polybrominated diphenyl ethers (PBDEs) in students fromAntwerp, Belgium. Environ. Sci. Technol.2009,43:3535-3541.
    [133]Schecter, A.; P pke, O.; Harris, T. R., et al., Polybrominated diphenyl ether(PBDE) levels in an expanded market basket survey of U.S. food and estimatedPBDE dietary intake by age and sex. Environ. Health. Perspect.2006,114:1515-1520.
    [134]Nardelli, V.; Palermo, C.; Centonze, D., Rapid multiresidue extraction methodof organochlorinated pesticides from fish feed. J. Chromatogr. A.2004,1034:33-40.
    [135]Fontcuberta, M.; Arqués, J. F.; Villalbí, J. R., et al., Chlorinated organicpesticides in marketed food: Barcelona,2001–06. Sci. Tot. Environ.2008,389:52-57.
    [136]Cook, A. M.; Hutter, Ralf., s-Triazines as Nitrogen Sources for Bacteria. J.Agric. Food Chem.1981,29:1135-1143.
    [137]Brown, C. A.; Jeong, K. S.; Poppenga, R. H.; et al., Outbreaks of renal failureassociated with melamine and cyanuric acid in dogs and cats on2004and2007.J. Vet. Diagn. Invest.2007,19:525-531.
    [138]Filigenzi, M. S.; Puschner, B.; Aston, L. S., et al., Diagnostic determination ofmelamine and related compounds in kidney tissue by liquidchromatography/tandem mass spectrometry. J. Agric. Food Chem.2008,56:7593-7599.
    [139]Julie, R.; Ingelfinger, M. D., Melamine and the global implications of foodcontamination. N. Engl. J. Med.2008,359:2745-2748.
    [140]Puschner, B.; Poppenga, R. H.; Lowenstine, L. J., et al., Assessment ofmelamine and cyanuric acid toxicity in cats. J. Vet. Diagn. Invest.2007,19:616-624
    [141]Xia, J. G.; Zhou, N. Y.; Liu, Y. J., et al., Simultaneous determination ofmelamine and related compounds by capillary zone electrophoresis. Food.Control.2010,21:912-918.
    [142]Zhu, X. L.; Wang, S. H.; Liu, Q., et al., Determination of residues ofcyromazine and its metabolite, melamine, in animal-derived food by gaschromatography-mass spectrometry with derivatization. J. Agric. Food. Chem.2009,57:11075-11080.
    [143]Yokley, R. A.; Mayer, L. C.; Rezaaiyan, R., et al., Analytical method for thedetermination of cyromazine and melamine residues in soil LC-UV andGC-MSD. J. Agric. Food. Chem.2000,48:3353-3358.
    [144]Sun, H, W,; Wang, L, X,; Liu, N,, et al., SPE then RP-LC for simultaneousanalysis of cyromazine and its metabolit melamine in liquid and egg.Chromatographia.2009,70:1685-1689.
    [145]Chou, S. S.; Hwang, D. W.; Lee, H. F., High performance liquidchromatographic determination of cyromazine and its derivative melamine inpoultry meats and eggs. J. Food. Drug Anal.2003,11:290-295.
    [146]Xia, K.; Atakins, Jack.; Foster, Cindy., et al., Analysis of cyromazine inpoultry feed using the QuEChERS method coupled with LC-MS/MS+. J. Agric.Food. Chem.2010,58:5945-5949.
    [147]Sancho, J. V.; Ibanez, M.; Grimalt, S., et al., Residue determination ofcyromazine and its metabolite melamine in chard samples by ion-pair liquidchromatography coupled to electrospray tandem mass spectrometry, AnalyticChimica. Acta.2005,530:237-243.
    [148]He, L. M,; Su, Y. J.; Shen, X. G., et al., Solid-phase extraction of melaminefrom aqueous samples using water-compatible molecularly imprinted polymers.J. Sep. Sci.2009,32:33310-33318.
    [149]Curcio, M.; Puoci, F.; Cirllo, G., et al., Selective determination of melamine inaqueous medium by molecularly imprinted solid phase extraction. J. Agric.Food. Chem.2010,58:11883-11887.
    [150]He, L. M.; Su, Y. J.; Zheng, Y. Q., et al., Novel cyromazine imprinted polymerapplied to the solid-phase extraction of melamine from feed and milk samples.J. Chromatogr. A.2009,1216:6196-6203.
    [151]Yang, H. H.; Zhou, W. H.; Guo, X. C., et al., Molecularly imprinted polymeras SPE sorbent for selective extraction of melamine in dairy products. Talanta.2009,80:821-825.
    [152]Wang, B.; Wang, Y. Z.; Yang, H., et al., Preparation and characterization ofmolecularly imprinted microspheres for selective extraction of trace melaminefrom milk samples. Microchim Acta.2011,174:191-199.
    [153]Li, M.; Zhang, L. Y.; Meng, Z. H., et al., Molecularly-imprinted microspheresfor selective extraction and determination of melamine in milk and feed usinggas chromatography-mass spectrometry. J. Chromatogr. A.2010,878:2333-2338.
    [154]Liang, R. N.; Zhang, R. M.; Qin, W., Potentiometric sensor based onmolecularly imprinted polymer for determination of melamine in milk. Sens.Actuators. B.2009,141:544-550.
    [155]Liu, Y. T.; Deng, J.; Xiao, X. L., et al., Electrochemical sensor based on apoly(para-aminobenzoic acid) film modified glassy carbon electrode for thedetermination of melamine in milk. Electrochim. Acta.2011,56:4595-4602.
    [156]Li, J. P.; Chen, Z. Q.; Li, Y. P., A strategy for constructing sensitive andrenewable molecularly imprinted electrochemical sensors for melaminedetection. Anal. Chim. Acta.2011,706:255-260.
    [157]魏艳玲,张嘉慧,贺倩倩等,分子印迹固相萃取-高效液相色谱法同时测定鸡血浆中环丙氨嗪和三聚氰胺残留.分析实验室,2011,30(8):92-96.
    [158]Wang, S. S.; Li, D. M.; Hua, Z. D., et al., Molecularly imprinted monolithcoupled on-line with high performance liquid chromatography forsimultaneous quantitative determination of cyromazine and melamine. Analyst.2011,136:3672-3679.
    [159]Ma, M. M.; Paredes, A.; Bong, D., Intra-and Intermembrane PairwiseMolecular Recognition between Synthetic Hydrogen-Bonding Phospholipids. J.Am. Chem. Soc.2008,130:14456-14458.
    [160]http://www.epa.gov/fedrgstr/EPA-PEST/1993-1999/.
    [161]Litzau, J. J.; Mercer, G. E.; Mulligan, k. j., Acid laboratory informationbulletin LIB.2008, No.4423, Volume24, October.
    [162]中华人民共和国国家质量监督检验检疫总局,GB/T22388-2008,中华人民共和国国家标准,北京:中国标准出版,2008-10-07.
    [163]中华人民共和国国家质量监督检验检疫总局,GB/T22400-2008,中华人民共和国国家标准,北京:中国标准出版,2008-10-07.
    [164]叶振华,吸附分离过程.北京:化学工业出版社,1988.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700