用户名: 密码: 验证码:
基于空间域正则化方法的图像超分辨率技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在图像获取过程中,受成像条件和成像方式的限制,所得到的图像分辨率往往不能满足实际应用的要求。如何提高图像的空间分辨率,改善图像质量,一直以来都是图像处理技术所致力解决的问题。多帧图像超分辨率重建技术利用同一场景的多幅图像之间的互补信息,采用信号处理的方法进行融合得到一幅高分辨率的图像。这一技术能够在不改变硬件设备条件的前提下实现高于系统分辨率的观测,是一种提高图像分辨率的经济有效方法,在众多领域中具有非常广阔的应用前景,近年来受到科技和工程界的广泛重视,因此对该技术的研究具有十分重要的理论和现实意义。
     本论文通过对图像超分辨率重建技术的系统分析,以空间域正则化方法的超分辨率重建算法为主线,利用图像的先验信息,充分考虑图像不同区域对人眼的视觉影响,研究发展了边缘保持、图像去噪的图像模型,并在此基础上相应地提出了一系列基于空间域正则化方法的多幅图像超分辨率重建算法。论文取得的主要创新成果包括:
     (1)分析了高阶MRF(Markov Random Fields)模型—专家场模型,并把该模型作为正则化项引入到超分辨率图像重建中。针对该模型直接用于超分辨率重建中会模糊掉图像部分边缘的缺点,构建了一种基于空间信息加权的专家场先验模型并将其用于超分辨率重建。提出的方法利用曲率差算子对图像空间结构进行描述,并定义一个加权函数对专家场模型中通过训练集学习得到的滤波器进行加权,达到在图像的边缘区减弱滤波器的滤波能力、在图像的平坦区增强滤波器的滤波能力,最终实现在图像超分辨率重建中能够更好的抑制噪声和保持边缘的效果。仿真和真实的超分辨率重建实验结果表明,该方法能得到较好的图像视觉效果和较高的峰值信噪比。
     (2)分析了传统冲击滤波器在图像增强中的性能,针对传统冲击滤波器对噪声敏感的问题,引入了梯度矢量流场,分别用梯度矢量流场及其与图像梯度的合力场来代替冲击滤波器中的图像梯度场,提出了两种改进的冲击滤波器模型。并对改进的模型进行了图像去噪性能分析,实验中发现,两种模型都能够很好的去除图像的噪声,但合力场模型相对于直接用梯度矢量流场模型具有更好的增强效果,最后将两种改进的模型作为正则化项引入到超分辨率图像重建中。定性和定量的对比分析实验均证明了改进的两种冲击滤波器模型用于超分辨率图像重建的可行性和有效性。
     (3)分析了全变分(TV,Total Variation)和四阶偏微分方程(FPDE,FourthPartial Differential Equation)在图像去噪中的优缺点,提出了一种基于混合偏微分方程的图像超分辨率重建方法。该方法通过定义一个加权函数,耦合两种偏微分模型,在图像边缘区对TV模型采用较大权值,保持图像的边缘和纹理细节,在图像的平坦区对FPDE模型采用较大权值,以抑制全变分模型产生的“阶梯效应”,改善重建图像的视觉效果。实验中将混合偏微分方程模型作为正则化项进行真实图像和模拟图像的超分辨率重建,结果表明所提出的混合模型集合了TV和FPDE模型的优点,得到了较好的重建结果。
In the image acquisition process, due to the limitation of imaging conditions andimaging mode, the image resolution acquired usually can not meet the requirementsof practical applications. How to improve the spatial resolution of the image and theimage quality is always the problem to be solved of the image processing technology.The multi-frame image super-resolution reconstruction technique uses the signalprocessing methods to fuse the complementary information between multiple imagesof the same scene so as to obtain a high resolution image. This technology can realizethe observation that is better than the system resolution without changing hardwareconditions, so it is an economic and effective method for improving image resolution.As a result, this technology has a very broad application prospects in many fields andextensive attention by the science and engineering in recent years. Therefore, doingresearch on this topic has a very important theoretical and practical significance.
     In this thesis, through the system analysis of image super-resolutionreconstruction technique, we carry out the research on the spatial domainregularization based super-resolution reconstruction algorithm as the main clue. Novelimage edge preserving and image denoising models are proposed, which is developedby employing the image prior information and fully considering the human visualeffects on different regions of the image. Then based on these models, series ofmulti-frame image super-resolution reconstruction algorithms that is based on spatialdomain regularization are presented. The main contributions of this thesis include:
     (1) The high order MRF (Markov Random Fields) model i.e. expert model isintroduced into the super-resolution image reconstruction as the regularization term.Meanwhile, in order to overcome the shortcoming of the conventional expert modelthat will blur the image edge when it is directly applied in super-resolutionreconstruction; a weighted expert field based on spatial information is proposed andused for super-resolution reconstruction. The proposed method uses the curvature difference operator to describe the image spatial structure and defines a weightedfunction to describe the filter that is obtained through the training of the expert field.In this case, the filtering capacity is weakened at the image edge, while the filteringcapacity is enhanced in the flat image region. As a result, suppressing noise andpreserving edge can be realized in the proposed super-resolution reconstructionalgorithm. Simulation and real experimental results show that our method can gethigher peak signal to noise ratio and better visual effect compared to severalconventional super-resolution reconstruction methods.
     (2) The performance of traditional shock filter in image enhancement is analyzed,and in view of the noise sensitivity problem of it, the gradient vector flow (GVF) isintroduced into super-resolution reconstruction algorithm. Two improved shock filtermodels are proposed, which are formed by separately using the GVF and GVF withimage gradient instead of the image gradient in traditional the shock filter. Thedenoising performance of the improved models is analyzed and its results indicate thatthe two models both have good capacity to remove the image noise, and the combinedmodel has a better effect compared to the direct use of GVF model. Finally, the twoimproved models are incorporated into the image super-resolution reconstructionalgorithm as the regularization term respectively. The Qualitatively and quantitativelycomparative experiments show that the two kinds of modified shock filter models areFeasible and effective for image super-resolution reconstruction.
     (3) After analyzing the advantages and disadvantages of the total variation(TV) and the fourth order partial differential equation (FPDE) in the aspect of imagedenoising, this paper proposed a combined PDE based super-resolution reconstructionmethod by defining a weighted function that is used to couple the two PDE models. Inthe method, the weight value is set higher for TV model in the edge region in order tosustain the image edge and texture details well, while the weight value is set higherfor FPDE model in the flat area of the image so that the “step effect” produced by TVmodel can be suppressed and the image visual effects can be improved. The combinedPDE model as a regularization term has been used for super-resolution reconstructionof both real and simulated images. The results show that the proposed method can get better reconstruction results due to the combined model involves the advantages ofboth TV and FPDE models.
引文
[1]张良培,沈焕锋,张洪燕,袁强强等,图像超分辨率重建.科学出版社,2012,8月.
    [2] S.C.Park, M.K.Park, M.G.Kang. Super-resolution image reconstruction: a technical overview.IEEE Signal Processing Magazine,2003,20(3):21-36.
    [3] R.Y.Tsai and T.S.Huang. Multiframe image restoration and registration. Advances in ComputerVision and Image Processing,1984,1:317–339.
    [4] Z.Xiong, X.Sun, F.Wu. Robust Web Image/Video Super-Resolution. IEEE Transactions onImage Processing,2010,19(8):2017-2028.
    [5] St′ephane Pelletier. Acceleration methods for image super-resolution. Department of Electrical&Computer Engineering McGill University, Canada, PhD. Thesis,2009.
    [6] K. Zhang, X. Gao, D. Tao, X. Li. Single Image Super-Resolution With Non-Local Means andSteering Kernel Regression. IEEE Transactions on Image Processing,2012,21(11):4544-4556.
    [7] S. Farsiu, M. D. Robinson, M. Elad and P. Milanfar. Fast and robust multi-framesuper-resolution. IEEE Transactions on Image Processing,2004,13:1327–1344.
    [8] B.C. Jeong, S.C. Cheol, Y.Choi. Video super-Resolution algorithm using bi-Directionaloverlapped block Motion compensation and on-the-fly dictionary training. IEEE Transactions onCircuits and Systems for Video Technology,2011,21(3):274-285.
    [9] J. L. Harris. Diffraction and resolving power. J.O.S.A.,1964,54(7):931-936.
    [10]J.W.Goodman. Introduction to fourier optics. New York: Mc Graw-Hill,1968.
    [11] K.R.Castleman.数字图像处理.朱志刚,等译.北京:电子工业出版社,2002:324-336.
    [12] H. C. Andrews and B. R. Hunt. Digital image restoration. Prentice-Hall, Englewood Cliffs,NJ,1997.
    [13] S. P. Kim, N. K. Bose and H. M. Valenzuela, Recursive reconstruction of high resolutionimage from noisy undersampled multiframes. IEEE Transactions on Acoustics Speech and SignalProcessing,1990,38(6):1013-1027.
    [14] W. Su and S.P. Kim. High-resolution restoration of dynamic image sequences. InternationalJournal of Imaging Systems and Technology,1994,5(4):330-339.
    [15] J. Yang, J. Wright, T. Huang, and Y. Ma. Image super-resolution as sparse representation ofraw image patches. Computer Vision and Pattern Recognition, IEEE Computer SocietyConference on,2008:1–8,2008.
    [16] J. Yang, J. Wright, T. Huang, and Y. Ma, Image super-resolution via sparse representation.IEEE Transactions on Image Processing,2010,19:2861-2873.
    [17] M.D.Robinson, C.A.Toth, J.Y.Lo and S.Farsiu. Efficient Fourier-Wavelet Super-Resolution.IEEE Transactions on Image Processing,2010,19(10):2669-2681.
    [18]袁小华等.基于二元树复小波的图像超分辨率内插.计算机工程,2006年8期。
    [19]韩玉兵,陈如山,吴乐南.基于小波域隐马尔可夫模型的信号超分辨率重建.数据采集与处理,2011,26(3):292-299.
    [20]杨宇翔,曹洋,汪增福.利用图像局部自相似性的超分辨率重构算法.中国图像图形学报.2011,16(5):720-725.
    [21]王梁,郝燕玲,张振兴.基于多重稀疏表示的声纳图像超分辨率重建方法.系统工程与电子技术,2012,34(1):204-207.
    [22] H.Ur and D.Gross. Improved resolution from sub-pixel shifted pictures[J]. GraphicalModels&Image Processing,1992,54(2):181-186.
    [23] T.Komatsu, K.Aizawa, T.Igarashi T, et al. Signal-processing Based Method for Acquiringvery High Resolution Image with Multiple Cameras and Its Theoretical Analysis[J]. Proc. IEEECommunications, Speech&Vison,1993,140(1):19-25.
    [24]M.S.Alam, J.G. Bognar, R.C.Hardie and B.J.Yasuda. Infrared image registration andhigh-resolution reconstruction using multiple translationally shifted aliased video frames. IEEETrans. Instrum. Meas.,2000,49(10):915-923.
    [25] Y.Cha and S.Kim. Edge-forming Methods for Color Image Zooming[J]. IEEE Trans ImageProcessing,2006,15(8):2315-2323.
    [26] X.Zhang and X.Wu. Image interpolation by adaptive2-d autoregressive modeling andsoft-decision estimation,”IEEE Transactions on Image Processing,2008,17(6):887–896.
    [27] M. Irani and S. Peleg. Improving resolution by image registration. CVGIP: Grap. ModelsImage Process,1991,53(3):231-239.
    [28] B.R.Frieden and H.G.Aumann. Image reconstruction from multiple1-D scans using filteredlocalized projection[J]. Appl. Opt.,1987,26(17):3615-3621.
    [29] M.Ben-Ezra, A.Zomet and S.K.Nayar. Video super-resolution using controlled subpixeldetector shifts[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2005,27(6):977-987.
    [30] W.Guo and P.Zhang. Super-resolution image reconstruction with iterative back projectionalgorithm[J]. Journal of Frontiers of Computer Science and Technology,2009,3(3):321-329.
    [31] H. Stark and P.Oskoui. High-resolution image recovery from image-plane arrays, usingconvex projections. Journal of the Optical Society of America A,1989,6(11):1715-1726.
    [32]A.M.Tekalp, M.K.Ozkan and M.I.Sezan. High-resolution image reconstruction fromlower-resolution image sequences and space varying image restoration. in Proc. IEEE Int. Conf.Acoustics, Speech and Signal Processing (ICASSP), San Francisco, CA.,1992,3:169-172.
    [33] A.J.Patti, M.I.Sezan and A.M.Tekalp. Superresolution video reconstruction with arbitrarysampling lattices and nonzero aperture time[J]. IEEE Transactions on Image Processing,1997,6(8):1064-1076.
    [34] P.E.Eren, M.I.Sezan and A.M.Tekalp. Robust, object-based high-resolution imagereconstruction from low-resolution video. IEEE Transactions on Image Processing,1997,6(10):1446-1451.
    [35] A.J. Patti and Y.Altunbasak. Artifact reduction for set theoretic superresolution imagereconstruction with edge adaptive constraints and higher-order interpolants[J]. IEEE Transactionson Image Processing,2001,10(1):179-186.
    [36]肖创柏,段娟,禹晶.序列图像的POCS超分辨率重建方法[J].北京工业大学学报.2009,35(1):109-204.
    [37] W.Xie, F.Zhang and H.Chen. Blind Super-resolution image reconstruction based on POCSmodel[C]. Proceedings International Conference on Measuring Technology and MechatronicsAutomation,2009:437-440.
    [38]田敬北,候天峰,李梦和.自适应视频超分辨率重建算法[J].计算机应用研究.2011,28(7):2778-2781.
    [39] R.R.Schulz and R.L.Stevenson. A Bayesian Approach to Image Expansion for ImprovedDefinition[J]. IEEE Transactions on Image Processing,1994,3(3):233-242.
    [40] R.R.Schulz and R.L.Stevenson. Extraction of high-Resolution frames from videosequences[J]. IEEE Transactions on Image Processing,1996,5(6):996-1011.
    [41] R.C.Hardie, K.J.Barnard and E.E.Armstrong. Joint MAP registration and high-resolutionimage estimation using a sequence of undersampled images [J]. IEEE Transactions on ImageProcessing,1997,6(12):1621-1633.
    [42]H.Zhang, L.Zhang, H.Shen, et.al.. A MAP approach for joint image registration, bluridentification and superresolution. Presented at the Fifth International Conference on Image andGraphics,2009:97-102.
    [43] H.Shen, L. Zhang, B.Huang, et.al.. A MAP approach for joint motion estimation,segmentation, and superresolution. IEEE Transactions on Image Processing,2007,16(9):479-490.
    [44]Y.He, K.H.Yap, L.Chen and L.P.Chau. A nonlinear least square technique for simultaneousimage registration and super-resolution. IEEE Transactions on Image Processing,2007,16(11):2830-2841.
    [45] S. D.Babacan, R.Molina and A. K.Katsaggelos. Variational Bayesian Super Resolution. IEEETransactions on Image Processing,2011,20(4):984-999.
    [46] Z.Arican, P.Frossard. Joint registration and super-resolution with omnidirectional images.IEEE Transactions on Image Processing,2011,20(11):3151-3162.
    [47] S.H.Keller, F.Lauze and M.Nielsen. Video super-resolution using simultaneous motion andintensity calculations. IEEE Transactions on Image Processing,2011,20(7):1870-1884.
    [48] F. Sroubek, G.Cristobal and J.Flusser. A unified approach to superresolution andmultichannel blind deconvolution. IEEE Transactions on Image Processing,2007,16(9):2322-2332.
    [49] Y. He, K.H. Yap, L. Chen and L.P. Chau. A soft MAP framework for blind super-resolutionimage reconstruction. Image and Vision Computing,2009,27(4):364-337.
    [50] W.Dong, L.Zhang, G.Shi and X.Wu. Image deblurring and super-resolution by adaptivesparse domain selection and adaptive regularization. IEEE Transactions on Image Processing,2011,20(7):1838-1857.
    [51] S.P.Belekos, N.P.Galatsanos and A.K.Katsaggelos. Maximum a Posteriori VideoSuper-Resolution Using a New Multichannel Image Prior. IEEE Transactions on Image Processing,2010,19(6):1451-1464.
    [52] H.Zhang,Y. Zhang, H.Li and T.S.Huang. Generative Bayesian Image Super Resolution WithNatural Image Prior. IEEE Transactions on Image Processing,2012,21(9):4054–4067.
    [53]张洪艳,沈焕锋,张良培,李平湘,袁强强.基于最大后验估计的影像盲超分辨率重建方法.计算机应用,2011,31(5):1209-1213.
    [54]朱虹,刘薇,姚杰,欧阳光振,刘小乾.自适应阈值HMRF模型超分辨率重建.中国图像图形学报,2012,17(9):1049-1054.
    [55]薛翠红,于明,于洋,贾超,阎刚.基于MAP框架的金字塔人脸超分辨率算法.计算工程,2012,38(10):206-211.
    [56] M.C.Hong, M.G.Kang and A.K.Katsaggelos. A regularized multi-channel restoration appoachfor globally optimal high resolution video sequenee[A]. SPIEVCIP,SanJose,CA,1997,3024:1306-1317.
    [57] R.C.Hardie, K.J.Bamard, J.G.Bognar, E.E.Armstrong and E.A.Watson. High resolution imagereconstruction from a sequence of rotated and translated frames and its applieation to an infraredimaging system [J].Optical Engineering,1998,73(l):247-260.
    [58]S.C.Park, M.G.Kang, A.Segall, et.al. Spatially adaptive high-resolution image reconstructionof DCT-based compressed images[J]. IEEE Transactions on Image Processing,2004,13(4):573-585.
    [59] L. Rudin, S. Osher, and E. Fatemi. Nonlinear total variation based noise removal algorithms.Phys. D,1992,60,(1–4):259–268.
    [60] D.Capel and A.Zisserman. Super-resolution enhancement of text image sequenees [A].In:Proc.Intl.Con.Patt.Recog.,2000, l:600-605.
    [61] M.Elad. On the bilateral filter and ways to improve it[J]. IEEE Transactions on ImageProcessing,2002,11(10):1141-1151.
    [62] M. Ng, H. Shen, E. Lam, and L.Zhang. A total variation regularization based super-resolutionreconstruction algorithm for digital video. EURASIP J. Adv. Signal Process.,2007,2007(74585):1–16.
    [63] X.Li, Y.Hu, X.Gao, D.Tao and B.Ning. A multi-frame image super-resolution method. SignalProcess,2010,90(2):405–414.
    [64] Q.Yuan, L.Zhang and H.Shen. Multiframe super-resolution employing a spatially weightedtotal variation model. IEEE Transactions on Circuits and Systems for Video Technology,2012,22(3):379-392.
    [65] H.Kim and K.S.Hong.Variational approaches to super-resolution with contrast enhancementand anisotropic diffusion [J]. Journal of Electronic Imaging,2003,12(2):244-251.
    [66] G.Gilboa, N.A.Sochen and Y.Zeevi. Forward and backward diffusion Processes for adaptiveimage enhancement and denosing [J]. IEEE Transactions on Image Processing,2002,11(7):689-703.
    [67] M.Protter, M.Elad, H.Takeda and P.Milanfar. Generalizing the nonlocal-means tosuper-resolution reconstruction. IEEE Transactions on Image Processing,2009,18(1):36–51.
    [68] P.Pulak, C.Bhabatosh. Super Resolution Image Reconstruction Through Bregman IterationUsing Morphologic Regularization. IEEE Transactions on Image Processing,2012,21(9):4029-4039.
    [69] W.T.Freeman and E.C. Pasztor. Learning low-level vision. International Journal of ComputerVision.2000,40(1):25-47.
    [70] S. Baker and T. Kanade. Hallucinating faces. In IEEE International Conference on AutomaticFace and Gesture Recognition, March2000.
    [71] T.A.Stephenson and T.Chen. Adaptive Markov random fields for example-basedsuper-resolution of faces[J]. Journal on Applied Signal Processing.2006,2006:1-11.
    [72]M.Elad. Sparse and Redundant Representation. New York: Sprnger Verlag.
    [73]W. Dong, L. Zhang, G.Shi et.al. Image deblurring and super-resolution by adaptive sparsedomain selection and adaptive regularization. IEEE Transactions on Image Processing,2011,20(7):1838-1857.
    [74] J. Yang, Z. Wang, Z. Lin, S. Cohen and T. Huang. Coupled Dictionary Training for ImageSuper-Resolution. IEEE Transactions on Image Processing,2012,21(8):3467-3478.
    [75] N.R.Shah and A.Zakhor. Resolution enhancement of color video sequences. IEEETransactions on image processing,1999,8:879-885.
    [76] M.Blerling and R.Thema. Motion compensating field interpolation using hierarchicallystructured displacement estimator. Signal Processing.1986,11(4):387-404.
    [77]张新明,沈兰荪.基于多尺度边缘保持正则化的超分辨率复原.软件学报,2003,14(6):1075-1081.
    [78] B.Horn and B.Shuck. Determining optical flow[J]. Artificial Intelligence,1981,17(4):185-203.
    [79] J.Y.Bouguet. Pyramidal implementation of the Lucas Kanade feature trackerdescription.Technical Report for Intel Corporation Microsoft Research Lab: Santa Clara, CA,USA,2000.
    [80] H.He and L.P.Kondi. An image super-resolution algorithm for different error levels per frame.IEEE Transactions on image processing,2006,15(3):592-603.
    [81] T.J.Holmes, S.Bhattacharyya, J.A.Cooper et.al. Light microscopic images reconstructed bymaximum likelihood deconvolution. Handbook of Biological Confocal Microscopy,1995:389-402.
    [82] Y.L.You and M.Kaveh. A regularization approach to joint blur identification and imagerestoration. IEEE Transactions on Image Processing,1996,5(3):416-428.
    [83] J. P. Papa, N. D. A. Mascarenhas, L. M. G. Fonseca and K. Bensebaa. Convex restriction setsfor CBERS-2satellite image restoration. International Journal of Remote Sensing,2008,29(2):443-458.
    [84] R.Pan and S.J.Reeves. Efficient Huber-Markov edge-preserving image restoration. IEEETransactions on Image Processing,2006,15(12):3728-3735.
    [85] Y. Lou, A. Bertozzi and S. Soatto. Direct Sparse Deblurring. Journal of MathematicalImaging and Vision,2011,39(1): pp1-12.
    [86] M. Zhao, W. Zhang, Z. Wang, and Q. Hou. Satellite image deconvolution based on nonlocalmeans. Applied Optics,2010,49(32):6286-6294.
    [87] S.Z.Li. MRF modeling in computer vision. Spring-Verlag London, UK,1995.
    [88] M. Welling, G. E. Hinton and S. Osindero. Learning sparse topographic representations withproducts of Student-t distributions. InAdv. in Neur. Inf. Proc. Sys.(NIPS),2003,15:1359-1366.
    [89] S.Roth and M. J. Black. Fields of Experts: A Framework for Learning Image Priors. IEEEConference on Computer Vision and Pattern Recognition,2005,2:860-867.
    [90] O.Woodford, I.Reid, P.Torr and A.Fitzgibbon. Fields of experts for image-based rendering. inProc.British Machine Vision Conference, Edin-burgh, Britain,2006:305–312.
    [91] S.Geman and D.Geman. Stochastic relaxation, Gibbs distributions and the Bayesianrestoration of images. IEEE Trans. On Pattern Anal. Machine Intell.,1984,6:721-741.
    [92]X.L.Zhang, K.M.Lam and L.S.Shen. Image magnification based on adaptive MRF modelparameter estimation. Proc. of2005International Symposium on Intelligent Signal Processing andCommunication Systems. HongKong: IEEE Press,2005.
    [93] Y.Yu and Q.Cheng. MRF parameter estimation by an accelerated method. Pattern RecognitionLetters,2003,24(9-10):1251-1259,.
    [94] S.Roth and M.J.Black. Fields of experts [J].International Journal of Computer Vision,2009,82(2):205-229.
    [95] Roth S. High-order Markov Random Fields for Low-level Vision [D]. Providence, RhodeIsland, USA: Department of Computer Science, Brown University,2007.
    [96] D.Martin, C.Fowlkes, D.Tal, and J.Malik. A database of human segmented natural imagesand its application to evaluating segmentation algorithms and measuring ecological statistics. inProc. IEEE International Conference on Computer Vision(ICCV’01), Vancouver, Canada,2001:416–423.
    [97] Q. Chen, P. Montesinos, Q. S. Sun,P.A. Heng and D.S.Xia. Adaptive total variation denoisingbased on difference curvature. Image and Vision Computing,2010,28:298–306.
    [98] http://users.soe.ucsc.edu/~milanfar/software/sr-datasets.html
    [99] http://lcav.epfl.ch/software/superresolution/
    [100] P.Liu, F Huang and G.Li, Z. Liu. Remote-Sensing Image Denoising Using PartialDifferential Equations and Auxiliary Images as Priors. IEEE Geoscience and Remote SensingLetters,2012,9(3):358-362.
    [101] C.Ludusan, O.Lavialle, R.Terebes and M. Borda. Morphological Sharpening and DenoisingUsing a Novel Shock Filter Model. Lecture Notes in Computer Science,2010,6134:19-27.
    [102] F. C.Tony, H.K.Sung and J. Shen. Total Variation Denoising and Enhancement of ColorImages Based on the CB and HSV Color Models, Journal of Visual Communication and ImageRepresentation,2001,12(4):422–435.
    [103] A.Perona and J.Malik. Scale-space and edge detection using anisotropic diffusion,IEEE Trans. on Pattern Analysis and Machine Intelligence,1990,12(7):629–639.
    [104] S. Osher and L. I. Rudin. Feature-oriented image enhancement using shock filters. SIAM I.Numer. Anal.,1990,27:919-940.
    [105] L.Alvarez and L.Mazora. Signal and image restoration using shock filters and anisotropicdiffusion. SIAM Journal of Numerical Analysis,1994,31(2):590-605.
    [106] G.Gilboa, N.Sochen and Y.Y.Zeevi. Image enhancement and denoising by complex diffusionprocesses. IEEE Trans. On Pattern Analysis and Machine Intelligence,2004,26(8):1020-1036.
    [107] H.Yu and C.S.Chua. GVF-based anisotropic diffusion model. IEEE Trans. On ImageProcessing.2006,15(6):1517-1524.
    [108] C.Xu and J.L.Prince. Snake, Shapes and gradient vector flow. IEEE Trans. on ImageProcessing.1998,7(3):359-369.
    [109]谷超豪等,数学物理方程(第二版).北京:高等教育出版社,2002.
    [110] J.Weickert. Anisotropic diffusion in image processing. ECMI series, Teubner-Verlog,Stuttgart, Germany,1998.
    [111] Y. L. You, and M. Kaveh. Fourth-order partial differential equations for noise removal. IEEETransactions on Image Processing,2000,9:1723–1730.
    [112]袁泽剑,郑南宁,张元林等.一种非线性扩散滤波器的设计方法及应用.计算机学报,2002,25(10):1072-1076.
    [113]M. Lysaker, A. Lundervold, and X.C. Tai. Noise removal using fourth-order partialdifferential equation with applications to medical magnetic resonance images in space and time.IEEE Transactions on Image Processing,2003,12(12):1579-1590.
    [114] S.Kim and H.Lim. Fourth-order partial differential equations for effective image denoising.Electronic Journal of Differential Equations, Conf.2009,17:107–121.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700