用户名: 密码: 验证码:
光OFDM若干关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光正交频分复用(OFDM)技术由于其在频谱利用率、色散容忍性等方面的优势受到广泛关注,已经作为一种新型的调制和频域复用技术被广泛应用于光通信。光OFDM技术可以有效克服多模光纤高频区域的频率选择性衰落,并通过自适应调制优化系统传输性能,最大化利用频谱资源。光OFDM技术可以与高阶调制,偏振复用(PDM)和波分复用(WDM)等多种技术结合,提高单纤传输容量,已经成为未来高速、长程主干光纤传输系统最重要的发展方向之一。基于OFDM技术的接入网技术频谱利用率高,接入容量大,支持透明传输,能够实现不同粒度的资源调度,灵活的在时域和频域进行资源的划分,满足不同业务的带宽需求和服务质量(QoS)要求,已经成为极具吸引力的多用户接入手段。
     本文针对光OFDM技术在光纤通信相关领域,如多模局域网传输、单模光纤传输、接入网等几个方面的应用,分析和研究光OFDM技术光纤传输中所需解决的若干关键问题,为实际系统设计和实用化提供重要参考。本文主要创新工作概括如下:
     1、提出一种可变长保护间隔的自适应调制光正交频分复用(AMO-OFDM)多模光纤传输系统。通过差分群时延与不同调制格式下的信噪比门限确定循环前缀(CP)的上限和下限取值,采用可变长循环前缀的方式优化系统频谱利用率。
     2、在单模直接探测光正交频分复用(DDO-OFDM)系统中,研究了DDO-OFDM应用于高速长距离传输的若干关键问题,提出一种采用梳状导频格式,等间隔的插入导频子载波,通过线性插值的方法估计出非导频子载波的信道响应,时域平均后实现信道估计的方法。搭建Hermitian结构的DDO-OFDM系统实验平台,传输6Gb/s的信号,在背靠背和传输50km单模光纤下,验证了线性插值与时域平均信道估计方法的可行性,与理想信道估计相比,几乎没有带来系统性能损伤。仅采用线性插值时,所需接收光功率有2dB的提升。同时,通过搭建RF-tone插入的DDO-OFDM系统,分别从仿真和实验上验证了所提信道估计方法的可行性。仿真中,20Gb/s信号在背靠背和400km传输下,采用所提信道估计与理想信道估计相比,几乎没有OSNR损伤。仅采用线性插值方法,OSNR有近2dB的损伤。实验中,RF-tone插入的DDO-OFDM系统,传输6Gb/s信号在背靠背和25km传输后,进一步验证了仿真中的结论。
     3、针对多频带相干光正交频分复用(CO-OFDM)系统在太比特传输中的应用,仿真实现基于光频梳的CO-OFDM系统中,32×40Gb/s信号在光纤中传输1000km。由于基于光频梳CO-OFDM系统中各频带间的时间和激光器相位信息上的相关性,提出一种采用傅里叶变换(FFT)窗同步用于信道估计和共享导频子载波估计出的激光器相位信息减少多频带CO-OFDM系统开销的方法。仿真结果表明,除去循环前缀,仅有不到1%的系统开销用于1Tb/s多频带CO-OFDM系统时,仍可以实现1000km的传输。
     4、针对光OFDM技术也可以作为一种频域复用技术,与波分复用技术(WDM)相比具有更高的频谱利用率,提出一种基于光傅里叶变换/光傅里叶逆变换(OFFT/OIFFT)的方法实现OOFDM信号中光子载波的光分插复用(OADM)功能的方法,可以用于基于光OFDM技术的光网络中。通过搭建基于光OFDM技术的偏振复用-正交相移键控(PDM-QPSK)系统仿真平台,验证了该方法的可行性。仿真结果表明,OOFDM信号中光子载波相互正交且同步下,基于OFFT/OIFFT的方法可以实现OOFDM信号光子载波的上、下路和复用。
     5、利用光OFDM技术在物理层上的优越性,将OFDM技术应用于无源光网络(PON),提出一种基于光正交频带复用和统一接收的上行OFDM-PON传输方案,并从理论仿真和实验上验证了该方案的可行性。在10Gb/s上行传输系统中,对不同光网络单元(ONU)的同步方法、时延容忍性、激光器线宽以及ONU间的功率起伏对系统传输性能的影响等进行了研究和仿真分析。通过搭建实验平台验证了基于光正交频带复用和统一接收的上行传输方案,得出两个ONU可容忍的时延为2倍CP时间间隔的结论。进一步地,每个ONU单元通过非均匀子载波分配和自适应调制技术,可以实现弹性带宽的OFDM-PON上行传输。
Optical orthogonal frequency division multiplexing (OFDM) with the merits ofhigh spectral efficiency and resilience to fiber dispersion has recently attracted muchattention. It has been emerged as an advanced modulation and attractive multiplexingformat for optical communications. The suitability of optical OFDM for multi-modefiber (MMF) transmission is because it can be effectively against frequency selectivefading. In addition, the transmission performance can be improved and the spectralefficiency can be maximized by adaptively modulated optical OFDM (AMO-OFDM)modem for multi-mode fiber transmission. Optical OFDM, combined with otheradvanced techniques, e.g., high-order modulation format, polarization divisionmultiplexing (PDM) and wavelength division multiplexing (WDM) can dramaticallyincrease the transmission capacity for single fiber. It is regarded as one of the mostimportant direction of development for high-speed and long-haul backbone optical fibertransmission. The access technology based on OFDM technology can realize highspectral efficiency and large capacity optical access, and support transparenttransmission. It is able to achieve resource scheduling with different granularities andflexible resource scheduling in the time and the frequency domain, which meets thequality of service (QoS) and bandwidth requirement of different services. It has becomea very attractive way for multi-subscriber access.
     The application of optical OFDM technology for related fields of optical fibercommunications, e.g., multi-mode fiber local area network transmission, single modefiber (SMF) transmission and access technology, has been studied. It mainly focuses onanalyzing and solving several key issues that the OFDM technology meets in opticalfiber transmission, which provide an important reference for the actual system designand practical application. The main innovations are summarized as follows:
     1. An AMO-OFDM system with variable guard interval has been proposed. Accordingto the differential mode delay and the signal-to-noise ratio (SNR) threshold fordifferent modulation formats, the lower and upper limit of the cyclic prefix (CP)length can be found out. The adaptive cyclic prefix is helpful to optimize the spectral efficiency.
     2. Some key issues about high speed transmission have been studied and a channelestimation method based on comb-type pilot has been proposed in a single modefiber direct-detection optical OFDM (DDO-OFDM) system. The OFDM frame withcomb-type pilot subcarriers insertion uniformly can estimate the channel transferfunction of the non-pilot subcarriers by linear interpolation. After time domainaveraging to mitigate the noise, the transfer function can be used for equalization.The DDO-OFDM experiment platform based on Hermitian symmetry is setup todemonstrate the feasibility of the proposed channel estimation method atback-to-back and after50km fiber transmission. The transmission bit rate is6Gb/s.There is almost no penalty with the proposed channel estimation method comparedwith ideal channel estimation results. The required optical received power improved2dB only with linear interpolation. Meanwhile, we also conduct a simulation and aproof-of-concept experiment of a RF-Tone-assisted DDO-OFDM system todemonstrate the feasibility of the proposed channel estimation method. In simulation,a20Gb/s RF-Tone-assisted OFDM signal is transmitted over400km fibertransmission with the proposed channel estimation method. In simulation, there isalmost no OSNR penalty compared with ideal channel estimation results and2dBOSNR penalty only with linear interpolation. In experiment,6Gb/s signal istransmitted at back-to-back and over25km fiber transmission, and the results arealso consistent with the simulation results.
     3. More research efforts focus on multi-band coherent optical OFDM to realize Tb/soptical fiber transmissions. In simulation,a multi-band CO-OFDM system based onoptical frequency combs transmitted32×40Gb/s signal over1000km single modefiber (SMF). Because the timing and optical laser phase of individual bands inmulti-band OFDM are correlated, a method to a significant reduction of OFDMoverhead has been proposed, which is using FFT window synchronization forchannel estimation and sharing pilot subcarriers for phase estimation. Thesimulation results indicate that less than1%OFDM overhead for1Tb/s multi-bandCO-OFDM system which can also realize1000km transmission.
     4. The optical OFDM technology also can be considered as a multiplexing technology,and has higher spectral efficiency compared with WDM. An optical add-drop multiplexer (OADM) method among the optical subcarriers of an OOFDM signalbased on OFFT/OIFFT has been proposed, which can be applied for optical networkbased on optical OFDM technology. It is demonstrated by a multi-band PDM-QPSKsimulation platform. Simulation results show that the OFFT/OIFFT can realize theOADM function when the optical subcarriers of an OOFDM signal are orthogonalto each other and synchronized with one another.
     5. Optical OFDM is introduced into passive optical network (PON) for its superiorityin the physical layer. A novel architecture for upstream transmission based onorthogonal band multiplexing and collective reception has been proposed, which isdemonstrated by theoretical simulations and experiments. The synchronoustechnique among different ONUs, the tolerance to time mismatch, and the influenceof the optical laser line-width and power variation are investigated and analyzed fora10Gb/s upstream transmission. This paper also conducts a proof-of-conceptexperiment to verify the orthogonal band multiplexing and collective reception, andthe tolerance to time mismatch is twice of the CP length. Further, bandwidth-elasticOFDM-PON upstream transmission can be realized by non-uniform subcarriersdistribution and adaptive modulation for each ONU.
引文
[1] H. Limberger, E. Switzerland, P. Sillard, et al. Towards high capacity fibers for space and modedivision multiplexed transmission[C]. Proc. ECOC, Geneva,2011,18-22
    [2] Cisco Inc.Approaching the zettabyte era[EB/OL]. http://www.cisco.com/en/US/solutions/coll-ateral/ns341/ns525_Networking_Solutions_White_Paper.html, July16,2010
    [3] M. Duelk. Next generation100G Ethernet[C]. Proc. ECOC, Glasgow,2005,15-18
    [4] Y.-K. Huang, E. Ip, M. Huang, et al.10×456-Gb/s DP-16QAM transmission over8×100km ofULAF using coherent detection with a30-GHz an alog-to-digital converter[C].OptoElectronics and Communications Conference, Sapporo,2010, paper PD3
    [5] M. S. Alfiad, M. Kuschnerov, S. L. Jansen, et al.11×224-Gb/s POLMUX-RZ-16QAMtransmission over670km of SSMF with50-GHz channel spacing[J]. IEEE Photon. Technol.Lett.,2010,22(15):1150–1152
    [6] J. Hilt, M. Nolle, L. Molle, et al.32Gbaud realtime FPGA-based multi-format transmitter forgeneration of higher order modulation formats[C]. International Conference on Optical Internet,Jeju,2010, Paper TuC1-4
    [7] P. J. Winzer, A. K. Gnauck, S. Chandrasekhar, et al. Generation and1,200km transmission of448-Gb/s ETDM56-Gbaud PDM16-QAM using a single I/Q modulator[C]. Proc. ECOC,Torino,2010, Postdeadline paper PD2.2
    [8] X. Zhou, L. Nelson, P. Magill, et al.800km transmission of5×450-Gb/s PDM-32QAM on the50GHz grid using electrical and optical spectral shaping[C]. Proc. ECOC, Geneva,2011, PaperWe.8.B.2
    [9] N. E. Jolley, H. Kee, R. Rickard, et al. Generation and propagation of a1550nm10Gbit/soptical orthogonal frequency division multiplexed signal over1000m of multimode fibre usinga directly modulated DFB[C]. Proc. OFC/NFOEC, Anaheim,2005, Paper OFP3
    [10] J. M. Tang, P. M. Lane, K. A. Shore. High speed transmission of adaptively modulated opticalOFDM signals over multimode fibers using directly modulated DFBs[J]. J. Lightw. Technol.,2006,24(1):429-441
    [11] J. M. Tang, P. M. Lane, K. A. Shore. Transmission performance of adaptively modulated opticalOFDM signals in multimode fibre links[J]. IEEE Photon. Technol. Lett.,2006,18(1):205-207
    [12] J. M. Tang, K. A. Shore.30Gb/s signal transmission over40-km directly modulatedDFB-laser-based single-mode-fiber links without optical amplification and dispersioncompensation[J]. J. Lightw. Technol.,2006,24(6):2318-2327
    [13] A. J. Lowery, L. Du, J. Armstrong. Orthogonal frequency division multiplexing for adaptivedispersion compensation in long haul WDM systems[C]. Proc. OFC/NFOEC, Anaheim,2006,paper PDP39
    [14] D. Qian, J. Yu, J. Hu, et al.8×11.5-Gb/s OFDM transmission over1000km SSMF usingconventional DFB lasers and direct-detection[C]. Proc. OFC/NFOEC, San Diego,2008, paperOMM3
    [15] D. Qian, Neda Cvijetic, Yue-Kai Huang, et al.,22.4-Gb/s OFDM transmission over1000kmSSMF using polarization multiplexing with direct detection[C]. Proc. OFC/NFOEC, San Diego,2009, paper OTuO7
    [16] B. J. C. Schmidt, Z. Zan, L. B. Du,et al.,100Gbit/s transmission using single-banddirect-detection optical OFDM[C]. Proc. OFC/NFOEC, San Diego,2009, paper PDPC3
    [17] S. L. Jansen, I. Morita, H. Tanaka.16×52.5-Gb/s50-GHz spaced, POLMUX-CO-OFDMtransmission over4,160km of SSMF enabled by MIMO processing[C]. Proc. ECOC, Berlin,2007, Paper PD1.3
    [18] Q. Yang, Y. Ma, W. Shieh.107Gb/s coherent optical OFDM reception using orthogonal bandmultiplexing[C]. Proc. OFC/NFOEC, San Diego,2008, paper PDP7
    [19] S. L. Jansen, I. Morita, H. Tanaka.10x121.9-Gb/s PDM-OFDM transmission with2-b/s/Hzspectral efficiency over1,000km of SSMF[C]. Proc. OFC/NFOEC, San Diego,2008, paperPDP2
    [20] Q. Yang, A. A. Amin, Xi Chen, et al.428-Gb/s single-channel coherent optical OFDMtransmission over960-km SSMF with constellation expansion and LDPC coding[J]. Opt.Express,2010,18(16):16883-16889
    [21] C.-T. Lin, Y.-M. Lin, J. Chen, et al. Generation of direct-detection optical OFDM signal forradio-over-fiber link using frequency doubling scheme with carrier suppression[C]. Proc.OFC/NFOEC, San Diego,2008, paper OMM5
    [22] C.-T. Lin, Y.-M. Lin, J. Chen, et al. Optical direct-detection OFDM signal generation forradio-over-fiber link using frequency doubling scheme with carrier suppression[J]. Opt. Express,2010,16(9):6056-6063
    [23]王卓.基于叠加序列的ACO-OFDM无线光通信系统同步和信道估计研究[D].重庆:重庆邮电大学,2011,10-11
    [24] O. Gonzalez, R. P. Jimenez, S. Rodriguez, et al. OFDM over indoor wireless optical channel[J].IEE Proceeding-Optoelectronics,2005,152(4):199-204
    [25] J. Armstrong, A. J. Lowery. Power efficient optical OFDM[J]. Electron. Lett.,2006,42(3):370-371
    [26] A. A. Amin, A. Li, X. Chen, et al. LP01/LP11dual-mode and dual-polarisation CO-OFDMtransmissionon two-mode fibre[J]. Electron. Lett.,2011,47(10):606-608
    [27] S. Randel, R. Ryf, A. Sierra, et al.6×56-Gb/s mode-division multiplexed transmission over33-km few-mode fiber enabled by6×6MIMO equalization[J]. Opt. Express,2011,19(17):16697-16707
    [28] J. M. Tang, K. A. Shore. Maximizing the transmission performance of adaptively modulatedoptical OFDM signals in multimode-fiber links by optimizing analog-to-digital converters[J]. J.Lightw. Technol.,2007,25(3):787-798
    [29] R. P. Giddings, X. Q. Jin, J. M. Tang. Experimental demonstration of real-time3Gb/s opticalOFDM transceivers[J]. Opt. Express,2009,17(19):16654-16665
    [30] H. S. Chen, H. P. A. van den Boom, A. M. J. Koonen. OFDM MMF optical communicationtransmission system based on mode group division multiplexing[C]. Proc. Symposium IEEEPhotonics, Delft,2010,97-100
    [31]金显庆,许渤,邱昆等.多模光纤通信中的自适应功率分配光OFDM技术[J].光电子·激光,2008,19(3):339-343
    [32]李兆玺,胡贵军,孔令杰.自适应调制的正交频分复用多模光纤通信系统性能分析[J].中国激光2008,35(4):582-586
    [33] A. J. Lowery, J. Armstrong. Orthogonal-frequency-division multiplexing for dispersioncompensation of long-haul optical systems[J]. Opt. Express,2006,14(6):2079-2084.
    [34] I. B. Djordjevic, B. Vasic. Orthogonal frequency division multiplexing for high-speed opticaltransmission[J]. Opt. Express,2006,14(9):3767-3775
    [35] N. Cvijetic, L. Xu, T. Wang. Adaptive PMD compensation using OFDM in long-haul10Gb/sDWDM systems[C]. Proc. OFC/NFOEC, Anaheim,2006, paper a1423_1
    [36] I. B. Djordjevic, B. V. Vasic,100-Gb/s transmission using orthogonal frequency-divisionmultiplexing[J]. IEEE Photon. Technol. Lett.,2006,18(15):1576–1578
    [37] W. Rosenkranz, J. Leibrich, M. Serbay. Orthogonal frequency division multiplexing (OFDM)and other advanced options to achieve100Gb/s Ethernet transmission[C]. InternationalConference on Transparent Optical Networks, Rome,2007, paper Mo.Bl1.2
    [38] A. J. Lowery, L. B. Du, J. Armstrong. Performance of optical OFDM in ultralong-haul WDMlightwave systems[J]. J. Lightw. Technol.,2007,25(1):131-138
    [39] B. J. C. Schmidt, A. J. Lowery, J. Armstrong.20Gbit/s direct-detection optical OFDM and12Gbit/s with a colorless transmitter[C]. Proc. OFC/NFOEC, Anaheim,2007, paper PDP39
    [40] A. J. Lowery. Fiber nonlinearity mitigation in optical links that use OFDM for dispersioncompensation[J]. IEEE Photon. Technol. Lett.,2007,19(19):1556–1558
    [41] A. J. Lowery, S. Wang, M. Premaratne. Calculation of power limit due to fiber nonlinearity inoptical OFDM systems[J]. Opt. Express,2007,15(20):13282-13287
    [42] D. F. Hewitt. Orthogonal frequency division multiplexing using baseband optical singlesideband for simpler adaptive dispersion compensation[C]. Proc. OFC/NFOEC, Anaheim,2007,paper a1473_1
    [43] M. Markus, H. Herbert. PMD tolerant direct-detection optical OFDM system[C]. Proc. ECOC,Berlin,2007, paper5.2.5
    [44] W. R. Peng, X. Wu, V. R. Arbab, et al. Experimental demonstrationof a coherently modulatedand directly detected optical OFDM systemusing an RF-tone insertion[C]. Proc. OFC/NFOEC,San Diego,2008, paper OMU2
    [45] F. Buchali, R. Dischler. Optimized sensitivity direct detection O-OFDM with multi-levelsubcarrier modulation[C]. Proc. OFC/NFOEC, San Diego,2008, paper OMU5
    [46] R. Dischler, F. Buchali. Experimental assessment of a direct detection optical OFDM systemtargeting10Gb/s and beyond[J]. Proc. OFC/NFOEC, San Diego,2008, paper OMI_2
    [47] C. Xie. PMD insensitive Direct-Detection optical OFDM systems using self-polarizationdiversity[C]. Proc. OFC/NFOEC, San Diego,2008, paper OMM2
    [48] W. Shieh, C. Athaudage. Coherent optical orthogonal frequency division multiplexing[J].Electronic Letters,2006,42(10):587-589
    [49] W. Shieh, W. Chen, R. S. Tucker. Polarization mode dispersion mitigation in coherent opticalorthogonal frequency division multiplexed systems[J]. Electron. Lett.,2006,42(17):996–997
    [50] H. C. Bao, W. Shieh. Transmission of WDM channels with coherent optical OFDM at baseband[C]. Proc. OFC/NFOEC, Anaheim,2007, paper a1873_1
    [51] W. Shieh, X. Yi, Y Tang. Experiment demonstration of transmission of coherent optical OFDMsystems[C]. Proc. OFC/NFOEC, Anaheim,2007, paper a1881_1
    [52] W. Shieh, X. Yi, Y. Tang. Transmission experiment of multi-gigabit coherent optical OFDMsystems over1000km SSMF fibre[J]. Electron. Lett.,2007,43(3):183–184
    [53] Y. Tang, X. Yi, W. Shieh, et al. Optimum design for coherent optical OFDM transmitter[C].Proc. OFC/NFOEC, Anaheim,2007, paper JThA47
    [54] X. Yi, W. Shieh, Y. Tang. Phase estimation for coherent optical OFDM transmission[C]. Proc.OFC/NFOEC, Anaheim,2007, paper a1633_1
    [55] S. L. Jansen, I. Morita, N. Takeda, et al.20-Gb/s OFDM transmission over4,160-km SSMFenabled by RF-pilot tone phase noise compensation[C]. Proc. OFC/NFOEC, Anaheim,2007,post-deadline paper PDP15.
    [56] Y. Ma, W. Shieh, Qi Yang. Bandwidth-efficient21.4Gb/s coherent optical2×2MIMO OFDMtransmission[C]. Proc. OFC/NFOEC, San Diego,2008, paper JWA59.
    [57] S. L. Jansen, I. Morita, T. C. W. Schenk, et al. Long-haul transmission of16×52.5-Gb/spolarization division multiplexed OFDM enabled by MIMO processing[J]. J. Opt. Netw.,2008,7(2):173-182
    [58] Y. Qi, T. Yan, M. Yiran, et al. Experimental demonstration and numerical simulation of107-Gb/s high spectral efficiency coherent optical OFDM[J]. J. Lightwave Technol.,2009,27(3):168-176
    [59] S. L. Jansen, I. Morita, T. C. W. Schenka, et al.121.9-Gb/s PDM-OFDM transmission with2-b/s/Hz spectral efficiency over1000km of SSMF[J], J. Lightw. Technol.,2009,27(3):177-188.
    [60] X. Liu, F. Buchali. Improved nonlinear tolerance of112-Gb/s PDM-OFDM in dispersionuncompensated transmission with efficient channel estimation[C]. Proc. ECOC, Brussels,2008,paper Mo.3.E.2
    [61] Q. Yang, N. Kaneda, X. Liu, et al. Demonstration of frequency-domain averaging based channelestimation for40-Gb/s CO-OFDM with high PMD[C]. Proc. OFC/NFOE, San Diego,2009,paper OWM6
    [62] H. Masuda, E. Yamazaki, A. Sano, et al.13.5-Tb/s (135×111-Gb/s/ch) No-guard-intervalcoherent OFDM transmission over6248km using SNR maximized second-order DRA in theextended L-band[C]. Proc. OFC/NFOE, San Diego,2009, paper PDPB5
    [63] Y. Ma, Q. Yang, Y. Tang.1-Tb/s per channel coherent optical OFDM transmission withsubwavelength bandwidth access[C]. Proc. OFC/NFOE, San Diego,2009, paper PDPC1
    [64] D. Hillerkuss, T. Schellinger, R. Schmogrow, et al. Single source optical OFDM transmitter andoptical FFT receiver demonstrated at line rates of5.4and10.8Tbit/s[C]. Proc. OFC/NFOE, SanDiego,2009, paper PDPC1.
    [65] D. H. Winter, M. Teschke, M. Marculescu, et al. Simple all-optical FFT scheme enabling Tbit/sreal-time signal processing[J]. Opt. Express,2010,18(9):9324-9340
    [66] L. B. Du, A. J. Lowery. Mitigation of dispersion penalty for short-cyclic prefix coherent opticalOFDM systems[C]. Proc. ECOC, Turin,2010, paper Tu.4.A.5
    [67] X. Liu, S. Chandrasekhar, B. Zhu, et al.448-Gb/s reduced-guard-interval CO-OFDMtransmission over2000km of ultra-large-area fiber and five80-GHz-grid ROADMs[J]. J.Lightwave Technol.,2011,29(4):483-490
    [68] C. Chen, Q. Zhuge, D. V. Plant. Reduced-guard-interval CO-OFDM with overlappedfrequency-domain CD and PMD equalization[C]. Proc. OFC/NFOE, Los Angeles,2011, paperOWE7
    [69] N. Cvijetic, D. Qian, J. Hu.100Gb/s optical access based on optical orthogonalfrequency-division multiplexing[J]. IEEE Commun. Mag.,2010,48(7):70-77
    [70] L. G. Kazovsky, W. Shaw, D. Gutierrez, et al. Next-generation optical access networks[J]. J.Lightw. Technol.,2007,25:3428-3442.
    [71] K. Qiu, X. Yi, J. Zhang, et al. OFDM-PON optical fiber access technologies[C]. Proc. ACP,Guangzhou,2012,830921-830927
    [72] L. Zhang, X. Xin, B. Liu, et al. A novel ECDM-OFDM-PON architecture for next-generationoptical access network[J]. Opt. Express,2010,18(17):18347-18353
    [73] B. Liu, X. Xin, L. Zhang, et al. Performance investigation and demonstration of colorlessupstream transmission in ECDM-OFDM-PON[J]. Opt. Express,2011,19(15):14542-14548
    [74] J. Kani. Next-generation PONs: an operator’ s view[C]. Proc. ECOC,2009, paper5.7.4
    [75]张丽佳.基于光正交频分复用的接入网若干关键问题研究[D].北京:北京邮电大学,2011,4-12
    [76] D. Qian, J. Hu, P. N. Ji, et al.10-Gb/s OFDMA-PON for delivery of heterogeneous services[C].Proc. OFC/NFOEC, San Diego,2008, paper OWH4
    [77] D. Qian, N. Cvijetic, J. Hu, et al.108Gb/s OFDMA-PON with polarization multiplexing anddirect-detection[J]. J. Lightw. Technol.,2010,28(4):484-493
    [78] D. Qian, N. Cvijetic, J. Hu, et al. Optical OFDM transmission in metro/access networks[C].Proc. OFC/NFOEC, San Diego,2009, paper OMV1
    [79] D. Qian, N. Cvijetic, J. Hu, et al. Single-wavelength upstream108Gb/s OFDMA-PONtransmission[C]. Proc. ECOC, Vienna,2009, paper PD3.3
    [80] N. Cvijetic, D. Qian, J. Hu, et al.44-Gb/s/λ upstream OFDMA-PON transmission withpolarization-insensitive source-free ONUs[C]. Proc. OFC/NFOEC, San Diego,2010, paperOTuO2
    [81] M.-F. Huang, J. Yu, D. Qian, et al. Lightwave centralized WDM-OFDM-PON[C]. Proc. ECOC,Brussels,2008, paper Th.1.F.5
    [82] B. Liu, X. Xin, L. Zhang, et al. A WDM-OFDM-PON architecture with centralized lightwaveand PolSK-modulated multicast overlay[J]. Opt.Express,2010,18(3):2137-2143
    [83] C. H. Ye, C. W. Chow. Utilization of four WDM channels with signal remodulation ofOFDM-QAM for10Gb/s uplink passive optical networks[J]. Opt. Commu.,2009,282(2009):3701-3705
    [84] D. Qian, S.H. Fan, N. Cvijetic, et al.64/32/16QAM-OFDM using direct-detection for40G-OFDMA-PON downstream[C]. Proc. OFC/NFOEC, Los Angeles,2011, paper OMG4
    [85] H. Zhang, J. Zhang, M. Deng, et al. Performance of OFDM with PCF configuration inWDM-PON[C]. Proc. ACP, Shanghai,2011,1-9
    [86] P. Pepeljugoski, S. E. Golowich, A. John Ritger, et al. Modeling and simulation ofnext-generation multimode fiber links[J]. J. Lightwave Technol.,2003,21(5):1242-1255
    [87]周宇.自适应光正交频分复用系统仿真及发射端FPGA设计[D].成都:电子科技大学,2009,24-29
    [88]王文博,郑侃.宽带无线通信OFDM技术[M].北京:人民邮电出版社,2003,12-17
    [89] J. L. Seoane, S. K. Wilson, S. Gelfand. Analysis of intertone and interblock interference inOFDM when the length of the cyclic prefix is shorter than the length of the impulse response ofthe channel[J]. IEEE Comm.,1997,1(1):32-36
    [90] B. J.C. Schmidt, A. J. Lowery, et al. Experimental demonstrations of electronic dispersioncompensation for long-haul transmission using direct-detection optical OFDM[J]. J. Lightw.Technol.,2008,26(1):196-203
    [91] A. J. Lowery. Improving sensitivity and spectral efficiency in direct-detection optical OFDMsystems[C]. Proc. OFC/NFOEC, San Diego,2008, paper OMM4
    [92] M. Sieben, J. Conradi, D. Dodds. Optical single sideband transmission at10Gb/s using onlyelectrical dispersion compensation[J]. J. Lightw. Technol.,1999,17(10):1742-1749
    [93] Y. Li, J. Zhang, K. Qiu et al. Performance of optical OFDM system affected by the highpeak-toaverage power ratio[C]. Proc. APOC, Shanghai,2008,7136:71361C
    [94] W.-R. Peng, X, Wu, V, R. Arbab, et al. Theoretical and experimental investigations ofdirect-detected RF-tone-assisted optical OFDM systems[J]. J. Lightw. Technol.,2009,27(10):1332-1339
    [95]邝育军,乐光新. OFDM系统信道估计中插值算法性能分析[J].北京邮电大学学报,2003,26(1):41-44
    [96] H. Bao, W. Shieh. Transmission simulation of coherent optical OFDM signals in WDMsystems[J]. Opt. Express,2007,15(8):4410-4418
    [97] Y. Tang, W. Shieh, X. Yi, et al. Optimum design for RF-to-optical up-converter in coherentoptical OFDM systems[J]. IEEE Photon. Technol. Lett.,2007,19(7):483-485
    [98] L. Xu, J.Hu, D. Qian, et al. Coherent optical OFDM systems using self optical carrierextraction[C]. Proc. OFC/NFOEC, San Diego,2008, paper OMU4
    [99] W. Shieh, X. Yi, Y. Ma, et al. Coherent optical OFDM: has its time come?[J]. J. Opt. Netw.,2008,7(3):234-255.
    [100] T. M. Schmidl, D. C. Cox. Robust frequency and timing synchronization for OFDM[J]. IEEETrans. Commun.,1997,45(12):1613–1621
    [101] M. Hlaing, V. K. Bhargava, K. B. Letaief. A robust timing and frequency synchronization forOFDM systems[J]. IEEE T. Wirel. Commun.,2003,2(4):822-839
    [102] Qi Yang, S. Chen, Y. Ma, et al. Real-time reception of multi-gigabit coherent optical OFDMsignals[J]. Opt. Express,2009,17(10):7985-7992
    [103] S. J. Savory. Digital filters for coherent optical receivers[J]. Opt.Express,2008,16(2):804-817
    [104] W. Shieh. Maximum-likelihood phase and channel estimation for coherent optical OFDM[J].IEEE Photon. Technol. Lett.,2008,20(8):605-607
    [105] X. Yi, W. Shieh, Yan Tang, Phase estimation for coherent optical OFDM[J]. IEEE Photon.Technol. Lett.,2007,19(12):919-921.
    [106] S. Randel, S. Adhikari, S. L. Jansen. Analysis of RF-pilot-based phase noise compensation forcoherent optical OFDM systems[J]. IEEE Photon. Technol. Lett.,2010,22(17):1288-1290
    [107] J. G. Proakis, Digital communications,4thed[M]. Boston: Mc-Graw-Hill,2000,420-450
    [108] M. E. Mousa-Pasandi, D. V. Plant. Data-aided adaptive weighted channel equalizer forlong-haul optical OFDM transmission systems[J]. Opt. Express,2010,18(4):3919–3927
    [109] M. E. Mousa-Pasandi, D. V. Plant. Zero-overhead phase noise compensation viadecision-directed phase equalizer for coherent optical OFDM[J]. Opt. Express,2010,18(4):3919–3927
    [110] W. Shieh. PMD-supported coherent optical OFDM systems[J]. IEEE Photon. Technol. Lett.,2007,19(3):134-136
    [111] W. Shieh, H. Bao, Y. Tang. Coherent optical OFDM: theory and design[J]. Opt. Express2008,16(2):841-859.
    [112] W. Shieh, X. Yi, Y. Ma,et al. Theoretical and experimental study on PMD-supportedtransmission using polarization diversity in coherent optical OFDM systems[J]. Opt. Express,2007,15:9936-9947
    [113] X. Liu, F. Buchali. Intra-symbol frequency-domain averaging based channel estimation forcoherent optical OFDM[J]. Opt. Express,2008,16(26):21944-21957
    [114] X. Liu, F. Buchali. A novel channel estimation method for PDM-OFDM enabling improvedtolerance to WDM nonlinearity[C]. Proc. OFC/NFOEC, San Diego,2009, paper OMW5.
    [115] C. Chen, Q. Zhuge, D. V.Plant. Zero-guard-interval conherent optical OFDM with overlapfrequency-domain CD and PMD equalization[J]. Opt. Express,2011,19(8):7451-7467
    [116] R. Kudo, T. Kobayashi, K. Ishihara, et al. Coherent optical single carrier transmission usingoverlap frequency domain equalization for long-haul optical systems[J]. J. Lightw. Technol.,2010,27(16):3721-3728
    [117] Y Ma, Q. Yang, Y. Tang, et al.1-Tb/s single-channel coherent optical OFDM transmission over600-km SSMF fiber with subwavelength bandwidth access[J]. Opt. Express,2009,17(11):9421-9427
    [118] Q. Yang, A. A. Amin, X. Chen, et al.428-Gb/s single-channel coherent optical OFDMtransmission over960-km SSMF with constellation expansion and LDPC coding[J]. Opt.Express,2010,18(6):16883-16889
    [119] W. Shieh. High spectral efficiency coherent optical OFDM for1Tb/s Ethernet transport[C].Proc. OFC/NFOEC, San Diego,2009, paper OWW1
    [120] W. Shieh, Q. Yang, Y. Ma.107Gb/s coherent optical OFDM transmission over1000-kmSSMF fiber using orthogonal band multiplexing[J]. Opt.Express,2008,16(9):6378-6386
    [121] X.Yi, N. K. Fontaine, R. P. Scott, et al. Tb/s coherent optical OFDM systems enabled byoptical frequency combs[J]. J. Lightw. Technol.,2010,28(14):2054-2061
    [122] N. K. Fontaine, R. P. Scott, S. J. Yoo, et al. Characterization of dual-electrode mach-zehndermodulator based optical frequency comb generator in two regimes[C]. IEEE Lasers andElectro-Optics Society,2008,186-187
    [123] R. P. Scott, N. K. Fontaine, J. P. Heritage, et al.3.5-THz wide,175mode optical combsource[C]. Proc. OFC/NFOEC, Anaheim,2007, paper OWJ3
    [124] D. Derickson, C. Hentschel. Fiber optic test and measurement[M]. New Jersey: Prentice HallPTR,1998,320-315
    [125] X. Yi, J. Zhang, M. Deng, et al. Significant overhead reduction of multi-band Tb/s coherentoptical OFDM systems[C]. Proc. OFC/NFOEC, Los Angeles,2011, paper JWA034
    [126]周恩,陈茅茅,王文博.多径衰落信道下OFDM定时同步算法的研究[J].北京邮电大学学报,2005,28(3):62-64
    [127] A. Sano, E. Yamada, H. Masuda, et al. No-guard-interval coherent optical OFDM for100-Gb/slong-haul WDM transmission[J]. J. Lightwave Technol.,2009,27(16):3705-3713
    [128] B. Kozicki, H. Takara, Y. Tsukishima, et al. Experimental demonstration of spectrum-slicedelastic optical path network (SLICE)[J]. Opt. Express,2010,18(6):16883-16889
    [129] H. Mulvad, E. Palushani, H. Hu, et al. Ultra-high-speed optical serial-to-parallel dataconversion by time-domain optical Fourier transformation in a silicon nanowire[J]. Opt.Express,2011,19(26): B825-B835
    [130] T. Kobayashi, A. Sano, E. Yamada, et al. Electro-optically multiplexed110Gbit/s opticalOFDM signal transmission over80km SMF without dispersion compensation[J]. Electron.Lett.,2008,44(3):225–226
    [131] K. Takiguchi, M. Oguma, T. Shibata, et al. Optical OFDM demultiplexer using silica PLCbased optical FFT circuit[C]. Proc. OFC/NFOEC, San Diego,2009, paper OWO3
    [132] Y.-K. Huang, D. Qian, R.E. Saperstein, et al. Dual-polarization2×2IFFT/FFT optical signalprocessing for100-Gb/s QPSK-PDM all-optical OFDM[C]. Proc. OFC/NFOEC, San Diego,2009, paper OTuM4
    [133] Z. Wang, K. S. Kravtsov, Y.-K. Huang, et al. Optical FFT/IFFT circuit realization usingarrayed waveguide gratings and the applications in all-optical OFDM system[J]. Opt. Express,2011,19(5):4501-4512
    [134] J. K. Rhee, L. Tomkos, M. J. Li. A Broadcast-and-select OADM optical network withdedicated optical-channel protection[J]. J. Lightw. Technol.,2003,23(1):25-31
    [135] Y.-S. Hurh, K.-H. Seo, J.-S. Lee. Optical gain and penalty characteristics of afiber-Bragg-grating based active optical-add-drop multiplexer[J]. Opt. Express,2009,17(24):21666-21671
    [136] N. Cvijetic. OFDM for next generation optical access networks[J]. J. Lightw. Technol.,2012,30(4):384-398
    [137] A. Banerjee, Y. Park, F. Clarke, et al. Wavelength-division-multiplexed passive opticalnetwork (WDM-PON) technologies for broadband access: a review [Invited][J]. J. of OpticalNetworking,2005,4(11):737-758
    [138] H.-C. Chien, R.-J. Chen, M.-F. Huang, et al. Comparison of OFDMA and SC-FDMA channelaccess techniques in a passive optical network environment[C]. Proc. OFC/NFOEC, LosAngeles,2011, paper OTuK2
    [139] L. Chen, J. G. Yu, S. Wen, et al. A novel scheme for seamless integration of ROF withcentralized lightwave OFDM-WDM-PON system[J]. J. Lightwave Technol.,2009,27(14):2786-2791
    [140] D. Qian, J. Hu, P. N. Ji, et al.10.8-Gb/s OFDMA-PON transmission performance study[C].Proc. OFC/NFOEC, San Diego,2009, paper NME6
    [141] E. Giacoumidis, J. L. Wei, X. L. Yang, et al. Adaptive-modulation-enabled WDMimpairment reduction in multichannel optical OFDM transmission systems for next-generationPONs[J]. IEEE Photonics J.,2010,2(2):130–140
    [142] J. L. Wei, E. Hugues-Salas, R. P. Giddings, et al. Wavelength reused bidirectionaltransmission of adaptively modulated optical OFDM signals in WDM-PONs incorporatingSOA and RSOA intensity modulators[J]. Opt. Express,2010,18(10):9791-9808
    [143] N. Cheng, Z. Liao, F. Effenberger. Large splitting and long reach passive optical networkswith mode coupling receivers[C]. Proc. ECOC, Turin,2010, paper Tu.5.B.3
    [144] Q. Yang, W. Shieh, Y. Ma. Guard-band influence on orthogonal-band-multiplexed coherentoptical OFDM[J]. Optics Letters,2008,33(19):2239-224
    [145] D. Qian, N. Cvijetic, J. Hu, et al.40-Gb/s MIMO-OFDM-PON using polarization multiplexingand direct-detection[C]. Proc. OFC/NFOEC, San Diego,2009, paper OMV3
    [146] P. Tang, D. J. Towner, A. L. Meier, et al. Low-voltage, polarization-insensitive, electro-opticmodulator based on a polydomain barium titanate thin film[J]. Appl. Phys. Lett.,2004,85(20):4615–4617
    [147] S. Chandrasekhar, X. Liu. Experimental investigation on the performanceof closely spacedmulti-carrier PDM-QPSK with digital coherent detection[J]. Opt. Express,2009,17(24):21350-21361
    [148] W.-R. Peng. Analysis of laser phase noise effect in direct-detection optical OFDMtransmission[J]. J. Lightw.Technol.,2010,28(17):2526-2536.
    [149] C. Schubert, J. K. Fischer, C. Schmidt-Langhorst, et al. New trends and challenges in opticaldigital transmission systems[C]. Proc. ECOC, Amsterdam,2012, paper We.1.c.1.
    [150] Y. Yoshida, A. Maruta, and K. Kitayama. Coherent IFDMA-PON: a novel green and elasticoptical access networks[C]. Proc.,2012, paper WB3.2.
    [151] N. Cvijetic. Optical OFDM for next-generation passive optical networks(PON)[C]. Proc.SPPCom, Karlsruhe,2010, paper SPTuB6
    [152] C.-W. Chow, Chien-Hung Yeh, Chia-Hsuan Wang et al. WDM extended reach passive opticalnetworks using OFDM-QAM[J]. Opt. Express,2008,16(16):12096-12101.
    [153] D.-Z. Hsu, Chia-Chien Wei, Hsing-Yu Chen et al.2.1-Tb/s·km OFDM long-reach PONtransmission using a cost-effective electro-absorption modulator[C]. Proc. OFC/NFOEC, LosAngeles,2011, paper OMG2.
    [154] X. Yi, W. Shieh, and Y. Ma. Phase noise effects on high spectral efficiency coherent opticalOFDM transmission[J]. J. Lightw. Technol.,2008,26(10):1309-1316.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700