用户名: 密码: 验证码:
中储式球磨机制粉系统先进控制和优化应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
广泛应用于火电厂的钢球磨煤机中间储仓式制粉系统是典型的多变量非线性时变系统,各控制量和被控制量之间存在着相当严重的耦合,基于线性系统理论的单回路常规控制方法难以得到令人满意的控制结果,并严重影响火电机组的运行经济性和安全性。因此,研究适合于球磨机制粉系统的多变量先进控制方法,以有效地实现其自动控制和优化运行,具有十分重要的理论意义和实用价值。本文在综述了电厂球磨机中储式制粉系统先进控制方法与应用研究现状的基础上,进行了球磨机制粉系统多变量先进控制方法的应用研究。
     本文第一章为绪论,首先阐述了课题的背景与意义,综述了目前国内外电厂球磨机中储式制粉系统先进控制算法的研究现状和发展方向,基于目前球磨机制粉系统实际控制中存在的问题,提出了本文的主要工作内容。
     本文第二章针对电厂球磨机中储式制粉系统研究了多变量系统的解耦控制方法。首先分析了球磨机制粉系统的工作原理以及运行特性。球磨机制粉系统是一个多输入多输出的多变量系统。球磨机制粉系统的控制量为入口负压、出口温度和出入口压差。给煤量、再循环风量及热风量的任一改变都将影响到入口负压、出口温度和出入口压差。然后对球磨机制粉系统进行了耦合性分析,并说明多变量系统回路的配对方法,不仅要参考系统的相对增益矩阵,而且要根据实际过程的工艺和控制要求,才能选择更为合适的输入输出匹配,并以华泰电厂球磨机制粉系统数学模型为基础,对其进行了系统分析和仿真验证。由仿真结果可以看出,采用前馈补偿解耦,可以实现控制对象的近似完全解耦。
     本文第三章提出了一种基于多变量解耦控制和稳态优化技术相结合的控制策略。这种控制方式算法简单,易于实现。在直接控制层,为了简化控制器设计,构造两个分离矩阵,使3×3系统解耦为一个双输入双输出系统和一个单回路系统。直接控制层的任务是保证系统的稳定运行。优化控制层的任务是通过计算选择最优的设定点并传达给直接控制层,使得经济效益目标函数取得最优值。当球磨机制粉系统运行在最大出力下,制粉单耗会降到最低。因此,增加磨煤机的给煤量,意味着加快制粉系统的制粉速度,同时降低电耗。仿真结果表明此控制方案可以取得良好的控制性能。
     本文第四章介绍了工程设计情况。根据控制思想设计出制粉系统优化控制的总体结构,选用PLC作为制粉控制系统的下位机,并具体说明了系统的硬件设计方案,同时还说明了传感器、变送器和计算机硬件的选择和配置。接着对本系统的软件设计和实现过程进行了详细的说明。上位机采用组态王6.53实现和下位机的通讯并将制粉系统运行的全貌实时提供。可根据制粉系统实际情况计算设定制粉系统目标值,对于偏离目标值的参数提出报警等,提醒运行人员纠正偏差,提高制粉系统效率。通过仿真和离线调试,验证了本设计方案的有效性。
     最后对本文所做工作进行总结,并对今后工作中需要进一步探索和研究的问题进行了展望。
Ball mill coal pulverized system is a multivariable coupled nonlinear time-varying system which is extensively applied in coal fired power plants. Conventional single-variable controller based on linear system theories cannot meet the control requirements. It is difficult to keep the pulverized system in safe condition and in low energy consumption in the same time. So it is of very important theoretical significance and practical value to study multivariable advanced control methods which are suitable for the ball mill coal pulverized systems, and take it into automatic control and optimal operation effectively. This paper reviews the advanced control methods and application research situation of the power plant ball mill storage pulverized coal system, and then studies the application research of the multivariable advanced control methods for ball mill coal pulverized systems.
     Chapter 1 is the introduction of the paper. Firstly, it describes the background and the significance of the research, and then reviews the situation and development of advanced control methods for the power plant ball mill storage pulverized coal system at present. Lastly, it puts forward the primary work based on the problems existing at practical controls of ball mill coal pulverized system.
     Chapter 2 studies the multivariable system decoupling control method for the ball mill storage pulverized coal system. First, this paper analyses the work theory and operation character of ball milling. The ball mill coal pulverized system is a multi-input and multi-output system. The controlled variables of ball mill are the negative pressure in the input, the temperature in the output and the difference pressure of the ball mill. The control means are to adjust the recycling air gate, the hot air gate and the coal feed quality. Then, we make the coupling analysis and give the loop matching method of multivariable system. Loop matching should not only consult relative gain array (RGA), but also have to consider the technology and control requirement of practical process to choose more appropriate input and output matching. Based on the model of the power plant, we make the system design and simulation of it. From the simulation results, we can see that the feed forward compensation decoupling control can realize the completely decoupling for controlled object.
     Chapter 3 proposes a control method that combined multivariable decoupling control and steady-state optimization. This method is simple and liable to apply. In direct control layer, to simplify the controller design, a 3×3 system can be decomposed into a two-input two-output (TITO) system and a single loop by constructing the two matrices A and B. The direct control layer is to keep the system running in a stable. The task of the optimization layer is to select optimal values of set-points for the lower control layer, optimizing a defined objective function of economic nature. When the ball mill coal pulverizing system is operated at about its maximal capacity of the coal stock level, the electric power consumption of pulverizing a ton of coal will be reduced to a minimum. Therefore, increasing the coal feed rate to the tube mill, i.e., increasing the feeder speed, can increase the flow rate of pulverized coal and then reduce electric energy consumption. Simulation results demonstrate the good performance of the proposed control scheme.
     Chapter 4 introduces the project realizes. According to the idea of designing, the overall structure of the Optimizing Control System is designed. In this system, PLC is chosen to be the lower machine, and the designing plan of hardware of this system is illustrated particularly. The configuration of sensors, converters and computer is introduced. Furthermore, the software designing and the realization of the system are illustrated precisely and meticulously. Using configuration software-King View 6.53 to realize the communication between the lower machine and the host machine, and provides the complete picture of coal pulverizing system. Operation staff may set running target value, if real-time value deviated from the target can propose alarm to remind staff to correct the deviations, which could improve operating efficiency of coal pulverizing system.
     At last, the author summarizes all the works which have been done in the thesis, and look forward further explorations and research questions in the next work.
     The research development result indicated: This system fuses the configuration software and the optimized algorithm, enhances automation level and management level of coal pulverizing system, save the energy, improve the work condition. The system will bring the obvious economic efficiency and the social efficiency.
引文
[1]杜建吉等.料位监控技术在DTM350/580球磨机上的应用.中国电力,2000,33(3):56-58
    [2]Scieszka S F.A Technique to Inverstigate Pulverizing Poperties of Coal[J].Power Technology,1985,43(1):89-102
    [3]白焰.钢球磨制粉系统的耦合分析和解耦设计[J].吉林电子技术,1986(6):1-7
    [4]于希宁,边立秀,孙建平.磨煤机解耦控制系统的设计与调试[J].河北电力技术,1994(6):10-13
    [5]田沛等.球磨机控制系统的INA方法设计[J].华北电力学院学报,1994,21(1):69-72
    [6]苏杰,孙德立,曾新.球磨机控制系统的一种频域方法设计[J].华北电力大学学报,1998,25(3):81-86
    [7]吕剑虹,沈炯,杨榕等.中储式钢球磨煤机制粉系统控制策略研究与应用[J].中国电力,2000,33(9):57-61
    [8]王东风.制粉系统球磨机的模型算法解耦控制[J].工业仪表与自动化装置,2002(1):23-25
    [9]王介生,王伟.球磨机制粉系统参数自整定PID解耦控制器[J].控制工程,2007,14(2):135-139
    [10]谢克明,李国勇.中储式制粉系统解耦控制系统[J].太原工业大学学报,1994,25(2):17-21
    [11]H.H.Rosenbrock.Design of multivariable control systems using the inverse nyquist array[J].IEE Proc.,1969,116:1929-1936
    [12]S.B.Romel.Strategies for implementing advanced process controls in a distributed control system[J].ISA Trans.1993,32:147-156.
    [13]Brosilow Coleman,Joseph Babu.Techniques of model based control[M].Upper Saddle River,NJ:Prentice Hall,2002
    [14]金以慧,王诗宓,王桂增.过程控制的发展与展望[J].控制理论与应用,1997,14(2):145-151
    [15]Ying-Yi Hong.An Enhanced Expert System with Fuzzy Reasoning for Line Flow Control in Power System[J].Electric Power Systems Research,1996,39(2):1-8
    [16]Arroyo-Figueroa,Soucar C,Fuzzy L E.Intelligent System for the Operation of Fossil Power Plants[J].Engineering Application of Artifical Intelligence,2003,(13):431-439
    [17]席裕庚.预测控制[M].北京:国防工业出版社,1993
    [18]E.F.Camacho and C.Bordons.Model Predictive Control[M].New York:Springer-Verlag,1999
    [19]周洪.基于实时在线仿真方法的球磨机多变量控制系统[J].电力自动化,2003,(4):11-13
    [20]苏杰,孙德利,曾新.球磨机控制系统的一种频域方法设计[J].华北电力大学学报,1998,25(3):81-86
    [21]刘齐寿,黄锦涛等.球磨机中储式制粉系统自寻最优控制[J].西安交通大学学报,2000,34(7):30-34
    [22]王东风.钢球磨煤机制粉系统的优化控制[J].动力工程,2002,22(3):1793-1797
    [23]李崇晟,周洪等.国内球磨机控制系统现状[J].华中电力,1999,12(3):11-13
    [24]程启明,王勇浩.火电厂中间储仓式球磨机制粉系统控制技术发展综述[J].上海电力学院院报,2006,22(1):48-54
    [25]王东风,李利平,王丽君.球磨机制粉系统控制的现状和前景.东北电力技术[J],2002,(5):5-9
    [26]刘军,李遵基.国产200MW制粉系统微机自动化控制研究[J].电力技术,1990,23(8):47-50
    [27]李遵基,蔡军.中间储仓式制粉系统球磨机模糊控制理论与实践[J].中国电力,1996,29(10):33-37
    [28]姚刚,周洪.球磨机神经元解耦控制系统[J].华中电力,2000,13(1):7-10
    [29]王东风,于希宁,宋之平.制粉系统球磨机的动态数学模型及神经网络逆系统控制[J].中国电机工程学报,2002,22(1):22-25
    [30]白焰.神经解耦控制在钢球磨煤机中间储仓式制粉系统中的应用研究[D].沈阳:东北大学自动化研究中心博士学位论文,1998
    [31]罗晓刚.中储式球磨机制粉系统的智能控制与实现[D].重庆大学,2003
    [32]陶文华,柴天佑,岳恒.钢球磨煤机的动态参数模型与仿真研究[J].系统仿真学报,2004,16(4):778-780
    [33]李险峰.球磨机制粉系统模糊控制的研究[D].西安交通大学,2003
    [34]方康玲.过程控制系统(第二版)[M].武汉:武汉理工大学出版社,2007,185-198
    [35]王树青等.工业过程控制工程[M].北京:化学工业出版社,2002,120-135
    [36]金以慧.过程控制[M].北京:清华大学出版社,1993,151-178
    [37]王正林,郭阳宽.过程控制与Simu]ink应用[M].北京:电子工业出版社,2006,196-207
    [38]柴天佑.多变量自适应解耦控制及应用[M].北京:科学出版社,2001
    [39]P.Tatjewski.Advanced control of industrial processes[M].Structures and Algorithms,Springer,London,2007
    [40]Q.Xiong,W.J.Cai,and M.J.He.Equivalent transfer function method for PI/PID controller design of MIMO processes[J].Journal of Process Control,2007,vo1.17:665-673
    [41]L.Zhai and T.thai.Intelligent Decoupling PID Control of a Class of Complex Industrial Processes[J].Proceedings of the 6th World Congress on Intelligent Control and Automation,China,2006,4827-4832
    [42]王永初.球磨机控制系统的设计[J].华侨大学学报自然科学版,1990,11(2):165-172
    [43]李少远,蔡文剑.工业过程辨识与控制[M].北京:化学工业出版社,2004
    [44]薛定宇.反馈控制系统设计与分析-MATLAB语言应用[M].北京:清华大学 出版社,2000,256-259
    [45]Dale E.Seborg,Thomas F.Edgar,Duncan A.Mellichamp.Process Dynamics and Control(Second Edition)[M].Publishing House of Electronice Industry,2004,266-276
    [46]刘红波,李少远.火电机组先进智能控制及其应用[M].北京:科学出版社,2005
    [47]张静等.MATLAB在控制系统中的应用[M].北京:电子工业出版社,2007
    [48]卢险峰.最优化方法应用基础[M].同济大学出版社,2003
    [49]高红卫.线性规划方法应用详解[M].北京:科学出版社,2004
    [50]谢政等.非线性最优化[M].湖南:国防科技大学出版社,2003
    [51]施光燕,董加礼.最优化方法[M].高等教育出版社,1999
    [52]王东风.多变量智能控制在电厂制粉系统中的应用研究[D].华北电力大学,2001,64-70
    [53]方崇智,萧德云.过程辨识[M].北京:清华大学出版社,1988,397-445
    [54]王东风,李遵基,李炎.中间仓储式制粉全程控制系统设计与应用.华东电力,1999,27(5):41-43
    [55]杨明玉,王丽君等.球磨机制粉系统稳态工作点的优化[J].华北电力大学学报,2002,29(3):56-58
    [56]D.F.Wang,P.Han,and D.G.Peng.Optimal for ball mill pulverizing system and its applications[J].Proceedings of the First International Conference on Machine Learning and Cybernetics,Beijing,China,2002,2131-2136
    [57]Xiong Qiang.Multivariable Control System Design Based on Relative Interaction Energy[D].Nanyang Technological University,2006
    [58]H.Mei,S.Y.Li,W.J.Cai,and Q.Xiong.Decentralized closed-loop parameter identification for multivariable processes from step responses.Mathematics and Computers in Simulation,2005,68:171-192
    [59]M.Boulvin,A.V.Wouwer,R.Lepore,C.Renotte,and M.Remy.Modeling and Control of Cement Grinding Processes.IEEE transactions on control systems technology,2003,11:715-725
    [60]曹晖.基于PLC的火电厂制粉优化控制系统的开发[D].西安交通大学,2004
    [61]崔栋刚.火电厂制粉系统控制装置与控制策略的研究[D].西安交通大学,2001
    [62]西门子公司.SIMATIC STEP7 V5.4编程参考手册.北京,西门子自动化与驱动集团,2006
    [63]廖常初.PLC编程及应用(第三版)[M].机械工业出版社,2008
    [64]秦益霖等.西门子S7-300PLC应用技术[M].北京:电子工业出版社,2007
    [65]钟肇燊,冯太合,陈宇驹.西门子S7-300系列PLC及应用软件STEP7[M].广州:华南理工大学出版社,2004
    [66]组态王6.5初级培训教程.北京亚控科技发展有限公司,2007
    [67]林敏,于忠德,崔远慧.自动化系统工程设计与实施[M].北京:电子工业出版社,2008

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700