用户名: 密码: 验证码:
近岸水域波浪传播的数学模型
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
外海深水区的风浪或涌浪在向近岸浅水区传播的过程中,由于受到水深、地形变化、能量耗散、障碍物、水流等因素的作用会发生浅水变形、折射、绕射、反射、破碎和非线性效应等现象,这些现象是近岸波浪传播的主要物理过程和特征。随着社会经济的迅速发展,对近岸水域波浪传播变形规律的研究日益重要和迫切。现有的各种近岸水域波浪传播的数学模型都还有各自的不足之处,亟待进一步发展和完善。本报告主要沿着适宜于中、小尺度空间的缓变水深水域波浪传播的数学模型这条主线,对近岸水域中波浪的传播进行研究。并通过和非线性长波的数学模型在具体应用中的对比分析,进一步深化了对近岸水域波浪传播数学模型特点的认识。
     首先,基于曲线坐标系,建立了缓变水深水域波浪传播的数值模拟模型,模型适宜于任意变化的边界形状,克服了各种代数坐标变换的局限性。并在此基础上,建立了水流作用下波浪传播的数学模型。在建立模型时,将原始的椭圆型缓坡方程的近似型式——依赖时间变化的抛物型方程,作为控制方程;从将开边界条件、不同反射特性的固壁边界条件相统一的表达式出发,对边界条件进行处理;用ADI法数值求解控制方程,格式无条件稳定;节省了计算机内存和计算量。比较详细的模型验证与应用表明,模型的数值模拟结果与解析解、物模实验值吻合良好;可以较好地模拟波浪传播过程中的浅水变形、折射、绕射和反射等多种现象;能正确合理地反映水流对波浪传播的影响。模型可广泛应用于具有复杂边界的工程实际。
     其次,将包含底摩阻耗散项的缓坡方程化为等价的控制方程组,采用Crank-Nicolson格式离散方程组,建立了适宜于大范围水域内波浪传播的数学模型。模型具有较高的精度,而且更加便于实际应用。模型的数值模拟结果和解析解与物模实验值吻合较好。将模型应用于地形复杂变化的长江口南港水域内波浪场的计算,计算结果说明,模型能较好地反映滩槽相间、急剧变化的地形的影响。模型可广泛应用于大范围水域内波浪传播的计算。
     最后,鉴于Boussinesq型方程和缓坡方程是在不同的假设条件下推导而来,应用于描述近岸水域波浪的传播变形时具有不同的特点。本报告根据作者所建立的可以对任意水深点流场与波动净压力场进行求解、适宜水深任意变化水域非线性波传播的数学模型,提供了在较强非线性作用下波浪传播的数值模拟结果。并将非线性长波传播模型和缓坡方程,分别应用于非线性作用较
    
    摘要
    强、地形为平底与圆形暗礁的组合这一经典物模实验,比较了二者应用于小尺度水域范围内波浪
    传播变形的具体差别。
As surface waves propagate from deep to shallow water, due to the effects of water depth, topography, sea bed friction, obstacles and ambient currents etc, many phenomena occur, such as shoaling transformation, refraction, diffraction, reflection, wave breaking, non-linearity and so on, which are the main physical processes and characteristics during wave propagation. There are several kinds of mathematical models of wave propagation in coastal area now, however, they should be developed and perfected for many deficiencies exist. In this report, mathematical models for combined refraction-diffraction waves in water of slowly varying topography are presented. At the same time, being compared with application of the model for non-linear long waves, the knowledge of characteristics of wave propagation models in near shore area is deepened further.
    Firstly, under the curvilinear coordinates, mathematical model for wave propagation in water of slowly topography is presented. The model is suitable to arbitrary boundary shapes and overcomes the limitation of other models with algorithm transformation. The mathematical model for wave propagation on non-uniform currents is established also. In the models, the time dependent parabolic equations, deduced from the mild slope equations with currents or not, are used as the governing equations. Based on the general conditions for open and fixed natural boundaries with an arbitrary reflection coefficient and phase shift, the boundary conditions for the present models are treated. The alternative direction implicit method is used to solve the governing equations and the numerical schemes are unconditional stable. The required computer storage is reduced. The computer speed is speeded up. The numerical results of the present models are in agreement with the theoretical solution and those of physical models. Systematical numerical tests show that the present models can reasonably simulate the wave transformation, such as shoaling, refraction, diffraction, reflection, effect of currents and so on. So the present models are
    
    
    
    able to be used in coastal engineering with complicated boundary shapes extensively.
    Secondly, a mathematical model suitable to large coastal region is developed, whose governing equations are deduced from the mild slope equation with dissipation terms and discretized with Crank-Nicolson scheme. This model is accurate and easy to be applied. The numerical tests show that the results of numerical solution are consistent with those of corresponding analytical solution and physical models. Being utilized in the wave propagation for Nan Gang of Yangtze River Estuary, this model can give good results of numerical simulation by effectively reflecting the influence of complicated topography which is comprised of shoal-channel spaced in between. So it can be applied to large areas.
    In the end, in view of the fact that Boussinesq-type equations and the mild slope equations are deduced from different hypothesis conditions and behave differently in simulation of wave propagation, the numerical results of wave propagation effected by strong non-linearity are given by the nonlinear three-dimensional mathematical model which was established for the calculation of 3-D wave particle velocity and wave pressure and suitable to small size waters of arbitrarily varying depth. The model for non-linear long wave and the mild slope equation are respectively applied to simulation wave propagation
    on a classical topography for small size waters-submerged shoal with concentric
    contours. The differences between them in wave propagation are got through comparing the numerical solutions. And the results are accordant with actual cases.
引文
[1] Lamb, H, 1932. Hydrodynamics. Cambridge University Pree.
    [2] Stocker, J. J., 1957. Water Waves. Interscience Publishers, Inc., NewYork.
    [3] Mei, C. C., 1983, The Applied Dynamics of Ocean Surface Wave. John Wiley, NewYorK.
    [4] Crapper, G. D., 1984. Introduction to Water Waves, John Wiley & Sons, Ellishorwood Limited.
    [5] Whitham, G. B., 1974, Linear and Non-linear Waves. Wiley-Int.
    [6] 文圣常,余宙文,1984,海浪理论和计算原理,北京:科学出版社。
    [7] Berkhoff, J. C. W.,1972, Computation of Combined Refraction-Diffraction, Proc. 13 th Conf. on Coastal Eng.,ASCE, Vancouver, Canada, Vol. 1,471-490。
    [8] Booij, N.,1981, Gravity Waves on Water With Non-uniform Depth and Current, Delft University of Tech.,Delf. Civil Eng.,Rep.,81-1.
    [9] 左其华等,1993,底摩阻地形上的波浪折射和绕射,港口工程,1,35—40。
    [10] 洪广文,1993,波浪折射—绕射数学模型,第七届全国海岸工程学术讨论会论文集,北京:海洋出版社,808-815。
    [11] Kirby, J.T. and Dalymple, R.A.,1986, Modelling Waves in the surfzones and around islands, J. Waterway, Port, Cosatal, and Ocean Engineering, ASCE, 112(1),78-93.
    [12] Kirby, J.T.,1986, A General Wave Equation for Waves Over Ripped Beds, J. Fluid Mech.,162, 171-186.
    [13] Massel, S.R., 1993, Extended Refraction-Diffraction Equation for Surface Waves, Coastal Eng.,19,97-126.
    [14] Suh, K.D., et. al., 1997, Time-dependent Equations for Wave Propagation on Rapidly Varying Topography, Coastal Eng., 32,91-117.
    [15] Zhang L., Edge B. L., 1996, A Uniform Mild-Slope Model for Waves over Varying Bottom, proc. 25th Int. Conf. on Coastal Eng., ASCE, New York, 941-954.
    [16] Huang H., Zhou X. R., 2001, On the Resonant Generation of Weakly Nonlinear Stokes Waves in Regions with Fast Varying Topography and Free Surface Current. Applied Mathematics and Mechanics, 22(6),730-740.
    [17] Ehrenmark, U. T., Williams, P.S., 2001, Wave Parameters Tuning for the Application of the Mild-Slope Equation on Steep Beaches and in Shallow Water, Coastal Eng., 42, 17-34.
    [18] Hedges, T.S., 1976, An Empirical Modification to Linear Wave Theory, Proc. Inst. Civ. Eng.,61,575-579.
    
    
    [19] Kirby, J.T., Dalymple, R.A.,1986, An Approximate Model for Nonlinear Dispersion in Monochromatic Wave Propagation Models, Coastal Eng.,9,545-561.
    [20] Isobe, M., 1994, Time-dependent Mild-slope Equations for Random Waves, Proc. 24th Int. Conf. on Coastal.Eng., ASCE, NewYork, 285-299.
    [21] Tang, Y. Outllet, Y., 1997, A New Kind of Nonlinear Mildslope Rquation for Combined Refaraction-Diffraction of Multifrequency Waves, Coastal Eng., 31,3-36.
    [22] Huang H., Ping P. X., Lu X. H., 2001, Nonlinear Unified Equations for Water Waves Propagation over Uneven Bottoms in the Near Shore Region. Progress in Natural Science, 11(10), 746-753.
    [23] Yu, X., Togashi, H., 1994, Irregular Waves Over an Elliptic Shoal, Proc. 24th Conf. on Coastal Eng., ASCE, New York, 746-760.
    [24] Radder, A. C., Dingemans, M. W., 1985, Canonical Equations for Almost Periodic Weakly Nonlinear Gravity Waves, Wave Motion, 7. 473-485.
    [25] 张永刚,李玉成,滕斌,1996,一个新的非恒定不规则波缓坡方程,海洋工程,14 (4),30—37.
    [26] 蒋德才,台伟涛,楼顺里,1993,海浪能量谱的折绕射研究,海洋学报,15(2),84—96。
    [27] 蒋德才,台伟涛,楼顺里,1993,海浪能量谱的折绕射研究Ⅱ,海洋学报,15(5),120-129.
    [28] Liu, P.L.-F.,1983, Wave-Current Interactions on a Slowly Varying Topography, J. Geophys. Res.,88(c7),4421-4426.
    [29] Kirby, J. T., 1984, A Note on Linear Surface Wave-Current Interactions Over Slowly Varying Topography, J. Geophys. Res.,89(c1),745-747.
    [30] Hong Guangwen, 1996, Mathematical Models for Combined Refraction-Diffraction of Waves on Non-uniform Current and Depth. China Ocean Eng.,10(4),433-454.
    [31] Panchang, V.G., Pearce, B.R.,1991, Solution of the Mild-Slope Wave Problem by Iteratioa, Applied Ocean Research, 13(4),187-199.
    [32] Radder, A.C.,1979, On the Parobolic Equation Method for Water-Wave Propagation, J. Fluid Mech.,95,159-176.
    [33] Panchang, V.G.,et. al.,1988, Combined Refraction-Diffraction of Short-Waves in Large Coastal Regions, Coastal Eng., 12,133-156.
    [34] Li, b.,Anastasiou, K., 1992, Efficient Elliptic Solvers for the Mild Slope Equation Using the Multigrid Technique, Coastal Eng.,16,245-266.
    [35] Copeland, G. J. M., 1985, A Practical Alternative to the "Mild-Slope" Wave Equation, Coastal Eng.,9,125-149.
    [36] Ito, Y. and Tanimoto, K.,1972, A Method Numerical Analysis of Wave Propagation Application to Wave Refraction and Diffraction, Proc. Conf. Coastal Eng., 13th,
    
    Chapter 26,503-522.
    [37] Li, B., 1994, An Evolution Equation for Water Waves, Coastal Eng.,23,227-242.
    [38] Pan Junning, Zuo Qihua and Wang Hongchuan, 2000, Efficient Numerical Solution of the Modified Mild-Slope Equation, China Ocean Eng.,14(2),161-174.
    [39] Ebersole, B. A., 1985, Refraction-Diffraction Model for Linear Water Waves, J. Waterway, Port, Coastal and Ocean Eng., 111(6),939-953.
    [40] 林钢,邱大洪,1999,新抛物型缓底坡波动方程,水利学报,3,59—63。
    [41] 陶建华,韩光,龙文,1999,浅水区大面积波浪场数值计算方法的研究,第九界全国海岸工程学术讨论会论文集,北京:海洋出版社.17—24。
    [42] 洪广文,冯卫兵,夏期颐,潘少华,1997,缓变水深和流场水域波浪折射、绕射数值模拟,第八届全国海岸工程学术讨论会论文集(下),北京:海洋出版社,703-714。
    [43] 洪广文,冯卫兵,张洪生,1999,海岸河口水域波浪传播数值模拟,河海大学学报,27(2),1-9。
    [44] Zhang Hongsheng, Hong Guangwen, Dingpingxing, 2001, Numerical Simulation of Nonlinear Wave Propagation in Water of Mildly Varying Topograpahy With Complicated Boundary, China Ocean Engineering, 15(1), 37-52.
    [45] 郑永红,沈永明,邱大洪,2000,近岸大区域水波数学模型及其数值求解,海洋学报,22(5),106-114.
    [46] Li Rujie, Lee Dong-Yong, 2000, Nonlinear Dispersion Effect on Wave Transformation, China Ocean Eng., 14(3),375-384.
    [47] 赵明,滕斌,2002,椭圆型缓坡方程的一个有效的有限元解,海洋学报.24(1),117-123。
    [48] Liu, P.L.F., Bolssevain, P.L., 1988, Wave Propagation Between Two BreakWaters, J. Waterway, Port, Coastal and Ocean Eng., 114(2), 237-247.
    [49] Kirby, J.T., 1988, Parabolic Wave Computations in Non-orthogonal Coordinate Systems, J. Waterway, Port, Coastal and Ocean Eng., 114(6),673-685.
    [50] Xu, B.,Panchang, V.,Demirbilek, Z., 1996, Exterior Reflections in Elliptic Harbor Wave Models, J. Waterway, Port, Coastal and Ocean Eng., 122(3),118-126.
    [51] Kirby, J.T.,Dalrymple, R.A.,Kabu, H.,1994, Parabolic Approximation for Water Waves in Conformal Coordinate Systems, Coastal Eng.,23,185-213.
    [52] 李孟国,张大错,1996,浪致近岸水位变化及流场的数值计算,海洋学报,18(4),96-113。
    [53] 丁平兴,史峰岩,孔亚珍,1998,非均匀流场中随机波折射—绕射的数值计算,华东师范大学(自然科学版),第一期,82-87。
    [54] Booij, N.,1983, A Note on the Accuracy of the Mild-Slope Equation, Coastal Eng.,7, 191-203.
    [55] Kirby, J.,T., 1989, A Note on Parabolic Radiation Boundary Conditions for Elliptic Wave Calculations, Coastal Eng., 13, 211-218.
    
    
    [56] Boussinesq, 1872, Theory of Wave and Swells Propagated in Long Horizontal Rectangular Canal and Imparting tothe Liquid Contained in this Canal, J. Mathematiques Pures et Appliquees, 17(2),55-108.
    [57] Kuller, J. B., 1948, The Solitary Wave and Periodic Waves in Shallow Water, Commun. Appl. Maths., 1,323-339.
    [58] Peregrine, D.H., 1967, Long Waves on a Beach Slope, J. Fluid Mech.,27(4),815-827.
    [59] Witting, J.M., 1984, A Unified Model for the Evolution of Nonlinear Water Waves, J. Computational Fhys., 56, 203-236.
    [60] Mei, C. C., Blackman, D. R., 1989, The extension of Boussinesq Type Equations to Modelling Short Waves in Deep Water, Pnx, 9th Australiar on Coastal and Ocean Eng., 412-416.
    [61] Murray, R.J., 1989, Short Wave Modelling Using New Equations of Boussinesq Type, Proc. of the 9th Australasian Conf. on Coast. And Oc. Eng., Institution of Eng., Adelaide, Australia, 1989, 331-336.
    [62] Madsen, P. A., Murray, R., Sorensen, O.R., 1991, A New Form of the Boussinesq Equations with Improved Linear Dispersion Characteristics, Coastal Eng., 15, 371-388.
    [63] Madsen, P. A.,Sorensen, O.R.,1992, A New Form of the Boussinesq Equations With Improved Linear Dispersion Characteristics, Part 2:A Slowly-Varying Bathymetry, Coastal Engineering, 18,183-204.
    [64] Nwogu, O., 1993, Alternative Form of Boussinesq Equations for Nearshore Wave Propagation, J. Waterway, Port, Coast. and Oc. Eng., ASCE, 119(6),618-638.
    [65] Beji, S. and Nadaoka, K., 1996, A Formal Derivation and Numerical Modelling of the Improved Boussinesq Equations for Varying Depth, Ocean Engineering, 23(8),691-704.
    [66] 张永刚.李玉成,1997,促进其线性频散特性另一种形式的Boussinesq方程,力学学报,29(2),142-149。
    [67] Hemming, A.,Schaffer, H. A., Madsen, P. A., 1995, Further Enhances of Boussinesq-Type Equations, Coastal Engineering, Vol. 26, 1-14.
    [68] Madsen, P. A., Schaffer, H. A., 1998, Higher-Order Boussinesq-Type Equations for Surface Gravity WavesDerivationand Analyses, To Appear in Transactions of the Royal Society A., London.
    [69] Zou Zhili, 2000, A New Form of Higher Order Boussinesq Equations, Ocean Eng.,27,
    
    557-575.
    [70] Gobbi, M. F., Kirby, J.T., 1996, A Fourth Order Boussinesq-Type Model, Proc. of 25th Conf. on Coastal Eng., Orlando, FL, 1116-1129.
    [71] Madsen, P.A. et al., 1996, Boussinesq Type Equations with High Accuracy in Dispersion and Nonlinearity, Proc. of the 25th International on Coastal Engineering, Orlando, FL, 95-109.
    [72] Wei, G., et. al., 1995,A Fully Nonlinear Boussinesq Model for Surface Waves, Partl, Highly Nonlinear Unsteady Waves, J. Fluid Mech., 294,71-92.
    [73] 林建国,邱大洪,1998,二阶非线性与色散性的Boussinesq类方程,中国科学(E辑),28(6),567-573。
    [74] Hong Guangwen, 1997, High-order Models of Non-Linear and Dispersive Wave in Water of Varying Depth with Arbitrary Sloping Bottom, China Ocean Engineering, 11(3), 243-260.
    [75] 洪广文,1997,任意水深变化水域非线性波传播模型,第8届全国海岸学术讨论会论文集(下),北京:海洋出版社,519-526。
    [76] 李玉成,张永刚,1997,应用Boussinesq型方程方程对非线性波与流相互作用的理论研究,水动力学研究与进展,1996,11(2),205—211。
    [77] Yoon, S.B.,Liu, P.L.-F.,1989, Interactions of Currents and Weakly Nonlinear Water Waves in Shallow Water, J. Fluid Mech.,1989,205,397-419.
    [78] Chert, Y., Liu, P.L.-F., 1995, Modified Boussinesq Equations and Associateds Parabolic Model for Wave Propagation, J. Fluid Mech., 288, 351-381.
    [79] Chen, Q.,et a1.,1998, Wave-Current Interaction Based on an Enhanced Boussinesq Approach, 33,11-39.
    [80] Abbott, M. B. et al., 1978, On the Numerical Modeling of Short Wave in Shallow Water, J. Hydraulic Res., Vol.16(3),173-203.
    [81] Abbott, M. B., McCowan, A.D., Warren, I. R., 1984, Accuracy of Short-Wave Numerical Model, J. Hydraulic Eng., 110(10),1287-1301.
    [82] Madsen, P. A. and Warren, I.R., 1984, Perfomance of a Numerical Short-Wave Models, Coastal Engineering, 8, 73-93.
    [83] Mccowan, A. D., 1985, Equation Systems for Modeling Dispersive Flow in Shallow Water, Proc. 21st IAHR congr. Melbourne, Australia, 51-57.
    [84] Mccowan, A. D., 1987, The Range of Application of Boussinesq Type Numerical Short
    
    Wave Models, Proc. 22nd IAHR Congr. Lausanne, Switzerland, 379-384.
    [85] Mccowan, A. D., Blackman, D.R., 1989, The Extension of Boussinesq Type Equations to Modelling Short Waves in Deep Water, Proc. 9th Australasian Conf. on Coast. and Oc. Eng.,Adelaide, Australia, 412-416.
    [86] Zhang Hongsheng, Hong Guangwen, Ding Pingxing, 2001, Numerical Simulation of Standing Waves with Three-Dimensional Nonlinear Wave Propagation Model, China Ocean Eng., 15 (4), 521—530。
    [87] 洪广文,张洪生,1999,任意水深变化水域非线性波传播的数值模拟,海洋工程,第17卷第4期,64—73。
    [88] 张洪生,2000,非线性波传播的数值模拟,南京:河海大学博士学位论文。
    [89] 朱良生,洪广文,1999,任意水深变化水域非线性不规则波传播模型,第九界全国海岸工程学术讨论会论文集,北京:海洋出版社,33—42。
    [90] 朱良生,1998,近岸非线性性不规则波传播模型,南京:河海大学博士学位论文。
    [91] Chen Yang, Sun Jingshi, 1999, Numerical Simulation of Waves Field at Kemena River Mouth in Kalimantan Island, China Ocean Engineering, 13(2),217-224。
    [92] 邹志利,徐本和,1997,求解Boussinesq型水波方程的数值模型:对比与验证,第八届全国海岸工程学术讨论会论文集(下),739—744,北京:海洋出版社。
    [93] 柳淑学,俞玉修,赖国璋,李毓湘,1999,浅水波浪传播的数值模拟,第九届全国海岸工程学术讨论会论文集(下),119—126北京:海洋出版社。
    [94] 刘桦,Wu,T.Y.,1999,非线性弱色散波内部流场的重构,海洋工程,17(1),93-97。
    [95] Shi Fengyan, et. al.,2001, A Fully Nonlinear Boussinesq Model in Generalized Curvilinear Coordinates, Coastal Eng.,42, 337-358.
    [96] Brackbill, J.U. Saltzman, J. S., 1982, Adaptive Zoning for Singular Problems in Two Dimensions, J. Computation Physics, 46,342-368.
    [97] 刘卓,曾庆存,1994,自适应网格在大气海洋问题中的初步应用,大气科学,18(6),641-648。
    [98] Shi Fengyan, Zheng Lianyuan, 1996, A BFG Model for Calculation of Tidal Current and Diffusion of Pollutants in Nearshore Areas, 15(3), Acta Oceanological Sinica, 283-296.
    [99] Sheng, Y. P., 1986, Modelling Coastal Estuarine Processes Using Boudary-Fitted Grids, Proceedings 3rd Intl Symposium on River Sedimentation, 1416-1442.
    [100] 史峰岩,孔亚珍,丁平兴,1998,潮滩海域边界适应网格潮流数值模型,海洋工程,16(3),
    
    68-75。
    [101] Shi Fengyan, Sun Wenxin, Wei Gengsheng, 1995, A Variable Boundary Model of Storm Surge Flooding in Generalized Curvilinear Grids, Int. J. Numer. Methods Fluids 21, 641-651.
    [102] Shi Fengyan, Ding Pingxing, Kong Yazhen, 1999, Numerical Tidal Current Modeling Using Fine Boundary-Fitted Grids for Tidal Flats, China Ocean Eng., 13(2), 115-124.
    [103] 张洪生,1991,有限水深非线性船行波的数值模拟,南京:河海大学硕士学位论文。
    [104] Berkhoff, J. C.W., Booij, N., and Radder, A. C., 1982, Verification of Numerical Wave Propagation Models for Simple Harmonic Water Waves, Coastal Eng., 6, 255-279.
    [105] Edward K. Noda, 1974, Wave Induced Nearshore Circulation, J. Geophysical Research, 79(27), 4097-4106.
    [106] Isobe, M., 1986, A Parabolic Refraction-Diffraction Equation in the Ray-Front Coordinate System, Proc. 20th International Coastal Eng. Conf., Taipei, 306-317.
    [107] Memos, C. D., 1976, Diffraction of Waves Through a Gap Between Two Inclined Breakwaters, Thesis Presented to the University of London, London, England in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy.
    [108] Memos, C. D., 1980, Water Waves Diffracted by Two Breakwaters, J. Hydraulic Res., 18(4),343-357.
    [109] Dalrymple, R. A., Kirby, J.T., Martin, P.A., 1994, Spectral Methods for Forward-Propagating Water Waves in Conformally-Mapped Channels, Appl. Ocean Res.,16,249-266.
    [110] Arthur, R.S., 1950, Refraction of Shallow Water Waves: Combined Effect of Currents and Topography, Trans. Amer. Geophys. Union, 31,549-552.
    [111] 孙钠正,陆祥璇。李竞生,1989,科学和工程中的偏微分方程数值解法,北京:煤炭工业出版社。
    [112] Whalin, R.W., 1972, Wave Refraction Theory in a Convergence Zone, Proc. 13th Conf. Coastal Eng., Vancouver, ASCE, Vol. 1, 451-470.
    [113] 洪广文等,1998,长江口水域浅水变形计算,南京:河海大学海岸及海洋工程研究所。
    [114] Larsen, J. And H. Dancy, 1983, Open Boundary in Short Wave Simulation—A New
    
    Approach, Coastal Engineering, 7, 285-297.
    [115] Sommerfeld, A. 1949, Partial Differential Equations: Lectures in Theoretical Physics, Vol. 6, Academic Press.
    [116] Roed, L.P., Cooper, C.K., 1985,Open Boundary Conditions in Numerical Ocean Models, Advanced Physical Oceanographic Numerical Modelling, 411-436, reidal Publishing Company.
    [117] Tanimoto, K. Kobune, K., 1975, Computation of Waves in a Harbor Basin by a Numerical Wave Analysis Method, Proc. of 22nd Japanese Conf. on Coastal Eng., JSCE, 249-253.?
    [118] Enquist, B., Majda, A., 1977, Absorbing Boundary Condition for the Numerical Simulation of Waves, Math. Comp., 31,629-651.
    [119] Higton, R. L., 1987, Numerical Absorbing Boundary Conditions for the Wave Equations, Math. Comp., 49,65-90.
    [120] Madsen, P.A., 1983, Wave Reflection from a Vertical Permeable Wave Absorber, Coastal Eng.,7,381-396.
    [121] Israeli, M., Orszag, S. A., 1981, Approximation of Radiation Boudary Conditions, J. Comp. Phys., 41,115-135.
    [122] Orlanski, I., 1976, A. Simple Boundary Condition for Unbounded Hyperbolic Flows, J. Comp. Phys.,21,251-269.
    [123] 洪广文,朱庆,1987,非线性三维波波要素的计算方法,海洋工程,Vol,5(3),41-53.
    [124] 洪广文,1980,关于重力表面波非线性相互作用,海洋学报,Vol.2(2),158-180.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700