用户名: 密码: 验证码:
可重构模块机器人构形优化与自抗扰控制方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着机器人技术的不断发展与成熟,现代化高性能机器人的应用领域正在不断扩大。从传统的工业生产、产品制造,到深空、深海探测、危险或恶劣条件作业等方面均有着大量应用与显著成效。与此同时,在一些特定的环境中,固定构形的机器人需要针对具体工作任务,改变相应参数来进行整体设计,以便完成不同的任务。然而,在实际任务中,外界环境经常是未知多变的,如核电站、月球空间站、深海极地研究站等,想要设计一种固定构形的机器人系统用来完成诸多任务是非常困难甚至是不可能的。因此,我们迫切需要一种能够通过改变参数来进行重构,从而能够适应不同任务的机器人。可重构模块机器人即为一类可依据不同任务需要及外界条件的改变而改变自身构形的机器人。通过模块间的重组,可重构模块机器人可以简单快速的装配成不同的构形,以便适应不同的外界环境及任务需要。这种模块的重构包括机械结构的重组以及控制系统的重构。重构后的机器人具备良好的柔性,且能够适应新的工作及任务。可重构模块机器人的研究内容非常丰富,如可重构模块机器人的构形自动生成,优化与评价方法;逆运动学求解方法;模型分解后的不确定性及交联项的处理;故障辨识及容错控制方法等等。因此,对可重构模块机器人进行更为深入的研究有着深远的理论与实际意义。
     本文对可重构模块机器人构形自动生成,优化与评价方法进行讨论与研究,并建立了动力学模型。针对机器人动力学轨迹跟踪控制问题提出了基于ESO的反演分散控制方法及基于VGSTA-ESO的滑模分散自抗扰控制方法。全文的主要工作及研究内容如下:
     首先,对可重构模块机器人的模块单元进行了划分与设计,并定义了模块链接方式。在此基础上提出了一种新的构形描述方法——构形联结矩阵。通过基于多目标的遗传-模拟退火算法对构形的可达性及位姿最优性进行优化与评价,实现了构形的自动生成,并求出达到任务点的最优解。并采用牛顿-欧拉迭代算法,通过对广义速度、广义加速度进行正向迭代,及广义力的反向迭代可以求得一组迭代形式的牛顿-欧拉方程,由此得出可重构模块机器人的动力学模型。
     其次,文中基于Lyapunov稳定性理论和反演技术,提出了一种基于ESO的可重构模块机器人反演滑模分散控制方法。针对可重构模块机器人重复运动性质和非线性强耦合性,基于反演方法设计了滑模分散控制器。由于可重构模块机器人构形频繁变化,求解精确子系统动力学模型是非常困难的,为了解决该问题,利用ESO估计子系统模型不确定项和交联项。通过Lyapunov稳定性理论的证明,确保了系统的稳定性与轨迹跟踪性能。
     再次,基于VGSTA算法与自抗扰控制理论,文中提出了一种基于新型ESO的可重构模块机器人滑模分散自抗扰控制方法。该方法不再依赖于固定形式的非线性函数,而是将VGSTA算法与ESO相融合,对系统总体不确定项进行估计,估计误差可以在有限时间内收敛为零。针对可重构模块机器人重复运动性质和非线性强耦合性,通过终端滑模及反演方法设计了滑模分散自抗扰控制器。由于可重构模块机器人构形是不断变化的,因此求解精确的子系统动力学模型非常困难,为了解决该问题,利用新型ESO估计子系统模型不确定项和交联项。通过Lyapunov稳定性理论的证明,确保了新型ESO的稳定性与系统轨迹跟踪性能。并在此基础上,将总体不确定项合理的划分成更为细致的部分,采用不同的方法对每个部分分别进行处理。这种方法不但能够有效的提高系统的响应速度,而且能够更好的跟踪期望轨迹,增强系统的稳定性。通过对两个不同构形的可重构模块机器人的数值仿真,进一步验证了提出的分散自抗扰控制方法的有效性。
     最后,作者对全文进行总结,结合自身的研究经验与心得,对今后的研究方向与路线进行了展望。
With the continuous development and maturity of robot technology, the applicationsof modern high-performance robot are expanding. The aspects of traditional industrialproduction, manufacturing, deep space exploration, deep-sea exploration, dangerous andadverse conditions of operations and so on have large numbers of applications withremarkable results. At the same time, in a certain environment, fixed configuration of therobots need to change the corresponding parameters for the specific tasks to the overalldesign in order to perform different tasks. However, the external environment is oftenunknown and varied in the actual task such as nuclear power stations, lunar space station,deep sea polar research station and so on. And the design of a fixed configuration robotsystem which is used to accomplish many tasks is very difficult or even impossible.Therefore, we urgently need a kind of robot which can adapt to different tasks bychanging the parameters to be reconstructed. Reconfigurable manipulator is a kind ofmanipulator which can change its configuration according to the variety of the task orenvironment. Through combine the modules, reconfigurable manipulator can beassembled into a suitable geometric configuration simply and quickly that adapt todifferent tasks. This kind of combination is not only includes a simple mechanicalreconstruction, but also the recombination of control system. After reconstruct, themanipulator is competent for new working environments and tasks, and also possesses agood flexibility. Although the study of reconfigurable modular robot has beenconsiderable part of the outcome, there are still many challenging issues to be furtherin-depth study. Such as the configuration automatically generation, optimization andevaluation methods of reconfigurable modular robot; solving method of inversekinematics; processing of model of the unknown dynamics of subsystem andinterconnection term; fault identification and fault-tolerant control method, and so on. So,there are far-reaching theoretical and practical significance of more in depth study ofreconfigurable modular robot.
     In this paper, the problems of reconfigurable modular robots have been researched.Through establishing the dynamic model, automatic generation of reconfigurable modularrobot configuration, optimization and evaluation methods have been discussed. And forthe robot dynamics trajectory tracking control problem, a backstepping decentralizedcontrol method based on ESO and sliding mode decentralized ADRC control methodbased on VGSTA-ESO have been proposed. The full text of the work and research are asfollows:
     Firstly, a new multi-objective-based configuration auto-generation, optimization and evaluation method was proposed for reconfigurable modular robot. The modules of robotwere assigned and designed, and the way of module link was defined. Genetic-simulatedannealing algorithm was used for the automatic generation of configuration andmulti-objective optimization. The resulting configuration is described by configurationcoupling matrix. Then base on rigid body Newton-Euler iterative algorithm, a iterativeNewton-Euler function of the system is built by iterative of generalized velocitygeneralized acceleration and inverted iterative of generalized force. The dynamicsfunction of reconfigurable and modular robot is set up.
     Secondly, Based on Extended State Observer (ESO) and Lyapunov stability theory, abackstepping sliding mode decentralized control algorithm for reconfigurablemanipulators is proposed. For the nature of repetitive motion and nonlinear strongcoupling of reconfigurable manipulator, the backstepping technology is used to design thesliding mode decentralized controller. Because of the configuration of reconfigurablemanipulator has been changed frequently so that it is very difficult to solve the exactsubsystem dynamics model. ESO is used to model the unknown dynamics of subsystemand the interconnection term can be constructed using the state estimations. The stabilityof system and trajectory tracking performance have been proved by Lyapunov stabilitytheory.
     Thirdly, a new ESO based decentralized ADRC control scheme for reconfigurablemanipulators is proposed. This method no longer depends on nonlinear function withfixed form. It combines VGSTA with ESO to estimate the overall uncertainty, and theestimation error can converge to zero in finite time. In view of the nature of repetitivemotion and strong coupling of nonlinear of reconfigurable manipulators, we design adecentralized sliding mode ADRC controller by terminal sliding mode and backsteppingscheme. Because the configuration of reconfigurable manipulators is variable, thus it isdifficult to solve the exact dynamic model of the subsystem. To solve this problem, weuse VGSTA-ESO to estimate the uncertainty items of subsystems and interconnectionterms. By Lyapunov stability theory, we prove that the system of VGSTA-ESO has thestability and tracking performance. This approach will not only effevtively improve thesystem response speed, but also track the desired trajectories better, and enhance thestability of the system. Then, simulation examples are presented to illustrate theeffectiveness of the proposed decentralized ADRC control scheme.
     Finally, the results obtained and the lessons learned are summarized, and future workis discussed.
引文
[1] Schmitz Donald, Khosla Pradeep, Kanade Takeo. The CMU reconfigurable modularmanipulaor system[C]. Proceedings of the international Symposium and Expositionon Robots.1988,473-488.
    [2] Wurst K H. The conception and construction of a modular robot system[C].Proceedings of the16th International Symposium on industrial Robotics. IS IR,1986,37-44.
    [3] PAREDIS C J J, KHOSLA P K. A rapidly deployable manipulator system[J].Robotics and Autonomous Systems,1997,21(3):289-304.
    [4] PAREDIS C J J. An Agent-Based approach to the design of rapidly deployable faulttolerant manipulators[D]. Pittsburgh: Carnegie Mellon University,1996.
    [5] Fukuda Toshio, Nakagawa Seiya. Dynamically reconfigurable robotic system [C].Proceedings IEEE conference on Robotics and Automation,1988,3:1581-1586.
    [6] I. M. Chen, J. W. Brudick. Determining task optimal modular robot assemblyconfiguration [J]. IEEE,1995(1):132-137.
    [7] Fukuda T, Nakagawa S, Kawauchi Y. Self organizingrobots based on cell structuresCEBOT[C]. Proceedings of the IEEE International Conference on IntelligentRobots and Systems.1988:145-150.
    [8] Kawauchi. Dynamically reconfigurable intelligent system of cellular roboticsystem(CEBOT) with rntropymin/max hybrid algorithm[C]. Proceedings IEEEConference on Robotics and Automation,1994:464-469.
    [9] T. Fukuda, M. Buss, Y. Kawauchi. Communication system of cellular robot[J].IEEE,1989:634-639.
    [10] Gregory. Kinematics of a metamorphic robotic system[C]. Proceedings IEEEconference on Robotics andAutomation,1994:449-455.
    [11] Mark Yim, David G. Duff, Kimon D. Roufas. Walk on the wild side[J]. IEEE,2002(12):49-54.
    [12] Castano A, Shen W, Will P. CONRO: Towards deployable robots with inter-robotmetamorphic capabilities[J].Autonomous Robots Journal,2000,(8)3:309-324.
    [13] H. Benjamin Brown, Jr. J. Michael VandeWeghe, Curt A. Bererton, Pradeep K.Khosla. Millibot trainsfor enhanced mobility[J]. IEEE,2002,7(4):452-461.
    [14]徐威,姜文华,王石刚.自重构机器人的体系结构与分类研究[J].制造业自动化,2003,25(7):30-33.
    [15]费燕琼,徐卫良,赵锡芳.模块机器人的研究[J].机器人,1998,20(4):311-315.
    [16]赵杰,张亮,蔡鹤皋.一种均一阵列式模块化自重构机器人的机构设计研究[J].智能工程,2003(4):56-59.
    [17]郑浩峻,李铁民,王立平.可重构模块机器人树状拓扑结构[J].清华大学学报(自然科学版),2002,42(11):1480-1483.
    [18]李树军,张艳丽,赵名扬.可重构模块化机器人模块及构形设计[J].东北大学学报(自然科学版),2004,25(1):78-81.
    [19]李斌,董慧颖,白雪.可重构模块机器人研究和发展现状[J].沈阳工业学院学报,2002,19(4):68-72.
    [20]刘明尧,谈大龙,李斌.可重构模块化机器人现状和发展[J].机器人,2001,23(3):275-279.
    [21]陈丽,王越超,李斌.蛇形机器人研究现况与进展[J].机器人,2002,24(6):559-563.
    [22]李斌,吴镇炜,谈大龙,王越超.可重构模块机器人的技术探讨[J].信息与控制,2001,30(7):1525-1530.
    [23] Mingyao Liu, Dalong Tan, Wenshu Jiang. Distributed Position Control Method fora Hyper-redundant Modular Manipulator. Proceedings of the4th World Congresson Intelligent Control and automation, June10-14,2002, Shanghai, P. R. China,1251-1254.
    [24]刘明尧,谈大龙,李斌,邹立.基于多Agent可重构模块机器人控制方法的研究.中国机械工程,2002,13(20):1737-1340.
    [25] Benhabib B, DaiM. Mechanical design of a modular robot for industrial appcations.Journal of Manufactueing Systems,1991,10(4):297-306.
    [26] Paredis C J J, Brown H B, Khosla P K. A rapidly deployable manipulator system.IEEE, On Robotics and utomation,1996:1434-1439.
    [27] Fujita M, Kitano H, Kageyama K. A reconfigurable robot platform. Robotics andAutonomous Systems,1999,29:119-132.
    [28] Fukuda T, Nakagawa S. Dynamically Reconfigurable Robotic System. IEEE Procof Int Conf On Robotics and Automation,1998:1581-1586.
    [29] Gertz M W, Khosla P K. Onika: A multilevel human-machine interface for real timesensor-based systems. A SCE/SPACE94: The4th Intel Conf And Expo OnEngineering, Construction and Operations in Space,1994.
    [30] Habibi S R, Goldenberg A A. Design and control of a reconfigurable industrialhydraulic robot. IEEE Proc of Int Conf On Robotics and Automation,1995:2206-2211.
    [31] Han J, Chung W K, Youm Y, Kim S H. Task baesd design of modular robot manipulator using efficient genetic algorithm. IEEE Proc of Int Conf, On Robo ticsand Automation,1997:507-512.
    [32] Harrison R, Weston R H, Moore P R, Thatcher T W. A study of application a reasfor modular robots. Robotica,1987,5:217-221.
    [33] Hui R, Kircanski N, Goldenberg A, Zhon C, Kuzan P, Wiercienski J, Gershon D,Sinha P. Design of the IRIS facility: a modular, reconfigurable and expandablerobot test bed. IEEE Proc of Int Conf On Robotics and Automation,1993:155-160.
    [34] Chen I, Yang G. Configuration independent kinematics for modular robots. IEEEProc of Int Conf On Robotics and Automation,1996:1440-1445.
    [35] Chen I, Yang G. Automatic model generation for modular reconfigurable robotdynamics. Transactions of the ASME Journal of Dynamic Systems, Measurement,and Control,1998,120:346-352.
    [36] Chen I, Burdick J. Determining task optimal modular robot assembly configurations.IEEE Proc of Int Conf On Robotics and Automation,1995:132-137.
    [37] Chen I, Song H, Guang C. Kernel for modular robots applications: automaticmodeling techniques. The International Journal of Robotics Research,1999,18(2):225-242.
    [38] Paredis C J J, Khosla P K. Kinematic design of serial link manipulators from taskspecification. The International Journal of Robotics Research,1993,12(3):274-287.
    [39]王卫忠.可重构模块化机器人系统关键技术研究.2007.
    [40] Benhabib B, Zak G, LiptonM. A generalized kinematic modeling method formodular robots. Journal of Robotics Systems,1989,6(5):545-571.
    [41]李英,朱明超,李元春.可重构模块机器人鲁棒模糊神经补偿控制仿真研究[J].系统仿真学报,2007,19(22):5169-5174.
    [42]董博,赵博,李元春.基于ESO的可重构机械臂反演滑模分散控制[C].中国控制会议,2011:3985-3989.
    [43]董文瀚,孙秀霞,林岩.反推自适应控制的发展及应用.控制与决策,2006,21(10):1081-1102.
    [44] Feuer A, Morse A S. Adaptive control of single-in-put, Single-output LinearSystems[J]. IEEE Trans on Automatic Control,1978,23(4):557-569.
    [45] Kanellakopoulos I, Kokotovic P V, Morse A S. Systematic design of adaptivecontrollers for feedback linearizable systems[J]. IEEE Trans on Automatic Control,1991,36(11):1241-1253.
    [46] Krstic M, Kanellakopoulos I, Kokotovic P V. Nonlinear design of adaptivecontrollers for linear systems[J]. IEEE Trans on Automatic Control,1994,39(4):738-752.
    [47] Zhang Y, Wen C, Soh Y C. Adaptive backstepping control design for systems withunknown high-frequency gain[J]. IEEE Trans on Automatic Control,2000,45(12):2250-2254.
    [48] Faycal I, Kristic M. Robustness of the tuning functions adaptive backsteppingdesign for linear systems[J]. IEEE Trans on Automatic Control,1998,43(12):431-437.
    [49] Giri F, Arabeh, Ikhouane F. Backstepping adaptive control of time-varying plants[J].Systems and Control Letters,1999,36(4):245-252.
    [50] Marino R, Tomei P. Robust adaptive regulation of linear time-varying systems[J].IEEE Trans on Automatic Control,2000,36(7):1301-1311.
    [51] Yi Ling, Gang Tao. Adaptive backstepping control design for linear multivariableplants[A]. Proc of35th Conf on Decision and Control[C]. Kobe,1996:2438-2443.
    [52] Wu Y Q, Yu X H. Adaptive control of linear MIMO systems using backsteppingapproach[A]. Proc of the American Control Conf[C]. Philadelphia,1998:599-603.
    [53] Ramon R Costa, Liu H su, Alvaro KImai, etal. Adaptive backstepping controldesign for MIMO plants using factorization[A]. Proc of the American Control Conf
    [C]. Anchorage,2002:4601-4606.
    [54] Youping Z, Ioannou P A. A new linear adaptive controller: design, analysis andperformance[J]. IEEE Trans on Automatic Control,2000,45(5):883-897.
    [55] Youping Z. A new linear adaptive controller: robustness[A]. Proc of AmericanControl Conf [C].Chicago,2000:3671-3675.
    [56] Youping Z, Baris F, Ioannou P A. Backstepping control of linear time-varyingsystems with known and unknown parameters[J]. IEEE Trans on Automatic Control,2003,48(11):1908-1925.
    [57] Baris F, Youping Z, Ioannou P A. Adaptive control of a class of slowly timevarying systems with modeling uncertainties[J]. IEEE Trans on Automatic Control,2005,50(6):915-920.
    [58]解学军,吴昭景,张嗣瀛.具有未规范化自适应律的直接模型参考自适应反推控制器[J].控制与决策,2004,19(1):53-56.
    [59] Qu Z, Dorsey J F, Dawson D M. Model reference robust control of a class of SISOsystems[J]. IEEE Trans on Automatic Control,1994,39(11):2219-2234.
    [60] Ambrose H, Qu Z. Model reference robust control for MIMO systems[J]. Int JofControl,1997,68(3):599-623.
    [61] Benaskeur A R, Desbiens A. Backstepping-based adaptive PID control[J]. IEEEControl Theory Application,2002,149(1):54-59.
    [62] Lin Yan, Mao Jianqin. A robust VS-MRAC using switching scheme for the gain ofcontrol variables[J]. Int Jof Control,2001,74(3):225-238.
    [63]韩京清.自抗扰控制器及其应用[J].控制与决策,1998,13(1):19-23.
    [64] Chen Weihai, Yang Guilin. Interactive-motion control of modular andreconfigurable manipulators[C]. Proceedings of the IEEE/RSJ InternationalConference on Intelligent Robots and Systems. New York: IEEE Press,2003:1620-1625.
    [65] Lee W H. Dynamic analysis and distributed control of the tetrobot modularreconfigurable robotic system[J]. Autonomous Robots,2001,10(1):67-82.
    [66]朱明超,李英,李元春.基于观测器的可重构模块机器人分散自适应模糊控制[J].控制与决策,2009,24(3):429-434.
    [67] Huang Y, Han J Q. Analysis and design for nonlinear continuous extended stateobserver[J]. Chinese Science Bulletin,2000,45(13):1373-1379.
    [68] Huang Y, Luo Z W, Svinin M, Odashima T, Hosos S. Extended state observerbased technique for control of robot systems[C]. In: Proceedings of the4th WorldCongress on Intelligent Control and Automation. Shanghai, China: IEEE,2002.2807-2811.
    [69] Arie Levant. Universal single-input-output(SISO) sliding-mode controllers withfinite-time convergence[J]. IEEE Transactions on Automatic Control,2001,46(9):1447-1451.
    [70] Yuri B. Shtessel, Jaime A. Moreno, Franck Plestan, Leonid M. Fridman, AlexanderS. Poznyak. Super-twisting adaptive sliding mode control: a Lyapunov design[C].49th IEEE Conference on Decision and Control. Atlanta, USA,2010.5109-5113.
    [71]孙立明,姜学智,李东海.一类非线性对象的自抗扰控制器参数整定[J].自动化学报,2004,30(2):251-254.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700