用户名: 密码: 验证码:
不同浓度的葡萄糖和胰岛素对Colon26肿瘤细胞分泌免疫抑制物质的影响及其分子机制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:肿瘤和糖尿病已成为当今严重危害人类健康和生命的重大疾病,它们的发病率和死亡率逐年升高。近年来,越来越多的临床和流行病学资料显示,糖尿病人易患结直肠癌。糖尿病患者与非糖尿病患者比较,患结直肠癌的风险明显增加,已有人提出糖尿病是结直肠癌患病的独立危险因素。糖尿病患者结直肠癌的发病率明显高于非糖尿病患者,糖尿病人群中结直肠癌的复发率和死亡率亦明显增加。糖尿病与结直肠癌的关系已经成为备受人们关注的热点;研究和揭示两者之间的病理生理关系及其分子机制,已成为该领域中迫切需要进行探索的重要课题。
     肿瘤免疫学的研究已经揭示,肿瘤的发生、发展,不仅与机体的免疫功能密切相关,在某种意义上更与肿瘤细胞的免疫抑制作用密切相关。肿瘤细胞分泌免疫抑制物质抑制机体免疫功能,即肿瘤细胞的免疫抑制作用,是肿瘤细胞逃避机体免疫监视,使肿瘤得以发生和发展的重要机制,在促进机体肿瘤的发生、发展中具有极其重要的作用。肿瘤细胞通过其分泌的免疫抑制物质,不但有可能在远离肿瘤部位的机体其他部位发挥免疫抑制作用,更可在肿瘤局部形成深度免疫抑制区,即所谓“黑洞”区,以至于不仅使原本就在此区之中的原位免疫细胞功能严重受抑,而且还能使由此区之外进入其中的功能正常甚至已经活化的免疫细胞成为功能受抑的“沉默”细胞,从而使之失去有效清除肿瘤细胞的能力,显然这是在即使免疫功能完全正常的机体中肿瘤也能逃避机体免疫监视而得以发生和发展的重要机制。
     糖尿病重要的病理生理特征之一,就是患者血中葡萄糖和胰岛素水平的异常改变。现代医学也正是依据患者血中葡萄糖和胰岛素水平的异常改变,将糖尿病的自然病程分为四个阶段。糖尿病自然病程不同阶段血中的葡萄糖和胰岛素,各有与其所处病程阶段相应的不同浓度。糖尿病患者易患结直肠癌,是否与其自然病程不同阶段血中不同浓度的葡萄糖和胰岛素能影响结直肠癌肿瘤细胞分泌免疫抑制物质有关,目前国内外尚未见报道,十分需要对之进行研究和探讨。迄今,已见于报道能由肿瘤细胞分泌的免疫抑制物质多达20余种。其中,转化生长因子-β1(TGF-β1)、血管内皮生长因子(VEGF)和白细胞介素-6(IL-6),是见诸报道较多、免疫抑制作用较强,并且也恰是可由结直肠癌肿瘤细胞株Colon26肿瘤细胞分泌的三种重要的免疫抑制物质。因此,本研究选用小鼠结直肠癌肿瘤细胞株Colon26肿瘤细胞作为研究对象,以模拟糖尿病自然病程血中不同浓度的葡萄糖和胰岛素对之进行作用,测定是否对Colon26肿瘤细胞分泌这三种免疫抑制物质有影响和有何影响,并初步探索是通过何种分子机制导致了这种影响。从影响结直肠癌肿瘤细胞分泌免疫抑制物质的角度,为研究糖尿病与结直肠癌之间的病理生理关系,揭示糖尿病患者为何易患结直肠癌,提供新的研究思路和实验依据。
     方法:体外常规培养Colon26肿瘤细胞。根据培养液(RPMI1640完全培养基, CM)中外加葡萄糖和胰岛素的终浓度不同,分为12个组:
     A组(对照组, Control),CM;B组(常糖组,nG),5mmol /L葡萄糖;C组(中糖组,mG),10mmol /L葡萄糖;D组(高糖组,hG),25mmol /L葡萄糖;E组(常胰岛素组,nI),5μIU/mL胰岛素;F组(中胰岛素组,mI),25μIU/mL胰岛素;G组(高胰岛素组,hI),125μIU/mL胰岛素;H组(常糖常胰岛素组,nGnI),5mmol/L葡萄糖和5μIU/mL胰岛素;K组(常糖高胰岛素组,nGhI),5mmol/L葡萄糖和125μIU/mL胰岛素;L组(高糖高胰岛素组,hGhI),25mmol/L葡萄糖和125μIU/mL胰岛素;M组(高糖常胰岛素组,hGnI),25mmol/L葡萄糖和5μIU/mL胰岛素;N组(高糖低胰岛素组,hGloI),25mmol/L葡萄糖和1.25μIU/mL胰岛素。每组均设3个复孔,置37℃5 %CO2饱和湿度的培养箱培养48小时。培养结束后,分别收集细胞培养上清和细胞。ELISA法分别检测细胞培养上清中VEGF、TGF-β1和IL-6的含量(pg/mL)。将所收集细胞抽提总RNA,采用RT-PCR法扩增目的片段VEGF、TGF-β1、IL-6和内参照β-actin,扩增产物行琼脂糖凝胶电泳,在凝胶成像系统上扫描分析,分别计算VEGF、TGF-β1和IL-6 mRNA相对表达量,表达强度以相对表达系数RC表示。全部实验重复三次,结果数据以三次重复实验的x±s表示。统计学分析采用t检验和单因素方差分析,以P<0.05为有统计学差异。
     结果:
     1不同浓度的葡萄糖对Colon26肿瘤细胞VEGF分泌的影响
     B(nG)组、C(mG)组和D(hG)组细胞培养上清中VEGF的浓度(分别为9.4167±0.4646,9.4667±0.1528和9.6167±0.2887),与A(Control)组细胞培养上清中VEGF的浓度(9.5583±0.2691)相比较,均无显著性差异(均为P>0.05)。显示所试三个浓度([5、10和25)mmol/L]的葡萄糖,对Colon26肿瘤细胞分泌VEGF均无影响。
     2不同浓度的胰岛素对Colon26肿瘤细胞VEGF分泌的影响
     G(hI)组细胞培养上清中VEGF的浓度(27.7667±0.2517),明显高于A(Control)组、E(nI)组和F(mI)组细胞培养上清中的VEGF浓度(分别为9.5583±0.2691,9.5833±0.0764和9.6167±0.1258),差异均有显著性(均为P<0.01);而A(Control)组、E组和F组三组之间,无显著性差异(P>0.05)。显示只有高浓度(125μIU/mL)胰岛素能显著增加Colon26肿瘤细胞VEGF的分泌。
     3不同浓度的葡萄糖和胰岛素联合对Colon26肿瘤细胞VEGF分泌的影响
     K(nGhI)组和L(hGhI)组细胞培养上清中VEGF的浓度(分别为27.8333±0.3512和27.6000±0.6557),均明显高于A(Control)组细胞培养上清中的VEGF浓度(9.5583±0.2691),差异均有显著性(均为P<0.01);而K组与L组细胞培养上清中的VEGF浓度无差异(P>0.05)。H(nGnI)组、M(hGnI)组和N(hGloI)组细胞培养上清中VEGF的浓度(分别为9.7167±0.00289,9.8667±0.0577和9.9000±0.1732)与A组相比较均无显著性差异(均为P>0.05)。显示,不同浓度的葡萄糖和胰岛素联合未明显改变各自单独对Colon26肿瘤细胞分泌VEGF的影响模式,仍显示为仅是加有高浓度(125μIU/mL)胰岛素者(K组和L组)能显著增加Colon26肿瘤细胞VEGF的分泌;两者联合,既无协同效应也无拮抗效应。
     4不同浓度的葡萄糖和胰岛素对Colon26肿瘤细胞VEGF基因转录的影响
     培养液中加有高浓度(125μIU/mL)胰岛素的G(hI)组、K(nGhI)组和L(hGhI)组:它们的VEGF mRNA扩增产物的电泳条带,与A(Control)组相比明显增粗变亮;它们的VEGF mRNA的表达(分别为0.8802±0.1900、0.8605±0.1800和0.8569±0.2200),与A组(0.4653±0.0200)相比均有显著性差异(均为P<0.01)。而其他组与A组相比,电泳条带在宽度和亮度上没有差异;且VEGF mRNA的表达与A组相比亦无显著性差异(均为P>0.05)。显示高浓度(125μIU/mL)的胰岛素显著增加Colon26肿瘤细胞VEGF的基因转录;提示上述高浓度的胰岛素显著增加Colon26肿瘤细胞分泌VEGF的分子机制,应是在基因水平提高VEGF mRNA转录所致。
     5不同浓度的葡萄糖对Colon26肿瘤细胞TGF-β1分泌的影响
     D(hG)组细胞培养上清中TGF-β1的浓度(863.12±20.26)明显高于A(Control)组(625.14±12.02),差异有显著性(P<0.01);而B(nG)组和C(mG)组细胞培养上清中TGF-β1的浓度(分别为635.51±16.97和632.52±17.88)与A组相比均无显著性差异(均为P >0.05 )。显示高浓度的葡萄糖显著增加Colon26肿瘤细胞分泌TGF-β1。
     6不同浓度的胰岛素对Colon26肿瘤细胞TGF-β1分泌的影响
     E(nI)组、F(mI)组和G(hI)组细胞培养上清中TGF-β1的浓度(分别为622.18±10.53、614.85±14.92和617.12±16.12)与A(Control)组(625.14±12.02)相比均无显著性差异(均为P>0.05)。显示所试三个浓度[(5、25和125)μIU/mL ]的胰岛素均不影响Colon26肿瘤细胞TGF-β1的分泌。
     7不同浓度的葡萄糖和胰岛素联合对Colon26肿瘤细胞TGF-β1分泌的影响
     培养液中均加有高浓度(25mmol/L)葡萄糖的L(hGhI)组、M(hGnI)组和N(hGloI)组细胞培养上清中TGF-β1的浓度(分别为982.78±19.02、882.54±17.08和871.46±16.21)均明显高于A(Control)组(625.14±12.02),差异均有显著性(均为P<0.01);而培养液中均未加有高浓度葡萄糖的H(nGnI)组和K(nGhI)组细胞培养上清中TGF-β1的浓度(分别为626.18±15.98和630.18±18.95)与A组相比均无显著性差异(均为P>0.05)。这些结果显示,葡萄糖与胰岛素联合未改变各自单独作用模式,仍显示为仅高浓度葡萄糖显著增加Colon26肿瘤细胞TGF-β1的分泌;两者联合既无协效应同也无拮抗效应。
     8不同浓度的葡萄糖和胰岛素对Colon26肿瘤细胞TGF-β1基因转录的影响
     TGF-β1 mRNA的表达水平,在培养液加有高浓度(25mmol/L)葡萄糖的D (hG)组(0.768±0.017)、L组(0.889±0.028)、M (hGnI)组(0.764±0.027)和N (hGloI)组(0.752±0.035)均显著高于A组(0.540±0.012) (均P <0.01),而在培养液没加高浓度葡萄糖的B (nG)组(0.545士0.033)、C (mG)组(0.558±0.035)、E (nI)组(0.566±0.039)、F (mI)组(0.549±0.030)、G (hI)组(0.531±0.022)、H (nGnI)组(0.550±0.037)和K (nGhI)组(0.537±0.025)与A组相当(均为P>0.05)。显示只有高浓度(25mmol/L)的葡萄糖能增加Colon26肿瘤细胞的TGF-β1 mRNA转录;提示上述高浓度的葡萄糖能增加Colon26肿瘤细胞分泌TGF-β1的分子机制应是由在基因水平增加TGF-β1 mRNA转录所致。
     9不同浓度的葡萄糖对Colon26肿瘤细胞IL-6分泌的影响
     D(hG)组细胞培养上清中IL-6的浓度(27.70±1.53)明显高于A(Control)组(18.33±2.52),差异有显著性(P <0.01);而B(nG)组和C(mG)组细胞培养上清中IL-6的浓度(分别为19.33±2.31和22.67±0.58),与A组相比均无显著性差异(均为P >0. 05)。显示高浓度(25mmol/L)的葡萄糖显著提高Colon26肿瘤细胞IL-6分泌。
     10不同浓度的胰岛素对Colon26肿瘤细胞IL-6分泌的影响
     E(nI)组、F(mI)组和G(hI)组细胞培养上清中IL-6的浓度(分别为19.67±1.53、21.33±4.04和21.67±2.08)与A组(18.33±2.52)相比均无显著性差异(均为P>0. 05)。显示所试三个浓度([5, 25和125)μIU/mL]胰岛素均不影响Colon26肿瘤细胞分泌IL-6。
     11不同浓度的葡萄糖和胰岛素联合对Colon26肿瘤细胞IL-6分泌的影响
     培养液中均加有高浓度(25 mmo1/L)葡萄糖的L(hGhI)组、M(hGnI)组和N(hGloI)组细胞培养上清中IL-6的浓度(分别为27.67±2.52、27.33±2.08和27.33±1.53)均明显高于A(Control)组(18.33±2.52),差异均有显著性(均为P<0.01),而培养液中均未加高浓度葡萄糖的H(nGnI)组和K(nGhI)组细胞培养上清中IL-6的浓度(分别为20.33±1.53和22.33±2.08)与A组相比均无显著性差异(均为P >0. 05)。显示,不同浓度的葡萄糖和胰岛素联合未改变各自单独作用模式,仍是显示为高浓度的葡萄糖显著增加Colon26肿瘤细胞分泌IL-6;两者联合对Colon26肿瘤细胞分泌IL-6,既无协同也无拮抗效应。
     12不同浓度的葡萄糖和胰岛素对Colon26肿瘤细胞IL-6基因转录的影响
     D(hG)组IL-6 mRNA的表达(0.560±0.011)高于A(Control)组(0.406±0.012),差异有显著性(P<0.05);而B(nG)组和C(mG)组IL-6 mRNA的表达(分别为0.413±0.031和0.426±0.001)与A组相比均无显著性差异(均为P >0. 05)。E(nI)组、F(mI)组和G(hI)组IL-6 mRNA的表达(分别为0.416±0.002、0.422±0.013和0.426±0.016)与A组相比均无显著性差异(均为P>0.05)。培养液中均加有高浓度(25 mmo1/L)葡萄糖的L组、M组和N组的IL-6 mRNA表达(分别为0.560±0.011、0.560±0.011和0.563±0.002)均高于A组,差异均有显著性(均为P <0.05);而培养液中未加高浓度葡萄糖的H组和K组的IL-6 mRNA表达(分别为0.420±0.001和0.426±0.002)与A组相比均无显著性差异(均为P>0.05)。这些结果显示,高浓度的葡萄糖(25mmol/L)显著增加Colon26肿瘤细胞IL-6 mRNA转录;提示上述高浓度葡萄糖增加Colon26肿瘤细胞分泌IL-6的分子机制应是在基因水平增加Colon26肿瘤细胞IL-6 mRNA转录所致。
     结论:
     1高浓度(25mmol/L)的葡萄糖可显著增加Colon26肿瘤细胞分泌TGF-β1和IL-6,其分子机制应是由促进Colon26肿瘤细胞TGF-β1和IL-6基因转录所致。
     2不同浓度[(5—25)mmol/L]的葡萄糖对Colon26肿瘤细胞VEGF的分泌和基因转录无影响。
     3高浓度(125μIU/mL)的胰岛素可显著增加Colon26肿瘤细胞分泌VEGF,其分子机制应是由促进Colon26肿瘤细胞VEGF基因转录所致。
     4不同浓度[(1.25-125)μIU/mL]的胰岛素对Colon26肿瘤细胞TGF-β1和IL-6的分泌及基因转录无影响。
     5不同浓度的葡萄糖和胰岛素联合,不改变各自单独对Colon26肿瘤细胞VEGF、TGF-β1和IL-6的分泌及基因转录的作用模式。
     6不同浓度的葡萄糖和胰岛素联合,对Colon26肿瘤细胞VEGF、TGF-β1和IL-6的分泌及基因转录,既无协同效应也无拮抗效应。
     7糖尿病自然病程中不同浓度的葡萄糖和胰岛素可显著增加结直肠癌肿瘤细胞某些免疫抑制物质分泌,应是糖尿病患者易患结直肠癌的内在分子机制之一。
Objective: Tumor and diabetes are the two kinds of severe diseases harming the health and life of human at present and the morbidity and mortality of them are increasing year by year. Of late years, more and more clinical and epidemiological data discovered that the patients with diabetes easily suffer from colorectal cancer. The risk suffering from colorectal cancer by the patients with diabetes is significantly higher than the non-diabetes patients, and it was suggested that diabetes is the independent risk factor for colorectal cancer. The morbidity, relapse rate and mortality of colorectal cancer in the diabetes patients are notably higher than that in the non-diabetes patients. The relationship between diabetes and colorectal cancer has become a highly interested heat point. Studying and discovering the pathological physiology relationship between diabetes and colorectal cancer and its molecular mechanisms has become an important question for exploration needed very in this scientific territory.
     The tumor immunological studies have discovered that the tumor development closely related not only to the immunofunction of body, in a sense, but also even more to the immunosuppression mediated by tumor cells. That the tumor cells secrete immunosuppressive substances to suppress the immunofunction of body, i.e. the immunosuppression of tumor cells, is the important mechanism with which the tumor cells escape the immunosurveillance of body to develop. The immunosuppressive substances secreted by tumor cells not only possibly could play a immunosuppression in the sites apart from the tumor in the body, but also even more can form the deeply immunosuppressive area, i.e. called“collapsar”, severely suppressing not only the immunofunction of the immunocytes in situ within the area, but also that of the function-normal and even activated immunocytes entered into the area to form“silence”cells, making all immunocytes in the area to loss the ability of effectively killing the tumor cells, and thus this apparently should be the important mechanism that in the body with completely normal immunofunctions the tumor yet could escape the immunosurveillance to develop.
     One of the important pathological physiology characteristics of diabetes is the abnormal changes of the concentrations of glucose and insulin in blood of the patients. Just according to the abnormal changes of the concentrations of glucose and insulin in blood of the patients,the modern medicine divided the natural course of diabetes into four phases, and there are the different concentrations of glucose and insulin in blood corresponding to the different phases. It was not reported at present that the patients with diabetes easily suffer from colorectal cancer would be related either to the different concentrations of glucose and insulin in blood in the different phases of diabetes or not , very needing to study on it. Up to now, it has been reported that there are about twenty kinds of immunosuppressive substances which could be secreted by tumor cells. Among these, those reported more frequently, having more intensive immunosuppression and just to be secreted by the colorectal cancer cell line Colon26 tumor cells are the vascular endothelial growth factor(VEGF), the transforming growth factorβ1(TGF-β1)and interleukin-6(IL-6). Thus, in this study using the different concentrations of glucose and insulin mimicing the different phases of diabetes to affect Colon26 tumor cells, the effect on the secretion of VEGF, TGF-β1 and IL-6 from Colon26 tumor cells was detected and the molecular mechanism leading to the effect was explored primarily, so that from the aspect of affecting the secretion of immunosuppressive substances from colorectal cancer cells, for the investigating the relationship between diabetes and colorectal cancer and discovering why the diabetes patients easily suffer from colorectal cancer, to supply new studying way and experimental evidences.
     Methods: Colon26 tumor cells were cultured conventionally in vitro. According to the final concentrations of glucose and insulin added into the cell medium (RPMI1640 complete medium,CM), the Colon26 tumor cells cultured were divided into 12 groups: A group(control), CM; B group (normal glucose, nG), 5mmol/L glucose; C group(middle glucose, mG), 10mmol/L glucose ; D group(high glucose, hG), 25mmol/L glucose; E group (normal insulin, nI), 5μIU/mL insulin; F group(middle insulin, mI), 25μIU/mL insulin; G group(high insulin, hI), 125μIU/mL insulin; H group (nGnI), 5mmol/L glucose and 5μIU/mL insulin; K group (nGhI), 5mmol/L glucose and 125μIU/mL insulin; L group(hGhI), 25mmol/L glucose and 125μIU/mL insulin; M group(hGnI), 25mmol/L glucose and 5μIU/mL insulin; N group(high glucose and low insulin, hGloI), 25mmol/L glucose and 1.25μIU/mL insulin. All groups were triple holes, placed in 37℃5 % CO2 saturated humidity to be cultured for 48h. After culture completion the cells and the supernatants were collected respectively. The concentrations (pg/mL) of TGF-β1, VEGF and IL-6 in the supernatant were detected by ELISA respectively. The total RNA of the cells collected was extracted. The cDNA of VEGF, TGF-β1, IL-6 and interior referenceβ-actin were amplificated by RT-PCR respectively. The agarose gel electrophoresis of amplificated products was performed and analyzed by scaning in the gel imaging system, and the mRNA relative expressive values of TGF-β1, VEGF and IL-6 were calculated respectively and the expressive intensity was shown as the relative expressive coefficient RC. The all experiments were triplicated and the results were shown as x±s. The statistical analysis was performed using the t test and the sigle factor analysis of variance, and the significant size of test was P<0.05.
     Results:
     1 The effect of glucose at different concentrations on the secretion of VEGF from Colon26 tumor cells
     The concentrations of VEGF in the supernatants of B (nG) group, C (mG) group and D (hG) group (9.4167±0.4646,9.4667±0.1528 and 9.6167±0.2887 respectively) had not significant difference compared with that of A (control) group (9.6167±0.2887) (all P>0.05), indicating that the three concentrations [(5, 10 and 25) mmol/L] of glucose tested did not affect the secretion of VEGF from Colon26 tumor cells.
     2 The effect of insulin at different concentrations on the secretion of VEGF from Colon26 tumor cells
     The concentration of VEGF in the supernatant of G (hI) group (27.7667±0.2517) was significantly higher than that of A (control) group (9.5583±0.2691), E (nI) group (9.5833±0.0764) and F (mI) group (9.6167±0.1258) ( all P<0.01), but there was no significant difference among the three (i.e. A, E and F) groups (P>0.05), indicating only the high concentration (125μIU/mL) of insulin enabaling to increase the secretion of VEGF from Colon26 tumor cells.
     3 The effect of the combination of glucose and insulin at different concentrations on the secretion of VEGF from Colon26 tumor cells
     The concentrations of VEGF in the supernatants of K(nGhI) group and L(hGhI) group(27.8333±0.3512 and 27.6000±0.6557respectively)were significantly higher than that of A group(9.5583±0.2691)(all P<0.01) and there was no difference between K group and L group(P>0.05), and the concentrations of VEGF in the supernatants of H(nGnI) group, M(hGnI) group and N(hGloI) group(9.7167±0.00289,9.8667±0.0577 and 9.90±0.1732, respectively) had no differences compared with A group(all P>0.05), indicating that the combination of glucose and insulin at different concentrations could not affect the pattern of the effect by oneself on the secretion of VEGF from Colon26 tumor cells, yet showing that only that adding high concentration(125μIU/mL)of insulin(K group and L group) could increase the secretion of VEGF from Colon26 tumor cells, and that the combination of both had neither synergistic effect nor antagonistic effect.
     4 The effect of glucose and insulin at different concentrations on the VEGF genetic transcription of Colon26 tumor cells
     In G, K and L groups in which in the cell medium the final concentration of insulin all was high(125μIU/mL), their electrophoresis strip of the amplificated product of VEGF mRNA had become thickening and bright compared with A group, and their VEGF mRNA expression level (0.8802±0.1900,0.8605±0.1800 and 0.8569±0.2200 respectively) compared with A group(0.4653±0.0200) had significant differences(all P<0.01). In other groups compared with A group either the electrophoresisi strips or the VEGF mRNA expression levels had not significant differences(all P>0.05). These findings indicated that the high concentration(125μIU/mL)of insulin could increase the VEGF genetic transcription and suggested that this should be the molecular mechanism that the high concentration of insulin could increase the secretion of VEGF from Colon26 tumor cells as above-mentioned.
     5 The effect of glucose at different concentrations on the secretion of TGF-β1 from Colon26 tumor cells
     The concentration of TGF-β1 in the supernatant of D(hG) group(863. 12±20.26) was significantly higher than that of A group (625.14±12.02) (P<0.01), and that of B (nG) group and C (mG) group (635.51±16.97 and 632.52±17.88 respectively) compared with A group had not significant differences(all P>0.05). These findings indicated that the high concentration (25mmol/L) of glucose could increase significantly the secretion of TGF-β1 from Colon26 tumor cells.
     6 The effect of insulin at different concentrations on the secretion of TGF-β1 from Colon26 tumor cells
     The concentrations of TGF-β1 in the supernatants of E(nI), F(mI) and G (hI) groups(622.18±10.53, 614.85±14.92 and 617.12±16.12, respectively) compared with A group(625.14±12.02) had not significant differences(all P>0.05), indicating that the three concentrations [(5, 25 and 125)μIU/mL ] of insulin tested had not affect the secretion of TGF-β1 from Colon26 tumor cells.
     7 The effect of the combination of glucose and insulin at different concentrations on the secretion of TGF-β1 from Colon26 tumor cells
     The concentrations of TGF-β1 in the supernatants of L(hGhI),M(hGnI)and N(hGloI)groups in which the high concentration(25mmol/L)of glucose had be added into the cell medium were 982.78±19.02, 882.54±17.08 and 871.46±16.21 and significantly higher than that of A group (625.14±12.02) (all P<0.01). The concentrations of TGF-β1 in the supernatants of H(nGnI)group and K(nGhI)group in which the high concentration of glucose had not be added into the cell medium were 626.18±15.98 and 630.18±18.95 respectively and compared with A group had not significant differences (all P>0.05). These findings indicated that the combination of glucose and insulin did not change the effect patterns by oneself, yet showing that only the high concentration of glucose could increase significantly the secretion of TGF-β1 from Colon26 tumor cells, and that the combination of both had neither synergistic effect nor antagonistic effect.
     8 The effect of glucose and insulin at different concentrations on the TGF-β1 genetic transcription of Colon26 tumor cells
     The expression level of TGF-β1 mRNA in D(hG) group(0.768±0.017), L(hGhI) group(0.889±0.028), M(hGnI) group(0.764±0.027) and N (hGloI) group (0.752±0.035) in which the high concentration (25mmol/L) of glucose was added into the cell medium were significantly higher than that of A group(0.540±0.012()all P<0.01) and that in B(nG) group(0.545±0.033),C(mG) group(0.558±0.035),E(nI) group(0.566±0.039), F(mI) group(0.549±0.030), G(hI) group(0.531±0.022), H(nGnI) group(0.550±0.037) and K(nGhI) group(0.537±0.025) in which the high concentration of glucose did not be added into the cell medium were equivalent to that in A group(all P>0.05), indicating that only the high concentration(25mmol/L) of glucose could increase the TGF-β1 mRNA transcription of Colon26 tumor cells and suggesting that the molecular mechanism with which the high concentration of glucose could increase the secretion of TGF-β1 from Colon26 tumor cells as above-mentioned should be due to the increasing the TGF-β1 mRNA transcription at the genetic level.
     9 The effect of glucose at different concentration on the secretion of IL-6 from Colon26 tumor cells
     The concentration of IL-6 in the supernatant of D(hG) group(27.70±1.53) was significantly higher than that of A group(18.33±2.52)(P <0.01), but that of B(nG) group(19.33±2.31) and C(mG) group(22.6±0.58) compared with A group had not significant differences(all P>0.05), indicating that the high concentration(25mmol/L)of glucose could increase significantly the secretion of IL-6 from Colon26 tumor cells.
     10 The effect of insulin at different concentration on the secretion of IL-6 from Colon26 tumor cells
     The concentrations of IL-6 in the supernatants of E(nI) group, F(mI) group and G(hI) group(19.67±1.53, 21.33±4.04 and 21.67±2.08, respectively) compared with that of A group(18.33±2.52) had not significant differences (all P>0.05), indicating that the three kinds of concentrations [(5, 25 and 125 )μIU/mL] of insulin tested had not the effect on the secretion of IL-6 from Colon26 tumor cells.
     11 The effect of the combination of glucose and insulin at different concentration on the secretion of IL-6 from Colon26 tumor cells
     The concentrations of IL-6 in the supernatants of L group , M group and N group (27.67±2.52, 27.33±2.08 and 27.33±1.53, respectively) in which the high concentration (25mmol/L) of glucose was added into the cell medium were significantly higher than that of A group (18.33±2.52)( all P <0. 01) and that of H group and K group (20.33±1.53 and 22.33±2.08, respectively) in which the high concentration of glucose did not be added into the cell medium compared with that of A group had not significant differences (all P>0.05). These findings indicated that the combinations of glucose and insulin at different concentrations did not change the pattern of effect by oneself, yet showing that the high concentration of glucose could increase the secretion of IL-6 from Colon26 tumor cells, and that the combination of both had neither synergistic effect nor antagonistic effect.
     12 The effect of glucose and insulin at different concentrations on the IL-6 genetic transcription of Colon26 tumor cells
     The IL-6 mRNA expression in D(hG) group(0.560±0.011) was significantly higher than that in A group(0.406±0.012 )(P <0.05), that in B (nG)group and C(mG) group(0.413±0.031 and 0.426±0.001 respectively) compared with A group had not significant differences(all P >0. 05), that in E(nI)group, F(mI)group and G(hI)group(0.416±0.002, 0.422±0.013 and 0.426±0.016 respectively) compared with A group had not significant differences(all P >0. 05), that in the L , M and N groups in which the high concentration(25mmo1/L)of glucose was added into the cell medium ( 0.560±0.011, 0.560±0.011 and 0.563±0.002, respectively) were significantly higher than that in A group(all P <0.05), and that in the H and K groups in which the high concentration of glucose was not added into the cell medium (0.420±0.001 and 0.426±0.002 respectively) compared with A group had not significant differences(all P >0.05). These findings indicated that the high concentration(25 mmo1/L)of glucose can significantly increase the IL-6 mRNA transcription of Colon26 tumor cells and suggested that the molecular mechanism with which the high concentration of glucose could increase the secretion of IL-6 from Colon26 tumor cells as above-mentioned should be due to the increasing the IL-6 mRNA transcription at the genetic level.
     Conclusion:
     1 The high concentration(25mmol/L of glucose can increase significantly the secretion of TGF-β1 and IL-6 from Colon26 tumor cells, the molecular mechanism of which should be due to that the genetic transcription of TGF-β1 and IL-6 within Colon26 tumor cell had be promoted.
     2 The different concentrations ([5-25)mmol/L] of glucose had not the effect on the secretion and genetic transcription of VEGF of Colon26 tumor cells.
     3 The high concentration(125μIU/mL)of insulin can increase significantly the secretion of VEGF from Colon26 tumor cells, the molecular mechanism of which should be due to that the genetic transcription of VEGF within Colon26 tumor cell had be promoted.
     4 The different concentrations [(1.25-125)μIU/mL] of insulin had not the effect on the secretion and genetic transcription of the TGF-β1 and IL-6 of Colon26 tumor cells.
     5 The combination of glucose and insulin at different concentrations did not change the pattern of effect by oneself on the secretion and genetic transcription of VEGF, TGF-β1 and IL-6 of Colon26 tumor cells.
     6 The effect of the combination of glucose and insulin at different concentrations on the secretion and genetic transcription of VEGF, TGF-β1 and IL-6 of Colon26 tumor cells was neither synergistic nor antagonistic.
     7 That the different concentrations of glucose and insulin in the natural course of diabetes could increase significantly the secretion of some immunosuppressive substances from the colorectal cancer cells should be one of the internal molecular mechanism with which the diabetes patients easily suffer from the colorectal cancer.
引文
1王谦,于玫,龚慕辛,等.高浓度葡萄糖对大鼠肾小球系膜细胞增殖的影响.中国病理生理杂志,2003,19(12):1691-1692
    2杨卫红,李裕明.葡萄糖对小鼠间充质干细胞增殖的影响.中国糖尿病杂志,2008,16(10):625-628
    3何庆,刘铭,苏京,等.高浓度葡萄糖对胰岛细胞凋亡及凋亡相关基因的影响.天津医药,2006,34(3):176-178
    4邵维斌,钱家麒.高浓度葡萄糖诱导人腹膜间皮细胞凋亡. J透析移植. 2003, 12(1): 58-59
    5王红祥,赵湜,李宾公,等.高糖对糖尿病患者内皮祖细胞增殖凋亡的影响及其机制探讨.中国病理生理杂志,2007,23(11):2210-2213
    6王伟铭,姚建,曹红娣.糖对人肾成纤维细胞增殖及纤维连结蛋白分泌的影响.上海医学,1998,21(5):253-258
    7岳晓华,李晶,刘伯轩,等.高糖对大鼠骨髓间充质干细胞增殖及凋亡的影响.创新与管理杂志,2008,2(9):62-67
    8 Larsson SC, Orsini N, Wolk A. Diabetes mellitus and risk of colorectal cancer: a meta-analysis. J Natl Cancer Inst JT - Journal of the National Cancer Institute, 2005, 97(22): 1679-1687
    9 Yang YX, Hennessy S, Lewis JD. Type 2 diabetes mellitus and the risk of colorectal cancer. Clin Gastroenterol Hepatol, 2005, 3:587-594
    10 Limburg PJ, Anderson KE, Johnson TW, et al. Diabetes mellitus and subsite-specific colorectal cancer risks in the Iowa Women's Health Study. Cancer Epidemiol Biomarkers Prev JT-Cancer epidemiology, biomarkers& prevention : a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology, 2005, 14(1): 133-137
    11 Blazer S, Khankin E, Segev Y, et al. High glucose-induced replicative senescence: point of no return and effect of telomerase. Biochem Biophys Res Commun, 2002,296: 93-101
    12何庆,刘铭,苏京,等.高浓度葡萄糖对胰岛细胞凋亡及凋亡相关基因的影响.天津医药,2006,34(3):176-178
    13杨卫红,李裕明.葡萄糖对小鼠间充质干细胞增殖的影响.中国糖尿病杂志,2008,16(10):625-628
    14 Portero-Otin M, Pamplona R, Bellmunt MJ, et al. Advanced glycation end product precursors impair epidermal growth factor receptor signaling. Diabetes, 2002, 51: 1535-1542
    15 Terada M, Inaba M, Yano Y, et al. Growth-inhibitory effect of a high glucose concentration on osteoblast-like cells. Bone, 1998, 22:17-23.
    16 Stolzing A, Coleman N, Scutt A. Glucose-induced replicative senescence in mesenchymal stem cells. Rejuvenation Res, 2006, 9: 31-35
    17岳晓华,李晶,刘伯轩,等.高糖对大鼠骨髓间充质干细胞增殖及凋亡的影响.创新与管理杂志,2008,2(9):62-67
    18杨卫红,李裕明.葡萄糖对小鼠间充质干细胞增殖的影响.中国糖尿病杂志,2008,16(10):625-628
    19 Ho FM, Liu SH, Liau CS, et a.l Nitric oxide prevents apoptosis of human endothelial cells from high glucose exposure during early stage. JCellBiochem, 1999, 75(2): 258-263.
    20 Piconi L, Quagliaro L, Assaloni R, et a.l Constant and intermittent high glucose enhances endothelial cell apoptosis through mitochondrial superoxide overproduction. Diabetes Metab Res Rev, 2006, 22(3): 198-203.
    21 Tamareille S, Mignen O, Capiod T, et a.l High glucose-induced apoptosis through store-operated calcium entry and calcineurin in human umbilical vein endothelial cells. Cell Calcium, 2006, 39(1): 47-55.
    22 Allen DA, Yaqoob MM, Harwood SM. Mechanisms of high glucose-induced apoptosis and its relationship to diabetic complications. J Nutr Biochem, 2005, 16(12): 705-713.
    23张永松,张娟,朱旭新,等.胰岛素对高葡萄糖浓度下内皮细胞的凋亡及bax和bcl_2表达的影响.中国临床实用医学,2007,1(8):1-3
    24 Mueckler M. Facilitative glucose transporters. Eur J Bio-chem, 1994, 219(3): 713-725
    25 Sakashita M, Aoyama N, Minami R, et al. Glut-1 expression in T1 and T2 stage colorectal carcinomas; its relationship to clinicopathological features. Eur J Cancer, 2001, 37 (2): 204-209
    26 Furudoi A, Tanaka S, Haruma K, et al. Clinical significance of human erythrocyte glucose transporter-1 expression at the deepest invasive site of advanced colorectal carcinoma. Oncology, 2001, 60 (2): 162-169
    27 Wood IS, Trayhurn P. Glucose transporters (GLUT and SGLT): expanded families of sugar transport proteins. Br J Nutrition, 2003, 89 (1): 3-9
    28 Komninou D , Ayonote A , Richie J P , et al. Insulin re-sistance and its Contribution to colon carcinogenesis. ExpBiol Med, 2003, 228 (4): 396-405
    29 Chang CK, Ulrich CM. Hyperinsulinaemia and hyper-glycaemia: possible risk factors of colorectal cancer among diabetic patients. Diabetologia , 2003 , 46 (5) : 595-607
    1 Lewis MP, Lyboe KA, Nystrom ML, et al. Tumor-derived TGF-beta1modulates myofibroblast differentiation and promotes HGF/S-dependent invasion of squamous carcinoma cells. Br J Cancer, 2004, 90(4): 822-832
    2 Kim ES, Kim MS, Moon A. Transforming growth factor(TGF)-beta in conjunction with H-ras activation promotes malignant progression of MCF10A breast epithelial cells. Cytokine,2005,29(2): 84-91
    3 Pockaj BA, Basu GD, Pathangey LB, et al. Reduced T-cell and dendritic cell function is related to cyclooxygenase-2 over-expression and prostaglandin E2 secretion in patients with breast cancer. Ann Surg Oncol, 2004, 11(3): 328-339
    4 Sredni B, Weil M, Khomenok G, et al. Ammonium trichloro(dioxoethyene- o, o’) tellurate (AS101) sensitizes tumors to chemotherapy by inhibiting the tumor interleukin 10 autocrine loop. Cancer Res, 2004, 64(5): 1843-1852
    5 Wei-Qing Xu , Xu-Cheng Jiang , Lin Zheng , et al. Expression of TGF-β1, TβRII and Smad4 in colorectal carcinoma. Experimental and Molecular Pathology, 2007,82:284-291
    6 Kim ES, Kim MS, Moon A. Transforming growth factor(TGF)-beta in conjunction with H-ras activation promotes malignant progression of MCF-10 in A breast epithelial cells. Cytokine, 2005, 29(2): 84-91
    7 Xiaoyan Cui, Seok-Chul Yang, Sherven Sharma, et al. IL-4 regulates COX-2 and PGE2 production in human non-smallcell lung cancer Biochemical and Biophysical Research Communications, 2006, 343: 995-1001
    8 Naoki Oka, Akio Soeda, Akihito Inagaki, et al. VEGF promotes tumorigenesis and angiogenesis of human glioblastoma stem cells. Biochemical and Biophysical Research Communications 2007, 360: 553-559
    9 Sredni B, Weil M, Khomenok G, et al. Ammonium trichloro(dioxo-ethyeneo,o’)tellurate(AS101)sensitizes tumors to chemotherapy by inhibiting the tumor interleukin 10 autocrine loop. Cancer Res, 2004, 64(5): 1843-1852
    10 Roitt I, Brostoff J, Male D. Immunology. Harcount Asia Pte Ltd, 2001, sixth edition
    11 Bairey O, Boycov O, Kaganovsky E, et al. All three receptors for vascular endothelial growth factor ( VEGF ) are expressed on B-chronic lymphocytic leukemia(CLL ) cells. Leuk Res, 2004, 28(3): 221-222
    12 Weber F, Byrne SN, Le S, et al. Transforming growth factor-beta1 immobilises dendritic cells within skin tumours and facilitates tumour escape from the immune system. Cancer Immunol Immunother, 2005, 54(9): 898-906
    13 Knottenbelt C, Mellor D, Nixon C, et al. Cohort study of COX-1 and COX-2 expression in canine rectal and bladder tumours. J Small Anim Pract, 2006, 47(4): 196-200
    14 Hajos S, Waldner C. IL-2, IL-10, IL-15 and TNF are key regulators of murine T-cell lymphoma growth. Int J Mol Med, 2003, 12(4): 627-632
    15 Sarah G.Harris, Josue Padilla, Laura Koumas et al. Prostaglandins as modulators of immunity.Trends in Immunology, 2002, 23(3):144-150
    16 Seow A, Yuan JM, Koh WP, et al. Diabetes mellitus and risk of colorectal cancer in the Singapore Chinese Health Study. J Natl Cancer Inst, 2006, 98: 135-138
    17 Larsson SC, Orsini N, Wolk A. Diabetes mellitus and risk of colorectal cancer: a meta-analysis. J Natl Cancer Inst JT - Journal of the National Cancer Institute, 2005, 97(22): 1679-1687
    18 Yang YX, Hennessy S, Lewis JD. Type 2 diabetes mellitus and the risk of colorectal cancer. Clin Gastroenterol Hepatol, 2005, 3:587-594
    19 Limburg PJ, Anderson KE, Johnson TW, et al. Diabetes mellitus and subsite-specific colorectal cancer risks in the Iowa Women's Health Study. Cancer Epidemiol Biomarkers Prev JT-Cancer epidemiology, biomarkers& prevention: a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology, 2005, 14(1):133-137
    20胡水清,汤哲,张玫.糖尿病与结直肠癌患病危险关系的调查分析.世界华人消化杂志, 2007, 15(1):88-91
    21 Susanna C, Larsson NO, Alicja W. Diabetes mellitus and risk of colorectal cancer: A Meta-Analysis. Natl Cancer Inst, 2005, 97(22):1679-1687
    22 Meyerhardt JA, Catalano PJ, Haller DG, et al. Impact of diabetes mellitus on outcomes in patients with colon cancer. Clin Oncol, 2003, 21:433~440
    23 Hu FB, Manson JE, Liu S, et al. Prospective study of adult onset diabetes mellitus ( type 2) and risk of colorectal cancer in women. J Natl Cancer Inst, 1999, 91(6): 542-547
    24 Marchand L,Wilkens LR, Kolonel LN, et al. Associations of sedentary lifestyle, obesity, smoking, alcohol use and diabetes with the risk of colorectal cancer. Cancer Res, 1997, 57(21): 4787-4794
    25崔澂,王润田,佟慧等.青蒿琥酯和苦参素对Colon26肿瘤细胞免疫抑制的影响.现代免疫学杂志,2006,26 (2): 152-156
    26 Takahashi A, Kono K, Itakura J, et al. Correlation of vascular endothelial growth factor-expression with tumor-infiltrating dendritic cells in gastric cancer. Oncology, 2002, 62(2): 121 -127
    27 Ohm JE, Carbone DP. VEGF as a mediator of tumor -associated-immuno-deficiency. Immunol Res, 2001, 23(2-3): 263-272
    28 Habeck H , Odemthal J ,Walderich B ,et al. Analsis of a zebrafigh VEGF receptor mutant reveals specific of angiogenesis. Curr Biol , 2002 , 12 (16) : 201-203
    29 Annunziato F, Cosmi L, Liotta F, et al. Phenotype, localization and mechanism of suppression of CD4+CD25+ human thymocytes. J Exp Med, 2002, 196(3): 379-387
    30 Azuma T, Takahashi T, Kunisato A, et al. Human CD4+ CD25+ regulatory T cells suppress NKT cell function. Cancer Res, 2003, 63(15): 4516-4520
    31 Witham TF, Villa L, Yang L, et al. Expression of asoluble Transforminggrowth factor beta(TGF beta) receptor reduces tumorigenicity by regulating natural killer (NK) cell activity against 9L gliosarcomain vivo. J Neurooncol, 2003, 64(1~2): 63-69
    32 Hsiao YW, Liao KW, Hung SW, et al. Tumor-infiltrating lymphocyte secretion of IL-6 antagonizes tumor-derived TGF-beta and restores the lymphokine-activated killing activity. J Immunol, 2004, 172 ( 3 ) : 1508-1514
    33 Krogh-Madsen R, Moller K, Dela F, et al. Effect of hyperglycemia and hyperinsulinemia on the response of IL-6, TNF-alpha, and FFAs to low-dose endotoxemia in humans. Am J Physiol Endocrinol Metab JT-American journal of physiology. Endocrinology and metabolism, 2004, 286(5): 2766-2772
    34 Yamazaki K, YanoT, Kameyama T, et al. Clinical significance of serum Th1-Th2 cytokines in patients with pulmonary adnecarcinoma. Surgery, 2002, 131(1): 236-241.
    35 Yamazaki K, YanoT, Kameyama T, et al. Clinical significance of serum Th1-Th2 cytokines in patients with pulmonary adnecarcinoma. Surgery, 2002, 131(1): 236-241
    36 Srivani R, Nagarajan B. A prognostic insight on in vivo expression of interleukin-6 in uterine cervical cancer. Int J Gynecol cancer, 2003, 13(3): 331-339
    37 Shibata M, Nezu T, Kanon H, et al. Decreased production of interleukin-12 and type 2 immune responses are marked in cachectic patients with colorectal and gastric cancer . J Clin Gastroenterol, 2002, 34(4): 416-420
    38 Shengwh, Chlangbl, Changsc, et al. Clinical manifesta-tions and inflammatory cytokine responses in patients with severe acuterespiratory syndrome. J FormosMedAssoc, 2005, 104(10): 715-723
    39 Rosa JS, Flores RL, Oliver SR, et al. Sustained IL-1alpha, IL-4, and IL-6 elevations following correction of hyperglycemia in children with type 1 diabetes mellitus. Pediatr Diabetes JT- Pediatric diabetes, 2008, 9(1): 9-16
    40胡波,许环,陈忠诚等. 2型糖尿病患者IL- 2, IL- 6及TNF水平检测.广东医学, 2006, 27(5)735-737
    41田林红,陈雪红,倪安民等.糖尿病肾病患者血清IL-1、IL-6含量测定.中国病理生理杂志, 2001, 17(2): 127
    42陈益民,许志良,袁新旺等. 2型糖尿病患者血清IL-6、TNF的变化.浙江中西医结合杂志, 2004 14(3):150-151
    43汤锋,马小平,陈源根等.高糖对人类肾小球系膜的影响.中华肾脏病杂志, 1998, 14(3): 163-166
    1 Lewis MP, Lyboe KA, Nystrom ML, et al. Tumor-derived TGF-beta1 modulates myofibroblast differentiation and promotes HGF/S-dependent invasion of squamous carcinoma cells. Br J Cancer, 2004, 90(4): 822-832
    2 Kim ES, Kim MS, Moon A. Transforming growth factor (TGF)-beta in conjunction with H-ras activation promotes malignant progression ofMCF10A breast epithelial cells. Cytokine,2005,29(2): 84-91
    3 Pockaj BA, Basu GD, Pathangey LB, et al. Reduced T-cell and dendritic cell function is related to cyclooxygenase-2 over-Expression and prostaglandin E2 secretion in patients with breast cancer. Ann Surg Oncol, 2004, 11(3): 328-339
    4 Sredni B, Weil M, Khomenok G, et al. Ammonium trichloro (dioxoethyene- o, o’) tellurate (AS101) sensitizes tumors to chemotherapy by inhibiting the tumor interleukin 10 autocrine loop. Cancer Res, 2004, 64(5): 1843-1852
    5 Wei-Qing Xu , Xu-Cheng Jiang , Lin Zheng , et al. Expression of TGF-β1, TβRII and Smad4 in colorectal carcinoma. Experimental and Molecular Pathology, 2007,82:284-291
    6 Bairey O, Boycov O, Kaganovsky E, et al. All three receptors for vascular endothelial growth factor (VEGF) are expressed on B-chronic lymphocytic leukemia(CLL) cells. Leuk Res, 2004, 28(3)221-222
    7 Weber F, Byrne SN, Le S, et al. Transforming growth factor-beta1 immobilises dendritic cells within skin tumours and facilitates tumour escape from the immune system. Cancer Immunol Immunother, 2005, 54(9): 898-906
    8 Knottenbelt C, Mellor D, Nixon C, et al. Cohort study of COX-1 and COX-2 expression in canine rectal and bladder tumours. J Small Anim Pract, 2006, 47(4): 196-200
    9 Hajos S, Waldner C. IL-2, IL-10, IL-15 and TNF are key regulators of murine T-cell lymphoma growth. Int J Mol Med, 2003, 12(4): 627-632
    10 Sarah G.Harris, Josue Padilla, Laura Koumas et al. Prostaglandins as modulators of immunity.Trends in Immunology, 2002, 23(3):144-150
    11 Song E, Wang YH, Xu Q, et al. Effects of high concentrations insulin on VEGF expression in cultured Muller cells. Zhonghua Yan Ke Za Zhi, 2004,40:40-44
    12 Kobayashi T, Kamata K. Short-term insulin treatment and aortic expressions of IGF-1 receptor and VEGF mRNA in diabetic rats. Am JPhysiol Heart Circ Physiol, 2002, 283: 1761-1768
    13 Zeng H, Datta K, Neid M, et al. Requirement of different signaling pathways mediated by insulin-like growth factor-1 receptor for proliferation, invasion, and VPF/VEGF expression in a pancreatic carcinoma cell line. Biochem Biophys Res Commun, 2003, 302:46-55
    14 Poulaki V, Qin W, Joussen AM, et al. Acute intensive insulin therapy exacerbates diabetic blood-retinal barrier breakdown via hypoxia-inducible factor-1alpha and VEGF. Clin Invest, 2002, 109: 805-815
    15 Guastamacchia E, Resta F, Triggiani V,et al. Evidencefor a putative relationship between type 2 diabetes and neoplasia with particular reference to breast cancer: role of hormones, growth factors and specific receptors. Curr Drug Targets Immune Endocr Metabol Disord, 2004, 4(1): 59- 66
    16 Siddals KW, Westwood M, Gibson JM, et al. IGF-binding protein-1 inhibits IGF effects on adipocyte function: implications for insulin-like actions at the adipocyte. Endocrinol, 2002, 174: 289-297
    17 Raju J, Bird RP. Energy rest riction reduces the number of advanced aberrant crypt foci and attenuates the expression of colonic transforming growth factor beta and cyclooxygenaseisoforms in Zucker obese(fa/ fa)rats. Cancer Res , 2003 , 63(20): 6595-6601
    18 Bellone G, Smirne C, Mauri FA, et al. Cytokine expression profile in human pancreatic carcinoma cells and in surgical specimens: Implications for survival. Cancer Immunol Immunother, 2006, 55(6): 84-698
    19 Orleans-Lindsay JK, Barber LD, Prentice HG, et al. Acute myeloid leukemia cells secrete a soluble factor that inhibits T and NK cell proliferation but not cytolytic function implication for the adoptive immunotherapy of leukemia. Clin Exp Immuno,2001, 26(3):403-411
    20 Kim SJ, Angel P, Lafyatis R, et al. Autoinduction of transforming growth factor beta 1 is mediated by the AP-1 complex. Mol Cell Biol, 1990, 10(4): 1492-1497
    21邹璎.转化生长因子β1及其Ⅱ型受体在结直肠癌中的表达.实用肿瘤杂志. 2004,18(4):255-258
    22张学军,李蓬秋,包明晶,等. 2型糖尿病患者血清TGF-β1的临床评价.辽宁实用糖尿病杂志, 2004, 12(1):17-18
    23韩晓芳,潘时中,杨立勇.血清TGF-β1水平与糖尿病肾病相关性研究.福建医药杂志, 2005, 27(2): 115-117
    24江中林,姜国良. TGF-β1在糖尿病肾病早期诊断中的应用.放射免疫学杂志, 2005, 18(3): 195-196
    25 Rosa JS, Flores RL, Oliver SR, et al. Sustained IL-1alpha, IL-4, and IL-6 elevations following correction of hyperglycemia in children with type 1 diabetes mellitus. Pediatr Diabetes JT- Pediatric diabetes, 2008, 9(1): 9-16.
    26胡波、许环、陈忠诚等. 2型糖尿病患者IL- 2, IL- 6及TNF水平检测.广东医学, 2006,27(5):735-737
    27田林红,陈雪红,倪安民等.糖尿病肾病患者血清IL-1、IL-6含量测定.中国病理生理杂志, 2001,17(2): 127
    28陈益民许志良袁新旺等. 2型糖尿病患者血清IL-6、TNF的变化.浙江中西医结合杂志, 2004 14(3):150-151
    29 Krogh-Madsen R, Moller K, Dela F, et al. Effect of hyperglycemia and hyperinsulinemia on the response of IL-6, TNF-alpha, and FFAs to low-dose endotoxemia in humans. Am J Physiol Endocrinol Metab JT - American journal of physiology. Endocrinology and metabolism, 2004, 286(5): E766-72.
    30 Yamazaki K, YanoT, Kameyama T, et al. Clinical significance of serum Th1-Th2 cytokines in patients with pulmonary adnecarcinoma. Surgery, 2002, 131(1): 236-241.
    31 Srivani R, Nagarajan B. A prognostic insight on in vivo expression of interleukin-6 in uterine cervical cancer. Int J Gynecol cancer, 2003, 13(3): 331-339
    32 Shibata M, Nezu T, Kanon H, et al. Decreased production of interleukin-12 and type 2 immune responses are marked in cachecticpatients with colorectal and gastric cancer. J Clin Gastroenterol, 2002, 34(4): 416-420
    
    1 Steward BW, Kleihues P. World Cancer Report. Lyon: IARC Press, 2003,198-202
    2 Schiel R, Beltschikow W, Steiner T, et al. Diabetes, insulin, and risk of cancer. Methods Find Exp Clin Pharmacol, 2006 Apr, 28(3): 169-75
    3 Svacina S, Matoulek M, Svobodova S, et al. Gastrointestinal tractcancer and diabetes mellitus. Vnitr Lek JT-Vnitrni lekarstvi, 2004, 50(5): 386-391
    4 Larsson SC, Orsini N, Wolk A. Diabetes mellitus and risk of colorectal cancer: a meta-analysis. J Natl Cancer Inst JT - Journal of the National Cancer Institute, 2005, 97(22): 1679 -1687
    5 Seow A, Yuan JM, Koh WP,et al. Diabetes mellitus and risk of colorectal cancer in the Singapore Chinese Health Study. J Natl Cancer Inst, 2006, 98: 135-138
    6 Yang YX, Hennessy S, Lewis JD. Type 2 diabetes mellitus and the risk of colorectal cancer. Clin Gastroenterol Hepatol JT-Clinical gastroenterology and hepatology: the official clinical practice journal of the American Gastroenterological Association, 2005, 3(6): 587-594
    7 Limburg PJ, Anderson KE, Johnson TW, et al. Diabetes mellitus and subsite-specific colorectal cancer risks in the Iowa Women's Health Study. Cancer Epidemiol Biomarkers Prev JT-Cancer epidemiology, biomarkers & prevention: a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology, 2005, 14(1): 133-137
    8 Teich N. Pancreatic cancer: cause and result of diabetes mellitus. Gastroenterology. JT-Gastroenterology, 2008, 134(1): 344-345
    9 Wang F, Gupta S, Holly EA. Diabetes mellitus and pancreatic cancer in a population-based case-control study in the San Francisco Bay Area, California. Cancer Epidemiol Biomarkers Prev JT-Cancer epidemiology, biomarkers & prevention: a publication of the American Association for Cancer Research, cosponsored by the American Society of PreventiveOncology, 2006, 15(8): 1458-1463
    10 Chari ST, Leibson CL, Rabe KG, et al. Pancreatic cancer-associated diabetes mellitus: prevalence and temporal association with diagnosis of cancer. Gastroenterology JT-Gastroenterology, 2008, 134(1): 95-101
    11 Kim TD, Oh HJ, Kim KH, et al. [Clinical characteristics of pancreatic cancer according to the presence of diabetes mellitus]. Korean J Gastroenterol JT - The Korean journal of gastroenterology Taehan Sohwagi Hakhoe chi, 2004, 43(1): 35-40
    12 Gullo L , Pezzilli R , Morse AM , et al. Diabetes and the risk of pancreatic cancer. N Engl J Med , 1994 ,331: 81-84
    13 Stephen H, Caldwell, Deborah M, etal. Obesity and hepatocellular carcinoma. Gastroenterology, 2004,127: 897-5103
    14 EI Serag HB, Tran T, EverhareJE. Diabetes increases the risk if chrioniciver disease and heaptocellular carcinoma. Ga- stroenterology. 2004, 126: 460-468 1319
    15 Jean M Regimbeau, Magali Colombat, Philippe Mognol, et al. Obesity and diabetes as a risk factor for heaptocellular carcinoma. Liver transplantation, 2004, 51: 569- 573
    16 Fujino Y, Mizoue T, Tokui N, et al. Prospective study of diabetes mellitus and liver cancer in Japan. Diabetes Metab Res Rev JT - Diabetes/metabolism research and reviews, 2001, 17(5): 374-379
    17 Inoue M, Iwasaki M,Otani T, et al . Diabetes mellitus and the risk of cancer: results from a large-scale population- based cohort study in Japan. Arch Intern Med , 2006, 166 :1871-1877
    18 EI Serag HB, Tran T, EverhareJE. Diabetes increases the risk if chrioniciver disease and heaptocellular carcinoma. Ga- stroenterology. 2004, 126: 460-468 1319
    19 Teh-Ia Huo, M.D, Wing-Yu Liu, et al. Diabetes mellitus is a risk factor for hepatic decompensation in patients with hepatocellular carcinoma under going resection: a longitudinal stu. Am J Gastroenterology, 2003, 98:2293-2298
    20 idenori Toyada, Takashi Kumada, Satoshi Nakano, et a1. Impact of Diabetes Mellius on the Prognosis of Patients with Hepatocellular carcinoma.Cancer , 2001, 95(5): 957- 963
    21 Teh-Ia Huo, M.D, Wing-Yu Liu, et al. Diabetes mellitus is a risk factor for hepatic decompensation in patients with hepatocellular carcinoma Under going resection: a longitudinal stu. Am J Gastroenterology, 2003, 98: 2293-2298
    22 Wolf I, Sadetzki S, Catane R, et al. Diabetes mellitus and breast cancer. Lancet Oncol, 2005, 6:103-111
    23 Larsson SC, Mantzoros CS, Wolk A. Diabetes mellitus and risk of breast cancer: a meta-analysis. Int J Cancer, 2007, 121:856-862
    24 Lipscombe LL, Goodwin PJ, Zinman B, et al. Diabetes mellitus and breast cancer: a retrospective population-based cohort study. Breast Cancer Res Treat, 2006, 98: 349-356
    25 Lin SY, Hsieh MS, Chen LS, et al. Diabetes mellitus associated with the occurrence and prognosis of non-Hodgkin's lymphoma. Eur J Cancer Prev, 2007, 16: 471- 478
    26 Landgren O, Bjorkholm M, Montgomery SM, et al. Personal and family history of autoimmune diabetes mellitus and susceptibility to young-adult-onset Hodgkin lymphoma. Int J Cancer, 2006, 118: 449-452
    27 Kasper JS, Giovannucci E. A meta-analysis of diabetes mellitus and the risk of prostate cancer. Cancer Epidemiol Biomarkers Prev, 2006,15: 2056-2062
    28 Calton BA, Chang SC, Wright ME, et al. History of diabetes mellitus and subsequent prostate cancer risk in the NIH-AARP Diet and Health Study. Cancer Causes Control, 2007, 18: 493-503
    29季尚玮,郭宏华.糖尿病与消化系肿瘤关系的研究进展.国际消化病杂志, 2006, 26(1): 61~63
    30 Aparicio T, Guilmeau S, Goiot H, et al. Leptin reduces the development of the initial precancerous lesions induced by azoxymethane in the rat colonic mucosa. Gastroenterology , 2004, 126(2): 499–510
    31 Teh-Ia Huo, M.D, Wing-Yu Liu, et al. Diabetes mellitus is a risk factor for hepatic decompensation in patients with hepatocellular carcinoma Under going resection: a longitudinal stu. Am J Gastroenterology, 2003, 98: 2293-2298
    32季尚玮,郭宏华.糖尿病与消化系肿瘤关系的研究进展.国际消化病杂志, 2006, 26(1): 61~63
    33 Gupta K, Krishnaswamy G, Karnad A, et al. Insulin: a novel factor in carcinogenesis. Am J Med Sci, 2002, 323: 140-145
    34 Wu X, Yu H, Amos CI, et al. Joint effect of insulin-like growth factors and mutagen sensitivity in lung cancer risk. J Natl Cancer Inst, 2000, 92: 737-743
    35 Chang CK, Ulrich CM. Hyperinsulinaemia and hyperglycaemia: possible risk factors of colorectal cancer among diabetic patients. Diabetologia, 2003, 46: 595-607
    36 Aleksandrovski YA. Molecular mechanisms of the cross-impact of pathological processes in combined diabetes and cancer. Research and clinical aspects. Biochemistry (Mosc), 2002, 67:1329-1346
    37林凯,邓海鸥,黎映兰,韩梅清.老年2型糖尿病患者细胞免疫功能的临床观察.实用医学杂志, 2004 , 20( 8 ): 929-930
    38张宏,于德民,陈樱,靳建鸣,张秋梅,王家驰. 2型糖尿病患者免疫功能变化与血糖和胰岛素水平相关性的研究.标记免疫分析与临床,2002 , 9(2): 90-93
    39 Kang H, Chae MH, Park JM, et al. Polymorphisms in TGF-betal gene and the risk of lung cancer. Lung Cancer, 2006, 52(1): 1-7
    40 Komiyama SI, Aoki D, Katsuki Y, et al. Proliferative activity of early ovarian clear cell adenocarcinoma depends on association with endometriosis. Eur J Obstet Gyne- col Reprod Biol, 2006, 50:323-327
    41 Kim ES, Kim MS, Moon A. Transforming growth factor (TGF)-beta in conjunction with H-ras activation promotes malignant progression of MCF10A breast epithelial cells. Cytokine, 2005, 29(2): 84-91
    42 Knottenbelt C, Mellor D, Nixon C, et al. Cohort study of COX-1 andCOX-2 expression in canine rectal and bladder tumours. J Small Anim Pract, 2006, 47(4): 196-200
    43 Xiaoyan Cui , Seok-Chul Yang , Sherven Sharma, et al.IL-4 regulates COX-2 and PGE2 production in human non-smallcell lung cancer Biochemical and Biophysical Research Communications , 2006,343: 995-1001
    44 Naoki Oka , Akio Soeda , Akihito Inagaki ,et al. VEGF promotes tumorigenesis and angiogenesisof human glioblastoma stem cells. Bioche-mical and Biophysical Research Communications , 2007, 360: 553-559
    45 SredniB,Weil M, Khomenok G, etal. Ammonium trichloro (dioxoethyeneo,o’)tellurat(AS10) sensitizes tumors to chemotherapy by inhibiting the tumor interleukin 10 autocrine loop. Cancer Res, 2004, 64(5): 1843-1852
    46 Roitt I, Brostoff J, Male D. Immunology. Harcount Asia Pte Ltd, 2001, sixth edition
    47 Hsiao YW, Liao KW, Hung SW, et al. Tumor-infiltrating lymphocyte secretion of IL-6 antagonizes tumor-derived TGF-beta and restores the lymphokine-activated killing activity. J Immunol, 2004, 172(3): 1508-1514
    48 Pockaj BA, Basu GD, Pathangey LB, et al. Reduced T-cell and dendritic cell function is related to cyclooxygenase-2 over- expression and prostaglandin E2 secretion in patients with breast cancer. Ann Surg Oncol, 2004,11(31): 328-339
    1 Ohm JE, Carbone DP. VEGF as a mediator of tumor-associated im-Munodeficiency[J]. Immunol Res, 2001, 23(2-3), 263-272.
    2 Takahashi A, Kono K, Itakura J, et al. Correlation of vascular endothelial growth factor expression with tumor-infiltrating dendritic cells in gastric cancer. Oncology, 2002, 62(2): 121-127
    3史继敏,桂律,叶宣光,等.大肠癌血管内皮生长因子表达与临床病理的关系.肿瘤学杂志,2002,8(3):141-142
    4钟霞,于皆平,冉宗学.大肠癌中NF-κBp65、VEGF表达的相关性研究.肿瘤学杂志,2001,7(6):346-348
    5 Beierle EA, Strande LF, Chen MK. VEGF upregulates Bcl-2 expres-sion and is associated with decreased apoptosis in neuroblastoma cells[J]. J Pediatr Surg, 2002, 37(3): 467-471.
    6刘钧,赵永年,朱治键,等.微血管密度及血管内皮生长因子在贲门癌中的表达及其意义.肿瘤防治研究,2001,28(6):460-462
    7袁欣,白世祥,刘菊,等.食道癌原发灶及转移淋巴结血管内皮生长因子和微血管形成的测定.肿瘤防治杂志,2001,8(3):251-252
    8杨福全,戴显伟,徐进,等.胆管癌VEGF表达及肿瘤微血管密度与肿瘤浸润和预后的关系.肿瘤防治杂志,2002,11(1):49-51
    9吴开松,刘铭球.非小细胞肺癌组织中血管内皮生长因子的表达与微血管密度的关系.肿瘤防治研究,2002,29(2):126-127
    10李宏江,敬静,汪静,等.乳腺癌血管内皮生长因子与微血管密度的分布及与预后的关系.肿瘤学杂志,2002,8(4):215-217
    11范伟,卢丽艳,王世军.乳腺癌血管内皮生长因子与微血管密度的免疫组织化学研究.肿瘤防治研究,2002,29(5):402-404
    12 Huang CY, Shen ZY. Vascular endothelial growth factor-fundamental research and experimental study in plastic surgery. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi, 2002, 16(1):64-69
    13 Oh H, Takagi H, Otani A, et al. Selective induction of neuropilin-1 by vascular endothelial growth factor (VEGF): A mechanism contributing to VEGF-induced angiogenesis[J]. Proc Natl Acad Sci, 2002, 99: 383-388.
    14 Ohm JE, Carbone DP. VEGF as a mediator of tumor-associated im-munodeficiency [J]. Immunol Res, 2001, 23(2-3): 263-272.
    15 Oh H, Takagi H, Otani A, et al. Selective induction of neuropilin-1 by vascular endothelial growth factor(VEGF): A mechanism contributing to VEGF-induced angiogenesis. Proc Natl Acad Sci USA, 2002, 99(1): 383-388
    16 Song E, Wang YH, Xu Q, et al. Effects of high concentrations insulin on VEGF expression in cultured Muller cells. Zhonghua Yan Ke Za Zhi, 2004, 40:40-44
    17 Kobayashi T, Kamata K. Short-term insulin treatment and aortic expressions of IGF-1 receptor and VEGF mRNA in diabetic rats. Am J Physiol Heart Circ Physiol, 2002,283: H1761-1768
    18 Poulaki V, Qin W, Joussen AM, et al. Acute intensive insulin therapy exacerbates diabetic blood-retinal barrier breakdown via hypoxia-inducible factor-1alpha and VEGF. J Clin Invest, 2002,109:805-815
    19 Zeng H, Datta K, Neid M, et al. Requirement of different signaling pathways mediated by insulin-like growth factor-I receptor for proliferation, invasion, and VPF/VEGF expression in a pancreatic carcinoma cell line. Biochem Biophys Res Commun, 2003,302:46-55
    20 Laron Z. IGF-1 and insulin as growth hormones. Novartis Found Symp, 2004,262:56-77; discussion 77-83, 265-268
    21 Lawrence MC, McKern NM, Ward CW. Insulin receptor structure and itsimplications for the IGF-1 receptor. Curr Opin Struct Biol, 2007,17:699-705
    22 Baudry A, Lamothe B, Bucchini D, et al. IGF-1 receptor as an alternative receptor for metabolic signaling in insulin receptor-deficient muscle cells. FEBS Lett, 2001, 488: 174-178
    23 Hoyne PA, Elleman TC, Adams TE, et al. Properties of an insulin receptor with an IGF-1 receptor loop exchange in the cysteine-rich region. FEBS Lett, 2000,469:57-60
    24 Werner H, LeRoith D: Insulin-like growth factor I receptor: structure, signaltransduction and function. Diabetes Rev 1995, 3:28-37
    25 Hsiao YW, Liao KW, Hung SW, et al. Tumor-infiltrating lymphocyte secretion of IL-6 antagonizes tumor-derived TGF-beta and restores the lymphokine-activated killing activity. J Immunol, 2004, 172(3): 1508-1514
    26 Weber F,Byrne SN,Le S,et al. Transforming growth factor-beta1 immobilises dendritic cells within skin tumours and facilitates tumour escape from the immune system. Cancer Immunol Immunother, 2005, 54(9): 898-906
    27 Annunziato F,Cosmi L,Liotta F,et al. Phenotype, localization, and mechanism of suppression of CD4+CD25+ human thymocytes. J Exp Med, 2002, 196: 379-387
    28 Chen W, Jin W, Tian H, et al. Predominant Th2-Tc2 polarity of tumor-infiltrating lymphocytes in human cervical cancer. J Exp Med, 2001, 194(4): 439-454
    29 Azuma T, Takahashi T, Kunisato A, et al. Human CD4+CD25+regulatory T cells suppress NKT cell function. Cancer Res, 2003, 63(15): 4516-4520
    30 Nakamura K,Kitani A and Strober W. Cell contact-dependent immunosuppression by CD4+CD25+regulatory T cells is mediated by cell surface-bound transforming groeth factor beta. J Exp Med, 2001, 194(4): 629-644
    31 Witham TF, Villa L, Yang T, et al. Expression of a soluble transforminggrowth factor-beta (TGF beta) receptor reduces tumorigenicity by regulating natural killer (NK) cell activity against 9L gliosarcoma in vivo. J Neurooncol, 2003, 64(1-2): 63-69
    32 Mitra R, Khar A. Suppression of macrophage function in AK-5 tumor transplanted animals: role of TGF-beta. Immunol Lett, 2004, 91(2-3): 189-195
    33 Hsiao YW, Liao KW, Hung SW, et al. Tumor-infiltrating lymphocyte secretion of IL-6 antagonizes tumor-derived TGF-beta and restores the lymphokine-activated killing activity. J Immunol, 2004, 172(3):
    34 Jarnicki AG, Fitzpatrick DR, Robinson BW, et al. Altered CD3 chain and cytokine gene expression in tumor infiltrating T lymphocytes during the development of mesothelioma. Cancer Lett, 1996, 103(1): 1508-1514
    35 Pardali K, Moustakas A. Actions of TGF-βas tumor suppressor and pro-metastatic factor in human cancer [J]. Biochim Biophys Acta, 2007,1775:21-62
    36 Perez N, Karumuthil-Melethil S, Li RB, et al. Preferential costimulation by CD80 results in IL-10-dependent TGF-β1+-adaptive regulatory T cell generation [J]. J Immunol 2008, 180: 6566-6576
    37 Buggins AGS, Lea NC, Gaken J, et al. Effect of co-stimulation and the micro- environment on anti-presentation by leukemia cells. Blood, 1999, 94(10): 3479-3490
    38 Luczynski W, Kovalchuk O, Krawczuk-Rybak M, et al. Lower expression of mRNA for interferon-gamma in T helper cells of children with newly diagnosed lymphomas. Folia Histochem Cytobiol, 2005, 43(3): 169-171
    39 Bacchetta R, Sartirana C, Levings MK, et al. Growth and expansion of human T regulatory type 1 cells are independent from TCR activation but require exogenous cytokines. Eur J Immunol, 2002, 32(8): 2237-2245
    40 Ahmadzadeh M, Rosenberg SA. TGF-beta 1 attenuates the acquisition and expression of effector function by tumor antigen-specific human memory CD8 T cells. J Immunol, 2005, 174(9): 5215-5223
    41 Hsiao YW, Liao KW, Hung SW, et al. Tumor-infiltrating lymphocytesecretion of IL-6 antagonizes tumor-derived TGF-beta and restores the lymphokine-activated killing activity. J Immunol, 2004, 172(3): 1508-1514
    42 Jarnicki AG, Fitzpatrick DR, Robinson BW, et al. Altered CD3 chain and cytokine gene expression in tumor infiltrating T lymphocytes during the development of mesothelioma. Cancer Lett, 1996, 103(1): 1-9
    43 von Bernstorff W, Voss M, Freichel S, et al. Systemic and local immuno-suppression in pancreatic cancer patients. Clin Cancer Res, 2001, 7(3Suppl): 925s-932s
    44 Bertone S, Schiavetti F, Bellomo R, et al. Transforming growth factor-β-induced expression of CD94-NKG2A inhibitory receptors in human T lymphocytes. Eur J Immunol, 1999, 29(1): 23-29
    45 Castriconi R, Cantoni C, Chiesa MD, et al. Transforming growth factor-β1 inhibits expression of NKp30 and NKG2D receptors: Consequences for the NK-mediated killing of dendritic cells. Proc Natl Acad Sci USA, 2003, 100(7): 4120-4125
    46 Dasgupta S, Bhattacharya CM, O'Malley BJ, et al. Inhibition of NK cell activity through TGF-beta 1 by down-regulation of NKG2D in a murine model of head and neck cancer. J Immunol, 2005, 175(8): 5541-5550
    47 Florenes VA, Bhattacharya N, Bani MR, et al. TGF-beta mediated G1 arrest in a human melanoma cell line lacking p15INK4B: evidence for cooperation between p21Cip1/WAF1 and p27Kip1 [J]. Oncogene, 1996, 13(11): 2447-2457
    48 Will JC, Galuska DA, Vinicor F, Calle EE. Colorectal cancer: another complication of diabetes mellitus? Am J Epidemiol, 1998, 147: 816-25
    49 Nilsen TI, Vatten LJ. Prospective study of colorectal cancer risk and physicalactivity, diabetes, blood glucose and BMI: exploring the hyperinsulinaemi hypothesis. Br J Cancer, 2001, 84:417-22
    50 DeVita F, Romano C, Ordituar M, etal. Interleukin-6 serum level correlates with Survival in advanced gastrointestinal cancer Patients but is not an independent progrostic indicator. J Cytological Res 2001,21: 45-52
    51 Fisher WE , Boros L G, Schirmer WJ . Reversal of enhanced pan2 creatic cancer growth in diabetes by insulin. Surgery , 1995 , 128:453-458
    52 Shibata A , Mack TM , Paganini2Hill A , et al. A prospective study of pancreatic cancer in the elderly. Int J Cancer , 1994, 58: 46249
    53 Everhart J , Wright D. Diabetes mellitus as a risk factor for pancre2 atic cancer. A meta analysis. JAMA,1995, 237: 150521509
    54 Fisher We, Muscarella p Boroslg, et al. WJ Variable effect of streptozotocin diabetes on the growth of hamster pancreatic cancer (H2T) in the Syrian hamster and nude mouse [J].Surgery, 1998, 123: 315-320
    55汤锋,马小平,陈源根,等.高糖对人类肾小球系膜的影响[J].中华肾脏病杂志, 1998, 14(3): 163-166
    56 Krogh-Madsen R, Moller K, Dela F, et al. Effect of hyperglycemia and hyperinsulinemia on the response of IL-6, TNF-alpha, and FFAs to low-dose endotoxemia in humans. Am J Physiol Endocrinol Metab JT - American Journal of physiology. Endocrinology and metabolism, 2004, 286(5): E766-72
    57 Yamazaki K, YanoT, Kameyama T, et al. Clinical significance of serum Th1-Th2 cytokines in patients with pulmonary adnecarcinoma. Surgery, 2002, 131(1): 236-241
    58 Srivani R, Nagarajan B. A prognostic insight on in vivo expression of interleukin-6 in uterine cervical cancer. Int J Gynecol cancer, 2003, 13(3): 331-339
    59 Shibata M, Nezu T, Kanon H, et al. Decreased production of interleukin-12 and type 2 immune responses are marked in cachectic patients with colorectal and gastric cancer. J Clin Gastroenterol, 2002, 34(4):416-420
    60 Sredni B, Weil M, Khomenok G, et al. Ammonium trichloro(diox-oethylene-o,o’) tellurate (AS101) sensitizes tumors to chemotherapyby inhibiting the tumor interleukin 10 autocrine loop[J].Cancer Res, 2004,64 (5): 1843-1852
    61 Kim ES, Kim MS, Moon A. Transforming growth factor (TGF)- beta inconjunction with H-ras activation promotes malignant progression of MCF10A breast epithelial cells[J]. Cytokine, 2005, 29 (2): 84-91
    62 Dagvadorj J, Naiki Y, Tumurkhuu G, et al. Interleukin-10 inhibits tumor necrosis factor-αproduction in lipopolysaccharide-stimulatedRAW 264.7 cells through reduced MyD88 expression[J]. Innate Immunity 2008, 14:109-115
    63 Wang H, Xie X, Lu WG, et al. Ovarian carcinoma cells inhibit T cell proliferation: suppression of IL-2 receptor beta and gamma expression and their JAK-STAT signaling pathway [J]. Life Sci, 2004, 74(14): 1739-1749
    64 Dagvadorj J, Naiki Y, Tumurkhuu G, et al. Interleukin-10 inhibits tumor necrosis factor-αproduction in lipopolysaccharide-stimulatedRAW 264.7 cells through reduced MyD88 expression[J]. Innate Immunity 2008,14:109-115
    65 Urosevic M, Kurrer MO, Kamarashev J, et al. Human leukocyte antigen G upregulation in lung cancer associated with hihe-grade histology human leukocyte classⅠloss and interleukin-10 production. J Pathol, 2001, 159(3): 817-824
    66 Ahmadzadeh M, Rosenberg SA. TGF-beta 1 attenuates the acquisition and expression of effector function by tumor antigen-specific human memory CD8 T cells. J Immunol, 2005, 174(9): 5215-5223
    67 Bacchetta R, Sartirana C, Levings MK, et al. Growth and expansion of human T regulatory type 1 cells are independent from TCR activation but require exogenous cytokines. Eur J Immunol, 2002, 32(8): 2237-2245
    68 Wang H, Xie X, Lu W, et al. Ovarian carcinoma cells inhibit T cell proliferation: suppression of IL-2 receptor beta and gamma expression and their JAK-STAT signaling pathway. Life Sci, 2004, 74(14): 1739-1749
    69 Sredni B, Weil M, Khomenok G, et al. Ammonium trichloro(diox-oethylene-o,o’) tellurate (AS101) sensitizes tumors to chemotherapyby inhibiting the tumor interleukin 10 autocrine loop[J].Cancer Res, 2004,64 (5): 1843-1852
    70 Yamazaki K, Yano T, Kameyama T, et al. Clinical significance of serumTh1-Th2 cytokines in patients with pulmonary adnecarcinoma. Surgery, 2002, 131(1): 236-241
    71 Sheu BC,Lin RH,Lien HC,et al. Predominant Th2-Tc2 polarity of tumor-infiltrating lymphocytes in human cervical cancer. J Immunol, 2001, 167(5): 2972-2978
    72 Stolina M, Sharma S, Lin Y, et al. Specific inhibition of cyclooxygenase-2 restores antitumor reactivity by altering the balance of IL-10 and IL-12 synthesis. J Immunol, 2000, 104(1): 361-370
    73 Naama HA, Mack VE, Smyth GP, et al. Macrophage effector mechanisms in melanoma in an experimental study. Arch Surg, 2001, 136(7): 804-809
    74 Dempke W, Rie C, Grothey A, et al. Cyclooxygenase-2: a novel target for cancer chemeotherapy. J Cancer Res Clin Oncol, 2001, 27(7): 411-417
    75 Kinoshita T, Takahashi Y, Sakashita T, et al. Growth stimulation and induction of epidermal growth factor receptor by overexpression of cyclooxygenases 1 and 2 in human colon carcinoma cells. Biochem Acta, 1999, 1438(1): 120-130
    76 Yamazaki K, Yano T, Kameyama T, et al. Clinical significance of serum Th1-Th2 cytokines in patients with pulmonary adnecarcinoma. Surgery, 2002, 131(1): 236-241
    77王长印,邹雄,车至香,等.消化道肿瘤患者Th1/Th2细胞的检测和分析.现代免疫学,2004,24(1):72-76
    78 Sheu BC,Lin RH,Lien HC,et al. Predominant Th2-Tc2 polarity of tumor-infiltrating lymphocytes in human cervical cancer. J Immunol, 2001, 167(5): 2972-2978
    79 Kim ES, Kim MS, Moon A. Transforming growth factor (TGF)-beta in conjunction with H-ras activation promotes malignant progression of MCF10A breast epithelial cells. Cytokine, 2005, 29(2): 84-91
    80 Knottenbelt C, Mellor D, Nixon C, et al. Cohort study of COX-1 and COX-2 expression in canine rectal and bladder tumours. J Small Anim Pract, 2006, 47(4): 196-200
    81 Xiaoyan Cui , Seok-Chul Yang , Sherven Sharma, et al.IL-4 regulatesCOX-2 and PGE2 production in human non-smallcell lung cancer Biochemical and Biophysical Research Communications , 2006,343: 995-1001
    82 Naoki Oka , Akio Soeda , Akihito Inagaki ,et al. VEGF promotes tum-origenesis and angiogenesisof human glioblastoma stem cells. Bioche-mical and Biophysical Research Communications , 2007,360: 553-559
    83 SredniB, Weil M, Khomenok G, etal. Ammonium trichloro (dioxoethyeneo,o’) tellurat(AS101)sensitizes tumors to chemotherapy by inhibiting the tumor interleukin 10 autocrine loop. Cancer Res, 2004, 64(5): 1843-1852
    84 Roitt I, Brostoff J, Male D. Immunology. Harcount Asia Pte Ltd, 2001, sixth edition
    85 Colombo MP, Piconese S. Regulatory T-cell inhibition versus depletionthe right choice in cancer immunotherapy[J]. Nat Rev Cancer, 2007, 7: 880-887

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700