用户名: 密码: 验证码:
Ⅰ型神经纤维瘤病基因型小鼠破骨细胞功能及其与骨桥蛋白相关性实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Ⅰ型神经纤维瘤病是一种常见的起源于神经嵴发育异常的常染色体基因遗传病,其发病率在1:3000。该病的发生是由于神经纤维瘤病基因(NF1)突变引起的。神经纤维瘤病基因已经被确定为一种抑癌基因,它编码的蛋白是Ras-GTP酶激动蛋白(Ras -GAP),被命名为神经纤维瘤病蛋白。神经纤维瘤病蛋白在功能上和结构上都和p120rasGAP同源。GAP蛋白能通过激活Ras活化的GTP结合形式转变成为无活性的GDP结合形式而终止Ras介导信号传导通路。因此,NF1的肿瘤抑制功能被认为主要是依赖它的下调原癌基因ras而实现的。Ras通过MEK/ERK和PI3K传导通路调节细胞的增殖,分化和生存能力。
     Ⅰ型神经纤维瘤病病人的特征性表现分为肿瘤症状和非肿瘤症状,非肿瘤症状包括高血压,头颅巨大,心脑血管畸形,皮肤皱褶处的间擦型雀斑,智力发育异常,精神症状和骨骼方面的异常。其骨骼病变表现常见的有脊柱侧弯,椎体发育异常,身材短小,蝶骨翼结构异常,胫骨弯曲或假关节形成,局部生长过度,胸廓发育异常,膝内翻,膝外翻,骨囊肿,骨硬化,肋骨融合,髌骨阙如,并指畸形,和一些其他骨的先天畸形,这些骨改变提示神经纤维瘤病基因的突变会引起骨代谢和骨发育的异常。
     最近有研究表明NF1病人存在明显的骨质疏松和骨量减少。骨组织一直处于自我更新过程中。为了适应骨力学强度及骨代谢平衡的双重需要,骨组织不断被吸收,新骨不断形成并改建。这个过程在骨修复和骨再生时就变得更为活跃。而骨吸收和骨形成是由成骨细胞和破骨细胞之间的平衡来调控的。这两种细胞的平衡一旦被破坏,就会引起骨形成异常,造成骨疾病。成骨细胞来源于间充质干细胞,它的作用是形成新的骨基质。破骨细胞则来源于造血干细胞,其直接前驱细胞又被称为巨噬细胞。在特定的环境下,骨髓中的造血干细胞首先分化成巨噬细胞克隆形成单位(CFU-M)再分化成巨噬细胞,巨噬细胞从骨髓中游离出来,进一步分化成单核破骨细胞。这些单核破骨细胞进而融合成为多核破骨细胞,附着在骨表面,发挥骨吸收作用。Yang等研究表明,Nf1+/-小鼠骨骼中破骨细胞数量明显较野生型小鼠破骨细胞增多,并通过体外培养破骨细胞证明ras通路和PI3K通路活性增强是造成Nf1小鼠破骨细胞功能增强的原因。
     由于Nf1基因完全敲除的小鼠会在胚胎13天左右因心脏发育异常而死亡,所以不适合用来研究神经纤维瘤病的骨表现。而对Nf1基因杂合型小鼠的研究为研究神经纤维瘤病提供了合适的模型,例如, Nf1+/-小鼠会在出生后第二年自发幼年型粒单核细胞白血病,类似人类神经纤维瘤病病人自然病程中发生恶性肿瘤。Nf1基因半缺失可以造成肥大细胞的增殖,生存能力增强,克隆形成增多,肥大细胞增多症患者有骨质疏松,肥大细胞的增多可能与神经纤维瘤病的骨量减少有关。Nf1基因杂合型上调ras活性,影响细胞功能,已在造血细胞,雪旺细胞,肥大细胞,黑素细胞中证实。
     骨桥蛋白(Osteopontin)是一种含有Arg-Gly-Asp (RGD)的带负电的非胶原性骨基质糖蛋白,OPN由多种组织细胞合成与分泌,广泛的分布于多种组织和细胞中,包括骨、肾、肌肉、膀胱及自然杀伤细胞。骨细胞、破骨细胞、血管内皮细胞、平滑肌细胞、多种肿瘤细胞及不同成熟阶段的成骨细胞均能合成和分泌OPN分子,OPN具有细胞黏附蛋白和细胞因子的双重作用,它通过与细胞表面的整合素(integrin)如αvβ3、αvβ1、αvβ5、α4β1、α9β1和CD44结合,通过RGD序列结合于细胞表面,从而介导细胞-细胞、细胞-基质的相互作用,传导细胞外信号。CD44作为OPN的受体,在雪旺细胞与神经突黏附、雪旺细胞凋亡及完成信号传导方面有重要作用,这也提示了OPN在Nf1的发病机制中发挥一定作用。在破骨细胞骨吸收过程中,OPN与破骨细胞膜上结合,激发αvβ3钙调素相关的钙泵从而促进破骨细胞极化。破骨细胞膜上αvβ3结合可以引起酪氨酸激酶的活化,从而使破骨细胞形成皱褶缘,促进破骨细胞的骨吸收作用。Taeko Ishii通过对关节炎模型小鼠破骨细胞的研究,发现在关节炎模型小鼠的破骨细胞培养液中OPN含量明显增多,给与OPN中和抗体可明显抑制关节炎小鼠破骨细胞的功能,并证明OPN可增加基质细胞的RANKL的分泌,从而刺激破骨细胞功能增强。本实验研究了1型神经纤维瘤病小鼠模型的破骨细胞功能变化以及骨桥蛋白在其中的作用,并为治疗提供思路。
     第一部分1型神经纤维瘤病基因型小鼠的破骨细胞功能研究
     目的:研究?型神经纤维瘤病基因型小鼠的破骨细胞功能变化,探讨?型神经纤维瘤病引起骨质疏松的发病机制。
     方法:选取神经纤维瘤病基因杂合型(Nf1+/-)和野生型(Nf1+/+)小鼠为研究对象,取胫骨干骺端行抗酒石酸酸性磷酸酶(TRAP)染色,比较两组小鼠骨内破骨细胞含量,并进行统计学分析。体外实验取两种基因型小鼠的骨髓单核细胞,观察在巨噬细胞集落刺激因子(M-CSF, macroPhage colony-stimulating factor)和细胞核因子κB受体活化因子配基(RANKL, receptor activator of NF-κB ligand)诱导下的破骨细胞分化能力,测定两组破骨细胞形成、分化、贴附、迁移和骨吸收功能,并进行统计学比较。
     结果: Nf1+/-小鼠骨内成熟破骨细胞数量比Nf1+/+增多,细胞体积明显增大, ( TRAP阳性区面积占总面积的百分比分别为Nf1+/+, 0.88%±0.0014; Nf1+/-, 2.33%±0.0013,P<0.01)有显著性差异;体外培养的Nf1+/-破骨细胞形成增多,(每1×105骨髓单核细胞形成的破骨细胞数分别为Nf1+/+,41.75±13.14 ; Nf1+/-, 61.17±18.17, P<0.01)与Nf1+/+有显著性差异;体外诱导培养的Nf1+/-破骨细胞的粘附、迁移、骨吸收功能强(粘附细胞数量Nf1+/+,53±11.08; Nf1+/-,108±11.67, P<0.01;迁移细胞数量Nf1+/+,88.33±12.40; Nf1+/-,239.83±67.77, P<0.01;骨吸收面积百分比Nf1+/+,18.37%±0.0367; Nf1+/-, 40.44,%±0.1052, P<0.01)二者有显著性差异。
     结论:破骨细胞形成增多,功能增强是?型神经纤维瘤病引起骨质疏松的发病机制之一。
     第二部分外源性骨桥蛋白对1型神经纤维瘤病小鼠破骨细胞功能影响
     目的:研究外源性骨桥蛋白对?型神经纤维瘤病基因型小鼠的破骨细胞功能的影响,探讨?型神经纤维瘤病破骨细胞功能增强,引起骨改变的发病机制。
     方法:选取神经纤维瘤病基因杂合型(Nf1+/-)和野生型(Nf1+/+)小鼠为研究对象,取小鼠的骨髓基质细胞,在一定M-CSF和RANKL的刺激下向破骨细胞分化,并给与外源性骨桥蛋白,研究测定两组破骨细胞形成、分化、黏附、迁移和骨吸收功能,并进行统计学比较。
     结果:经三次以上独立的实验结果统计,在骨桥蛋白的作用下Nf1+/-基因型小鼠破骨细胞的形成、分化、黏附、迁移、和骨吸收功能强于Nf1+/+基因型小鼠,破骨细胞形成(Trap+细胞计数Nf1+/+不加OPN 39.25±11.9加入OPN 47±2.34;Nf1+/-不加OPN 51.5±5.90加入OPN 70.75±0.81, p<0.05 )黏附功能(黏附细胞数Nf1+/+不加OPN 52.20±11.79,加入OPN,69.80±7.65;Nf1+/-不加OPN 80.40±13.61,加入OPN 162.50±10.52, p<0.05),迁移功能(迁移细胞计数Nf1+/+不加OPN 87.20±5.17,加入OPN 238.17±28.20 ; Nf1+/-不加OPN 223.17±29.02 ,加入OPN 582.13±51.51, p<0.05),骨吸收能力(骨吸收面积百分比Nf1+/+不加OPN 4.18%±0.0011加入OPN 17.08%±0.018;Nf1+/-不加OPN 9.11%±0.008,加入OPN 72.14%±0.083, p<0.05),二者有显著性差异。
     结论:骨桥蛋白诱导的破骨细胞功能增强是?型神经纤维瘤病骨改变的发病机制之一,骨桥蛋白是治疗?型神经纤维瘤病骨改变的候选靶向分子。
     第三部分Nf1+/-小鼠破骨细胞自分泌骨桥蛋白在其破骨细胞功能增强中的作用
     目的:研究体外培养的Nf1+/-小鼠破骨细胞的分泌合成骨桥蛋白的能力,应用骨桥蛋白中和抗体抑制破骨细胞分泌的骨桥蛋白,并与野生型破骨细胞比较,分析骨桥蛋白在Nf1+/-小鼠破骨细胞功能增强中的作用。
     方法:采取体外培养的Nf1+/-小鼠破骨细胞不同时期的上清液,做ELISA分析检测OPN浓度,并与Nf1+/+破骨细胞比较;在加入OPN中和抗体的条件下,测定体外培养的Nf1+/-小鼠破骨细胞的形成及迁移、粘附、骨吸收能力,并与Nf1+/+破骨细胞比较。
     结果:在体外培养的Nf1+/-小鼠破骨细胞上清液中,OPN含量比野生型小鼠破骨细胞上清液中含量明显增高,与培养3天的破骨细胞上清液相比,培养6天的破骨细胞上清液中OPN含量的差别更为明显,(Nf1+/+ 3天,54.60±6.72ng/ml;6天,80.04±11.11ng/ml;Nf1+/-3天,71.34±9.18ng/ml, 6天,120.73±3.4ng/ml p<0.05)二者有显著性差异。
     在体外培养破骨细胞时加入有活性的OPN中和抗体,可以抑制Nf1+/-破骨细胞的形成, (Trap+细胞数Nf1+/+无OPN抗体42.0±6.08加入OPN抗体34.67±6.23;Nf1+/-无OPN抗体72.33±5.75加入OPN抗体41.67±11.86, p<0.01)二者有显著性差异。贴附功能(贴附细胞数Nf1+/+无OPN抗体39.25±11.9加入OPN抗体27±2.34;Nf1+/-无OPN抗体51.5±5.90加入OPN抗体10.75±0.81, p<0.01)二者有显著性差异。迁移功能(迁移细胞数Nf1+/+无OPN抗体150.20±35.28加入OPN抗体114.8±24.05 ; Nf1+/-无OPN抗体241.60±37.10加入OPN抗体111.80±21.13, p<0.01)二者有显著性差异。骨吸收功能(骨吸收面积百分比Nf1+/+无OPN抗体4.18%±0.0011加入OPN抗体2.08%±0.0041;Nf1+/-无OPN抗体19.11%±0.046加入OPN抗体1.81%±0.002, p<0.01)二者有显著性差异。
     结论:自分泌骨桥蛋白在Nf1+/-小鼠破骨细胞功能增强过程中发挥重要作用,OPN是治疗神经纤维瘤病骨质疏松的靶向治疗候选靶分子之一。
     第四部分Nf1+/-小鼠成骨细胞旁分泌骨桥蛋白在破骨细胞功能增强中的作用
     目的:研究体外培养的Nf1+/-小鼠成骨细胞的分泌合成骨桥蛋白的能力,应用骨桥蛋白中和抗体抑制成骨细胞分泌的骨桥蛋白,并与破骨细胞共同培养,分析成骨细胞旁分泌骨桥蛋白在Nf1+/-小鼠破骨细胞功能增强中的作用。
     方法:采取体外培养的Nf1+/-小鼠成骨细胞的上清液,做ELISA分析检测OPN浓度,并与Nf1+/+破骨细胞比较;在加入OPN中和抗体的条件下,测定加入Nf1+/-成骨细胞条件培养液体外培养的小鼠破骨细胞的形成及迁移、粘附、骨吸收能力,并与Nf1+/+破骨细胞比较。
     结果:在体外培养的Nf1+/-小鼠成骨细胞条件培养液中,OPN含量比野生型小鼠成骨细胞细胞条件培养液中含量明显增高。(Nf1+/+141.09±11.31ng/ml;Nf1+/-241.08±18.63ng/ml, p<0.01)二者有显著性差异。
     在体外培养破骨细胞时加入成骨细胞条件培养液,可促进破骨细胞形成,功能增强,以Nf1+/-小鼠成骨细胞条件培养液作用更明显。同时加入有活性的OPN中和抗体,可以抑制Nf1+/-成骨细胞条件培养液促进破骨细胞的形成的作用,二者有显著性差异。
     结论:成骨细胞旁分泌骨桥蛋白在Nf1+/-小鼠破骨细胞功能增强过程中发挥重要作用,OPN是治疗神经纤维瘤病骨质疏松的靶向治疗候选靶分子之一。
Neurofibromatosis type 1 (NF1) is a common, autosomal-dominant disorder caused by mutations in the NF1 tumor suppressor gene. Individuals with NF1 have a high incidence of both malignant as well as non-malignant complications. Many laboratories are pursuing concentrated efforts to understand the pathogenesis of the peripheral and central nervous system tumors that affect a wide range of NF1 patients. Despite NF1 being considered a neurocristopathy, NF1 functions as a GTPase in mesothelial derived tissues including blood cells, fibroblasts and osteoprogenitor cells that are relevant to skeletal development. However, less effort to date has been focused on understanding the molecular mechanisms underlying the pathogenesis of many of the non-malignant manifestations of NF1, particularly the skeletal manifestations that cumulatively affect up to 50% of all NF1 patients. Recent clinical studies have found that individuals with NF1 are at significant risk for both generalized and focal skeletal abnormalities. Several groups have reported that NF1 have reduced including a controlled trial using WHO criteria for osteoporosis and osteopenia, have provided evidence that NF1 patients have a significantly higher incidence of osteoporosis and osteopenia.
     Osteoclasts play a central role in the regulation of bone mass. Osteoclasts are terminally differentiated multinucleated giant cells with a principal bone resorptive activity. Bone resorption appears to proceed by the intricate coordination of the processes of attachment to bone, polarized secretion of acid and proteases, and active motility of osteoclasts along the bone surface. As osteoclasts crawl over bone surfaces they require rapid attachment and release from the extracellular matrix. The adhesion structures, podosomes, are uniquely designed for this purpose. After osteoclasts attach to the bone surface, podosomes develop highly polarized cytoplasmic organization in their ruffled borders. Recently, we reported a gain-of–function in the osteoclast bone resorption derived from Nf1+/- mice.
     Osteopontin (OPN) has been shown to be multifunctional, with activities in cell migration, cell survival, inhibition of calcification, regulation of immune cell function, and tumor cell metastasis. Increased levels of OPN protein have been linked to many disease states including atherosclerosis, transformation, tumor metastasis and renal diseases. Osteopontin (OPN) has also been reported involved in bone resorption, angiogenesis, wound healing, and tissue injuries following binding with type I collagen , fibronectin , and osteocalcin. OPN is a secreted, non-collagenous, sialic acid-rich phosphog- lycoprotein and acts both as chemokine and cytokine . Recently, OPN has been shown interacts with several integrins and CD44 variants which causes cell adhesion, migration, extracellular matrix invasion, and cell proliferation. In bone, it is predominantly expressed in osteoblasts and in terminally differentiated chondrocytes at the chondroosseous border. OPN-deficient (OPN-/-) mice are resistant to ovariectomy-induced bone resorption. Yu et al. have shown that haploinsufficiency of Nf1 enhances osteopontin expression in bone marrow-inducible osteoprogenitors and cortical bone. Kolanczyk et al. reported a significant upregulation of osteopontin in chondrocytes derived from a conditional Nf1 knockout mice, Nf1Prx1 mice. This upregulation of OPN expression may regulated by Ras. These studies imply an association between OPN and gain in functions in Nf1 haploinsufficient osteoclasts. In the present study, we proposed to investigate the role of OPN in regulating multiple cellular functions of Nf1+/- osteoclasts and related signaling axis. Our study indicates that Nf1 haploinsufficient osteoclasts are hypersensitive to OPN, which leads to increased osteoclast migration, adhesion, and bone resorption. Further, hyper phosphorylation of Ras/MAPK pathway is responsible for the gain in the osteoclast functions associated with OPN. Target of OPN may be a new treatment for the osseous manifestations in NF1 patients.
     PART 1
     Osteoclast hyperfunction in neurofibromatosis type 1 murine model
     Objective: Investigate cellular functions of osteoclasts derived from Nf1 heterozygote (Nf1+/-) and wild type (Nf1+/+) mice,and analyze the mechanism of the osteoprosis in Neurofibromatosis type 1.
     Method: Stain histological sections of tibias from Nf1+/- and Nf1+/+ mice with H&E or tartrate-resistant acid phosphatase (TRAP) activity, and measure the osteoclasts contained in metaphysis; Culture the low density bone marrow cells from Nf1+/- and Nf1+/+ mice with macrophage colony-stimulating factor (M-CSF) and receptor activator of NF-κB ligand (RANKL), examine the frequency of osteoclast progenitor, and evaluate multiple functions, including migration, adhesion, and bone absorption.
     Result: Nf1+/- mice contain numerous enlarged multinucleated osteoclasts in vivo than Nf1-/- mice.(TRAP+ area/total area Nf1+/+, 0.88%±0.0014; Nf1+/-, 2.33%±0.0013,P<0.01 ) , The number of Nf1+/- osteoclast formated from 1×105 low dencity bone marrow cells are higher than that of Nf1+/+ with significant difference. (Nf1+/+,41.75±13.14 ; Nf1+/-, 61.17±18.17, P<0.01). The mutiple functions of osteoclasts derived from Nf1 heterozygote are higher than those of wild type with significant difference(adhesion Nf1+/+,53±11.08; Nf1+/-,108±11.67, P<0.01; migration Nf1+/+,88.33±12.40; Nf1+/-,239.83±67.77, P<0.01; pit formation Nf1+/+, 18.37%±0.0367; Nf1+/-,40.44%±0.1052, P<0.01).
     Conclusion: The hyperfuctions of osteoclast in Nf1+/- mice may be responsible for the pathogenesis of NF1 osteoprosis.
     PART 2 OSTEOPONTIN PREFERENTIALLY PROMOTES MULTIPLE FUNCTIONS OF MURINE Nf1+/- OSTEOCLAST
     Objective: Test the osteoclast function of neurofibromatosis type 1 mice with exogenous osteopontin, analysis the mechanism of the bone change in neurofibromatosis type 1.
     Method: We culture the low density bone marrow cells from Nf1 heterozygote (Nf1+/-) and wild type (Nf1+/+) mice ( 4~6weeks old) with macrophage colony-stimulating factor (M-CSF) and receptor activator of NF-κB ligand( RANKL), with or without exogenous osteopontin,The function of osteoclast and osteoclast progenitor in formation, migration, adhesion, and bone absorption are tested. Osteoclast formation(Trap+cells Nf1+/+ without OPN 39.25±11.9with OPN 47±2.34;Nf1+/- without OPN 51.5±5.90 with OPN 70.75±0.81),adhesion(adhesiion cellsNf1+/+ without OPN 52.20±11.79, with OPN,69.80±7.65 ; Nf1+/- without OPN 80.40±13.61, with OPN 162.50±10.52), migration(migration cells Nf1+/+ without OPN 87.20±5.17, with OPN 238.17±28.20;Nf1+/- without OPN 223.17±29.02 ,with OPN 582.13±51.51),pit formation(area of bone absorptionNf1+/+ without OPN 4.18%±0.0011 with OPN 17.08%±0.018;Nf1+/- without OPN 9.11%±0.008, with OPN 72.14%±0.083)the difference is significant.
     Result: Given exogenous osteopontin, the osteoclast functions of Nf1 heterozygote are higher than wild type. The difference is significant.
     Conclusion: The hyperfunction of osteoclast in Nf1 heterozygote are related with osteopontin, inhibition of OPN may be an effective treatment for bone destruction of neurofibromatosis type 1.
     PART 3 AUTOCRINE OSTEOPONTIN PROMOTES MULTIPLE FUNCTIONS OF MURINE Nf1+/- OSTEOCLAST
     Objective: Test the osteoclast function of neurofibromatosis type 1 mice with exogenous osteopontin antibody, analysis the mechanism of the bone change in neurofibromatosis type 1.
     Method: Measure the OPN concentration in osteoclast culture superenant with ELISA. culture the low density bone marrow cells from Nf1 heterozygote (Nf1+/-) and wild type (Nf1+/+) mice ( 4~6weeks old ) with macrophage colony-stimulating factor (M-CSF) and receptor activator of NF-κB ligand( RANKL), with or without exogenous Anti-osteopontin,The function of osteoclast and osteoclast progenitor in formation, migration, adhesion, and bone absorption are tested.
     Result: The concentration of OPN in osteoclast culture media (Nf1+/+ 3days,54.60±6.72ng/ml ; 6day , 80.04±11.11ng/ml ; Nf1+/-3days ,71.34±9.18ng/ml, 6days,120.73±3.4ng/ml p<0.05) the difference is significant. Osteoclast formation (Trap+cells Nf1+/+ without anti-OPN antibody42.0±6.08with anti-OPN antibody ; Nf1+/- without anti-OPN antibody72.33±5.75with anti-OPN antibody 41.67±11.86), adhesion(adhesiion cellsNf1+/+ without anti-OPN antibody 39.25±11.9 with anti-OPN antibody, 27±2.34 ; Nf1+/- without anti-OPN antibody 51.5±5.90, with anti-OPN antibody 10.75±0.81,), migration(migration cellsNf1+/+ without anti-OPN antibody150.20±35.28, with anti-OPN antibody 114.8±24.05;Nf1+/- without anti-OPN antibody241.60±37.10 ,with anti-OPN antibody111.80±21.13),pit formation ( area of bone absorptionNf1+/+ without anti-OPN antibody4.18%±0.0011 with anti-OPN antibody2.08%±0.0041 ; Nf1+/- without anti-OPN antibody19.11%±0.046, with anti-OPN antibody1.81%±0.002).the difference are significant.
     Conclusion: The hyperfunction of osteoclast in Nf1 heterozygote are related with autocrine osteopontin, inhibition of OPN may be an effective treatment for bone destruction of neurofibromatosis type 1.
     PART 4 Paracrine secretion of osteopontin by Nf1+/- osteoblasts promote osteoclast activation in a neurofibromatosis type I murine model
     Objective: Test the osteoclast function of neurofibromatosis type 1 mice with osteoblast conditioned media, analysis the relationship of osteoclast hyperfunction with the paracrine of osteopontin by haploinsufficient loss of Nf1 osteoblast.
     Method: Measure the OPN concentration in osteoblast conditioned media with ELISA. culture the low density bone marrow cells from Nf1 heterozygote (Nf1+/-) and wild type (Nf1+/+) mice (age at 4~6weeks ) with macrophage colony-stimulating factor (M-CSF) and receptor activator of NF-κB ligand(RANKL), with or without OBCM and exogenous Anti-osteopontin antibody,The function of osteoclast and osteoclast progenitor in formation, migration, adhesion, and bone absorption are tested.
     Result: The concentration of OPN in osteoblast conditioned media ((Nf1+/+141.09±11.31ng/ml;Nf1+/-241.08±18.63ng/ml,p<0.01) the difference is significant. Conditioned media from Nf1+/- osteoblasts promotes the Nf1+/- osteoclast formation. Neutralizing antibody for OPN inhibited bioactivity of Nf1+/- OBCM. the difference are significant.
     Conclusion: The hyperfunction of osteoclast in Nf1 heterozygote are related with paratocrine osteopontin by osteoblast, inhibition of OPN may be an effective treatment for bone destruction of neurofibromatosis type 1.
引文
1 Lazaro C, et al. Neurofibromatosis type 1 due to germ-line mosaicism in a clinically normal father N Engl J Med, 1994. 331(21): 1403-1407
    2 Stevenson, D.A, et al. Bone mineral density in children and adolescents with neurofibromatosis type 1. J Pediatr, 2007. 150(1): 83-88
    3 Lammert, M., et al. Decreased bone mineral density in patients with neurofibromatosis 1. Osteoporos Int, 2005. 16(9): 1161-6
    4 Yilmaz K, et al. Bone mineral density in children with neurofibromatosis 1. Acta Paediatr, 2007. 96(8): 1220-1222
    5 Jacks T et al. Tumour predisposition in mice heterozygous for a targeted mutation in Nf1. Nat Genet, 1994. 7(3): 353-361
    6 Yang FC, et al. Hyperactivation of p21ras and PI3K cooperate to alter murine and human neurofibromatosis type 1-haploinsufficient osteoclast functions. J Clin Invest, 2006. 116(11): 2880-2891
    7 Sugatani TU, Alvarez, KA Hruska. PTEN regulates RANKL- and osteopontin-stimulated signal transduction during osteoclast differentiation and cell motility. J Biol Chem, 2003. 278(7): 5001-5008
    8严明Ⅰ型神经纤维瘤病分子遗传学研究进展。口腔颌面外科杂志2006,16(3),83-86
    9王亭,邱贵兴神经纤维瘤病在骨科中的表现及治疗,中华骨科杂志2005,25(4): 245-247
    10 Poyhonen MS, Kytola, J Leisti. Epidemiology of neurofibromatosis type 1 (NF1) in northern Finland. J Med Genet, 2000. 37(8): 632-636
    11 Yu X et al.Neurofibromin and its inactivation of Ras are prerequisites for osteoblast functioning. Bone, 2005. 36(5): 793-802
    12陈晖,邱勇,王斌等Ⅰ型神经纤维瘤病成骨细胞生物学特性的研究,中华骨科杂志,2006,26(5):327-331
    13 Elefteriou F, et al. ATF4 mediation of NF1 functions in osteoblast reveals a nutritional basis for congenital skeletal dysplasiae. Cell Metab, 2006. 4(6): 441-451
    14 Yang FC, et al. Hyperactivation of p21 and PI3K cooperate to alter murine and human neurofibromatosis type 1-haploinsufficient osteoclast functions. J Clin Invest, 2006. 116(11): 2880-2891
    15 Kolanczyk M, et al. Multiple roles for neurofibromin in skeletal development and growth. Hum Mol Genet, 2007. 16(8): 874-886
    16 Lacey DL, et al. Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell, 1998. 93(2): 165-176
    17 Yasuda H, et al. Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclastogenesis-inhibitory factor and is identical to TRANCE/RANKL. Proc Natl Acad Sci U S A, 1998. 95(7): 3597-3602
    18张兵兵,潘君,邓小燕破骨细胞骨吸收的分子机制.生物医学工程学杂志, 2005;22(6)∶1283-1286
    1 Stevenson DA, et al. Bone mineral density in children and adolescents with neurofibromatosis type 1. J Pediatr 2007. 150(1): 83-8
    2 Lammert M., et al. Decreased bone mineral density in patients with neurofibromatosis 1. Osteoporos Int 2005. 16(9): 1161-1166
    3 Yang FC, et al. Hyperactivation of p21ras and PI3K cooperate to alter murine and human neurofibromatosis type 1-haploinsufficient osteoclast functions. J Clin Invest, 2006. 116(11): 2880-2891
    4 Jacks T, Shih TS, Schmitt EM. Tumour predisposition in mice heterozygous for a targeted mutation in Nf1. Nat Genet, 1994. 7: 353-361
    5 Bar-Shavit Z, The osteoclast:A multinucleated, hematopoietic-origin, bone-resorbing osteoimmune cell. J Cell Biochem. 2007 Dec 1;102(5):1130-1139
    6 Cao JJ, et al. Aging increases stromal/osteoblastic cell-induced osteoclastogenesis and alters the osteoclast precursor pool in the mouse. J Bone Miner Res, 2005. 20(9): 1659-1668
    7张李明,李乐乐成骨/基质细胞在破骨细胞分化中的作用国外医学生物医学工程分册2005.4第28卷第2期105-108
    8 Sugatani TU, Alvarez, KA Hruska. PTEN regulates RANKL- and osteopontin-stimulated signal transduction during osteoclast differentiation and cell motility. J Biol Chem, 2003. 278(7): 5001-8
    9 Chellaiah, MA and KA Hruska, Osteopontin. Drug News Perspect, 1998. 11(6): 350-5
    10 Chellaiah, MA and KA Hruska, The integrin alpha(v)beta(3) and CD44 regulate the actions of osteopontin on osteoclast motility. Calcif Tissue Int, 2003. 72(3): 197-205
    11 Chellaiah, MA, et al. Osteopontin deficiency produces osteoclast dysfunction due to reduced CD44 surface expression. Mol Biol Cell, 2003.14(1): 173-189
    12 Yoshitake H., et al. Osteopontin-deficient mice are resistant to ovariectomy-induced bone resorption. Proc Natl Acad Sci U S A, 1999. 96(14): 8156-8160
    13 Franzén A, Hultenby K, Reinholt FP. Altered osteoclast development and function in osteopontin deficient mice J Orthop Res. 2007 Nov 29; Epub ahead of print
    14 Yu X, et al. Neurofibromin and its inactivation of Ras are prerequisites for osteoblast functioning. Bone, 2005. 36(5): 793-802
    15 Kolanczyk M, et al. Multiple roles for neurofibromin in skeletal development and growth. Hum Mol Genet, 2007. 16(8): 874-886
    16 Ishii T, et al. Osteopontin as a positive regulator in the osteoclastogenesis of arthritis. Biochem Biophys Res Commun, 2004. 316(3): 809-815
    17 Standal T, M. Borset, A Sundan. Role of osteopontin in adhesion, migration, cell survival and bone remodeling. Exp Oncol, 2004. 26(3): 179-184
    18高建军破骨细胞成熟和活化以及骨吸收机制国外医学·内分泌分册,1998 ,18(2) :57
    1 Riccardi, V. (1992) Neurifbromatosis: Phenotype, Natural History and Pathogenesis. The Johns Hopkins University Press, Baltimore, MD, USA, p479
    2 Friedman JM. Epidemiology of neurofibromatosis type 1. Am J Med Genet, 1999. 89(1): 1-6
    3 Giehl K. (2005) Oncogenic Ras in tumour progression and metastasis. Biol Chem. 386, 193–205
    4 Ingram DA, et al. Genetic and biochemical evidence that haploinsufficiency of the Nf1 tumor suppressor gene modulates melanocyte and mast cell fates in vivo. J Exp Med, 2000. 191(1): 181-188
    5 Alwan S, SJ Tredwell, JM Friedman. Is osseous dysplasia a primary feature of neurofibromatosis 1 (NF1)? Clin Genet, 2005. 67(5): p378-390
    6 Stevenson DA, et al. Descriptive analysis of tibial pseudarthrosis in patients with neurofibromatosis 1. Am J Med Genet, 1999. 84(5): 413-419
    7 Ruggieri M, et al. Congenital bone malformations in patients with neurofibromatosis type 1 (Nf1). J Pediatr Orthop, 1999. 19(3): 301-305
    8 Stevenson DA, et al. Bone mineral density in children and adolescents with neurofibromatosis type 1. J Pediatr, 2007. 150(1): 83-88
    9 Lammert M., et al. Decreased bone mineral density in patients with neurofibromatosis 1. Osteoporos Int, 2005. 16(9): 1161-6
    10 Teitelbaum SL. Bone resorption by osteoclasts. Science. 2000 Sep 1;289(5484): 1504-1508
    11 Yang FC, et al. Hyperactivation of p21ras and PI3K cooperate to alter murine and human neurofibromatosis type 1-haploinsufficient osteoclast functions. J Clin Invest, 2006. 116(11): 2880-2891
    12 Riccardi V, Womack JE, Jacks T. Neurofibromatosis and related tumors. Natural occurrence and animal models. Am J Pathol 1994; 145: 994-1000
    13 Ingram D, Hiatt K, King AJ,et al. Hyperactivation of p21(ras) and the hematopoietic-specific Rho GTPase, Rac2, cooperate to alter the proliferation of neurofibromin-deficient mast cells in vivo and in vitro. J Exp Med 2001; 194: 57–69
    14 Johansson C, Roupe G, Lindstedt G. Bone density, bone markers and bone radiological features in mastocytosis. Age Ageing 1996; 25: 1-7
    15 Bollag G, Clapp D, Shih S, et al. Loss of NF1 results in activation of the Ras signaling pathway and leads to aberrant growth in hematopoietic cells. Nat Genet 1996;12:144-8
    16 Gutmann D, Wu YL,et al.Heterozygosity for the neurofibromatosis 1 (NF1)tumor suppressor results in abnormalities in cell attachment, spreading and motility in astrocytes. Hum Mol Genet 2001;10:3009-3016
    17 Sodek JB, Ganss, McKee, Osteopontin. Crit Rev Oral Biol Med, 2000. 11(3): 279-303
    18 Sherman L, Rizvi T, Karyala S, Ratner N. CD44 enhances neuroregulin signaling by Schwann cells. J Cell Biol 2000;150:1071-1084
    19 Ishii T, et al. Osteopontin as a positive regulator in the osteoclastogenesis of arthritis. Biochem Biophys Res Commun, 2004. 316(3): 809-815
    20 Yamate T, et al. Osteopontin expression by osteoclast and osteoblast progenitors in the murine bone marrow: demonstration of its requirement for osteoclastogenesis and its increase after ovariectomy. Endocrinology, 1997. 138(7): 3047-3055
    21 Guo X, et al. Identification of a ras-activated enhancer in the mouse osteopontin promoter and its interaction with a putative ETS-related transcription factor whose activity correlates with the metastatic potential of the cell. Mol Cell Biol, 1995. 15(1): 476-87
    22 Sugatani TU, Alvarez KA, Hruska. PTEN regulates RANKL- and osteopontin-stimulated signal transduction during osteoclast differentiation and cell motility. J Biol Chem, 2003. 278(7): 5001-5008
    1 Bollag G, Clapp DW, Shih S, et al. Loss of NF1 results in activation of the Ras signaling pathway and leads to aberrant growth in haematopoietic cells. Nat Genet. 1996;12:144-148
    2 Largaespada DA, Brannan CI, Jenkins NA, Copeland NG. Nf1 deficiency causes Ras-mediated granulocyte/macrophage colony stimulating factorhypersensitivity and chronic myeloid leukaemia. Nat Genet. 1996;12:137-143
    3 Yu X, Chen S, Potter OL, et al. Neurofibromin and its inactivation of Ras are prerequisites for osteoblast functioning. Bone. 2005. 36(5): 793-802
    4 Crawford AH, Jr., Bagamery N. Osseous manifestations of neurofibromatosis in childhood. J Pediatr Orthop. 1986;6:72-88
    5 Kuorilehto T, Ekholm E, Nissinen M, et al. NF1 gene expression in mouse fracture healing and in experimental rat pseudarthrosis. J Histochem Cytochem. 2006;54:363-370
    6 Kuorilehto T, Nissinen M, Koivunen J, Benson MD, Peltonen J. NF1 tumor suppressor protein and mRNA in skeletal tissues of developing and adult normal mouse and NF1-deficient embryos. J Bone Miner Res. 2004;19:983-989
    7 Stevenson DA, Moyer-Mileur LJ, Murray M, et al. Bone mineral density in children and adolescents with neurofibromatosis type 1. J Pediatr. 2007;150:83-88
    8 Lammert M, Kappler M, Mautner VF, et al. Decreased bone mineral density in patients with neurofibromatosis 1. Osteoporos Int. 2005;16:1161-1166
    9 Jacques C, Dietemann JL. [Imaging features of neurofibromatosis type 1]. J Neuroradiol. 2005;32:180-197
    10 Illes T, Halmai V, de Jonge T, Dubousset J. Decreased bone mineral density in neurofibromatosis-1 patients with spinal deformities. Osteoporos Int. 2001;12:823-827
    11 Stevenson DA, Zhou H, Ashrafi S, et al. Double inactivation of NF1 in tibial pseudarthrosis. Am J Hum Genet. 2006;79:143-148
    12 Teitelbaum SL. Osteoclasts, integrins, and osteoporosis. J Bone Miner Metab. 2000;18:344-349
    13 Yang FC, Chen S, Robling AG, et al. Hyperactivation of p21 and PI3K cooperate to alter murine and human neurofibromatosis type 1-haploinsufficient osteoclast functions. J Clin Invest.2006;116:2880-2891
    14 Weber GF, Cantor H. The immunology of Eta-1/osteopontin. Cytokine Growth Factor Rev. 1996;7:241-248
    15 Liaw L, Birk DE, Ballas CB, Whitsitt JS, Davidson JM, Hogan BL. Altered wound healing in mice lacking a functional osteopontin gene (spp1). J Clin Invest. 1998;101:1468-1478
    16 Denhardt DT, Noda M, O'Regan AW, Pavlin D, Berman JS. Osteopontin as a means to cope with environmental insults: regulation of inflammation, tissue remodeling, and cell survival. J Clin Invest. 2001;107:1055-1061
    17 Furger KA, Menon RK, Tuck AB, Bramwell VH, Chambers AF. The functional and clinical roles of osteopontin in cancer and metastasis. Curr Mol Med. 2001;1:621-632
    18 Shapses SA, Cifuentes M, Spevak L, et al. Osteopontin facilitates bone resorption, decreasing bone mineral crystallinity and content during calcium deficiency. Calcif Tissue Int. 2003;73:86-92
    19 Standal T, Borset M, Sundan A. Role of osteopontin in adhesion, migration, cell survival and bone remodeling. Exp Oncol. 2004;26:179-184
    20 Butler WT, Ritchie H. The nature and functional significance of dentin extracellular matrix proteins. Int J Dev Biol. 1995;39:169-179
    21 Chellaiah MA, Hruska KA. The integrin alpha(v)beta(3) and CD44 regulate the actions of osteopontin on osteoclast motility. Calcif Tissue Int. 2003;72:197-205
    22 Chellaiah MA, Kizer N, Biswas R, et al. Osteopontin deficiency produces osteoclast dysfunction due to reduced CD44 surface expression. Mol Biol Cell. 2003;14:173-189
    23 Yoshitake H, Rittling SR, Denhardt DT, Noda M. Osteopontin-deficient mice are resistant to ovariectomy-induced bone resorption. Proc Natl Acad Sci U S A. 1999;96:8156-8160
    24 Kolanczyk M, Kossler N, Kuhnisch J, et al. Multiple roles for neurofibromin in skeletal development and growth. Hum Mol Genet. 2007;16:874-886
    25 Wu X, Estwick SA, Chen S, et al. Neurofibromin plays a critical role in modulating osteoblast differentiation of mesenchymal stem/progenitor cells. Hum Mol Genet. 2006;15:2837-2845
    26 Cao JJ, Wronski TJ, Iwaniec U, et al. Aging increases stromal/osteoblastic cell-induced osteoclastogenesis and alters the osteoclast precursor pool in the mouse. J Bone Miner Res. 2005;20:1659-1668
    27 Ishii T, Ohshima S, Ishida T, et al. Osteopontin as a positive regulator in the osteoclastogenesis of arthritis. Biochem Biophys Res Commun. 2004;316:809-815
    28 Sugatani T, Alvarez UM, Hruska KA. Activin A stimulates IkappaB-alpha/NFkappaB and RANK expression for osteoclast differentiation, but not AKT survival pathway in osteoclast precursors. J Cell Biochem. 2003;90:59-67
    29 Rangaswami H, Bulbule A, Kundu GC. JNK1 differentially regulates osteopontin-induced nuclear factor-inducing kinase/MEKK1-dependent activating protein-1-mediated promatrix metalloproteinase-9 activation. J Biol Chem. 2005;280:19381-19392
    30 Kuorilehto T, Poyhonen M, Bloigu R, Heikkinen J, Vaananen K, Peltonen J. Decreased bone mineral density and content in neurofibromatosis type 1: lowest local values are located in the load-carrying parts of the body. Osteoporos Int. 2005;16:928-936
    31 Scherpereel A, Lee YC. Biomarkers for mesothelioma. Curr Opin Pulm Med. 2007;13:339-443
    32 Wai PY, Kuo PC. Osteopontin: regulation in tumor metastasis. Cancer Metastasis Rev. 2008;27:103-118
    33 Rangel J, Nosrati M, Torabian S, et al. Osteopontin as a molecular prognostic marker for melanoma. Cancer. 2008;112:144-150
    34 Denhardt DT, Noda M. Osteopontin expression and function: role in bone remodeling. J Cell Biochem Suppl. 1998;30-31:92-102
    35 El-Tanani MK, Campbell FC, Kurisetty V. The regulation and role of osteopontin in malignant transformation and cancer. Cytokine GrowthFactor Rev. 2006;17:463-474
    36 Ingram DA, Hiatt K, King AJ, et al. Hyperactivation of p21(ras) and the hematopoietic-specific Rho GTPase, Rac2, cooperate to alter the proliferation of neurofibromin-deficient mast cells in vivo and in vitro. J Exp Med. 2001;194:57-69
    37 Gutmann DH, Wu YL, Hedrick NM. Heterozygosity for the neurofibromatosis 1 (NF1) tumor suppressor results in abnormalities in cell attachment, spreading and motility in astrocytes. Hum Mol Genet. 2001;10:3009-3016
    38 Gingery A, Bradley E, Shaw A. Phosphatidylinositol 3-kinase coordinately activates the MEK/ERK and AKT/NFkappaB pathways to maintain osteoclast survival. J Cell Biochem. 2003;89:165-179
    39 Lee SE, Chung WJ, Kwak HB, et al. Tumor necrosis factor-alpha supports the survival of osteoclasts through the activation of Akt and ERK. J Biol Chem. 2001;276:49343-49349
    40 Luckashenak NA, Ryszkiewicz RL, Ramsey KD. The Src homology 2 domain-containing leukocyte protein of 76-kDa adaptor links integrin ligation with p44/42 MAPK phosphorylation and podosome distribution in murine dendritic cells. J Immunol. 2006;177:5177-5185
    41 Abbas S, Clohisy JC, Abu-Amer Y. Mitogen-activated protein (MAP) kinases mediate PMMA-induction of osteoclasts. J Orthop Res. 2003;21:1041-1048
    42 Yamanaka Y, Abu-Amer Y, Faccio R. Map kinase c-JUN N-terminal kinase mediates PMMA induction of osteoclasts. J Orthop Res. 2006;24:1349-1357
    43 Digilio MC, Sarkozy A, Capolino R, et al. Costello syndrome: clinical diagnosis in the first year of life. Eur J Pediatr. 2008;167:621-628
    44 Hou JW. Rapidly progressive scoliosis after successful treatment for osteopenia in Costello syndrome. Am J Med Genet A. 2008;146:393-396
    1 Senger DR, Wirth DF, Hynes RO. Transformed mammalian cells secrete specific proteins and phosphoproteins.Cell 1979;16:885-93
    2 Weber GF, Cantor H. The immunology of Eta-1/osteopontin.Cytokine Growth Factor Rev 1996;7:241-248
    3 Patarca R, Saavedra RA. Structural and functional studies of the early T-lymphocyte activation(Eta-1)gene.J Exp Med 1989;170:145-62
    4 Fisher LW, Whitson SW, Avioli LV. Matrix sialoprotein of developing bone. J Biol Chem 1983;258:12723-12727
    5 Denhardt DT, Lopez CA, Rollo EE. Osteopontin-induced modifications of cellular functions.Ann NY Acad Sci 1995;760:127-142
    6 Oldberg A, Franzen A, Heinegard D. Cloning and sequence analysis of rat bone sialoprotein(osteopontin)cDNA reveals an arg-gly-asp cell- binding sequence.Proc Natl Acad Sci USA 1986;83:8819-8823
    7 Sodek J, Ganss B, McKee MD. Osteopontin.Crit Rev Oral Biol Med 2000;11:279-303
    8 Suzuki K. Osteopontin-gene,structure and biosynthesis.Nippon Rinsho 2005;63(Suppl 10):608-12
    9 Korber B, Mermod N, Hood L. Regulation of gene expression by interferons:control of H-2 promoter responses.Science 1988;239:1302-1306
    10 Oates AJ, Barraclough R, Rudland PS. The role of osteopontin in tumorigenesis and metastasis. Invas Metastasis 1997;17:1-15
    11 Al-Shami R, Sorensen ES, Ek-Rylander B. Phosphorylated osteopontin promotes migration of human choriocarcinoma cells via a p70 S6 kinase-dependent pathway. J Cell Biochem 2005;94:1218-1233
    12 Chatterjee M.Vitamin D and genomic stability. Mutat Res 2001;475:69-87
    13 Denhardt DT, Mistretta D, Chambers AF,et al. Transcriptional regulation of osteopontin and the metastatic phenotype:evidence for a Ras-activated enhancer in the human OPN promoter. Clin Exp Metastasis 2003;20:77-84
    14 Levin VA. Basis and importance of Src as a target in cancer. Cancer Treat Res 2004;119:89-119
    15 Tezuka KI, Denhardt DT, Rodan GA. Stimulation of mouse osteopontin promoter by v-Src is mediated by a CCAAT box-binding factor.J Biol Chem 1996;271:22713-22717
    16 Scatena M, Almeida M, Chaisson ML. NF-kappaB mediates alpha v beta 3 integrin-induced endothelial cell survival. J Cell Biol 1998;141:1083–1093
    17 El-Tanani MK, Fernig DG, Barraclough R. Differential modulation of transcriptional activity of estrogen receptors by direct protein–protein interactions with the T cell factor family of transcription factors. J Biol Chem 2001;276:41675-41682
    18 Matkovits T, Christakos S. Variable in vivo regulation of rat VitaminD-dependent genes(osteopontin,Ca,Mg-adenosine triphosphatase, and 25-hydroxyvitamin D3 24-hydroxylase):implications for differing mechanisms of regulation and involvement of multiple factors. Endocrinology 2005;136: 3971-3982
    19 Bortman P, Folgueira MA, Katayama MLH. Antiproliferative effects of 1,25-dihydroxyvitamin D3 on breast cells—a mini review.Braz J Med Biol Res 2002;35:1-9
    20 Hosoi J, Abe E, Suda T. Induction of anchorage-independent growth of JB6 mouse epidermal cells by 1 alpha,25-dihydroxyvitamin D3. Cancer Res 1986;46:5582-5586
    21 Eferl R, Wagner EF. AP-1:a double-edged sword in tumorigenesis. Nat Rev Cancer 2003;3:859-868
    22 El-Tanani MK, Platt-Higgins A, Rudland PS Ets gene PEA3 cooperates with beta-catenin-Lef-1 and c-Jun in regulation of osteopontin transcription. J Biol Chem 2004;279:20794-20806
    23 Renault MA, Jalvy S, Belloc I, et al. AP-1 is involved in UTP-induced osteopontin expression in arterial smooth muscle cells. Circ Res 2003;93:674-81
    24 Das R, Mahabeleshwar GH, Kundu GC. Osteopontin induces AP-1-mediated secretion of urokinase-type plasminogen activator through c-Src-dependent epidermal growth factor receptor transactivation in breast cancer cells. J Biol Chem 2004;279:11051-64
    25 Schule R, Rangarajan P, Yang N,et al. Retinoic acid is a negative regulator of AP-1-responsive genes. Proc Natl Acad Sci USA1991;88:6092–6096
    26 Treinies I, Paterson HF, Hooper S. Activated MEK stimulates expression of AP-1 components independently of phosphatidylinositol 3-kinase(PI3-kinase) but requires a PI3-kinase signal to stimulate DNA synthesis.Mol Cell Biol 1999;19:321-329
    27 Hatsell S, Rowlands T, Hiremath M. Beta-catenin and Tcfs in mammary development and cancer. J Mammary Gland Biol Neoplasia 2003;8:145-158
    28 Kikuchi A.Tumor formation by genetic mutations in the components of the Wnt signaling pathway. Cancer Sci 2003;94:225-229
    29 Kuhl M, Shldahl LC, Park M. The Wnt/Ca2+ pathway:a new vertebrate Wnt signaling pathway takes shape. Trends Genet 2000;16:279-283
    30 Reya T, Clevers H. Wnt signalling in stem cells and cancer.Nature 2005;434:843-850
    31 El-Tanani MK, Barraclough R, Wilkinson MC. Metastasis-inducing DNA regulates the expression of the osteopontin gene by binding the transcription factor Tcf-4. Cancer Res 2001;61:5619-5629
    32 Wang D, Yamamoto S, Hijiya N. Transcriptional regulation of the human osteopontin promoter:functional analysis and DNA–protein interactions. Oncogene 2000;19:5801-5809
    33 Yeatman TJ. Beyond p53. Ann Surg Oncol 2003;10:831
    34 Bidder M, Shao JS, Charlton-Kachigian N. Osteopontin transcription in aortic vascular smooth muscle cells is controlled by glucose-regulated upstream stimulatory factor and activator protein-1 activities. J Biol Chem 2002;277:44485-44496
    35 Malyankar UM, Hanson R, Schwartz SM Upstream stimulatory factor 1 regulates osteopontin expression in smooth muscle cells. Exp Cell Res 1999;250:535-547
    36 Morimoto I, Sasaki Y, Ishida S. Identification of the osteopontin gene as a direct target of TP53. Genes Chromosom Cancer 2002;33:270-178
    37 El-Tanani MK, Campbell FC, Crowe P, et al. BRCA1 Suppresses Osteopontin-mediated Breast Cancer. J Biol Chem 2006;281:26587-26601
    38 Chang PL, Cao M, Hicks P. Osteopontin induction is required for tumor promoter-induced transformation of preneoplastic mouse cells. Carcinogenesis 2003;24:1749-1758
    39 Wai PY, Kuo PC. The role of osteopontin in tumor metastasis. J Surg Res 2004;121:228-241
    40 Georgolios A, Batistatou A, Charalabopoulos A. The role of CD44 adhesion molecule in oral cavity cancer. Exp Oncol 2006;28:94-98
    41 Weber GF, Ashkar S. Interaction between CD44 and osteopontin as a potential basis for metastasis formation. Proc Assoc Am Physician 1997;109:1-9
    42 Gao C, Guo H, Downey L. Osteopontin-dependent CD44v6 expression and cell adhesion in HepG2 cells. Carcinogenesis 2003;24:1871-1878
    43 Steitz SA, Speer MY, McKee MD. Osteopontin inhibits mineral deposition and promotes regression of ectopic calcification. Am J Pathol 2002;161:2035-2046
    44 Hunter GK, Hauschka PV, Poole AR. Nucleation and inhibition of hydroxyapatite formation by mineralized tissue proteins. Biochem J 1996;317:59-64
    45 Pampena DA, Robertson KA, Litvinova O. Inhibition of hydroxyapatite formation by osteopontin phosphopeptides. Biochem J 2004;378:1083-1087
    46 Teitelbaum SL. Bone resorption by osteoclasts. Science 2000; 289:1504-1508
    47 Rittling SR, Matsumoto HN, McKee MD. Mice lacking osteopontin show normal development and bone structure but display altered osteoclast formation in vitro.J Bone Miner Res 1998;13:1101-1111
    48 Liaw L, Birk DE, Ballas CB. Altered wound healing in mice lacking a functional osteopontin gene(spp1). J Clin Invest 1998;101:1468-1478
    49 Ihara H, Denhardt DT, Furuya K. Parathyroid hormone-induced bone resorption does not occur in the absence of osteopontin. J Biol Chem 2001;276:13065-13071
    50 Yoshitake H, Rittling SR, Denhardt DT. Osteopontin-deficient mice are resistant to ovariectomy-induced bone resorption. Proc Natl Acad Sci USA 1999;96:8156-8160
    51 Ishijima M, Rittling SR, Yamashita T. Enhancement of osteoclastic bone resorption and suppression of osteoblastic bone formation in response to reduced mechanical stress do not occur in the absence of osteopontin J Exp Med 2001;193: 399-404
    52 Yamate T, Mocharla H, Taguchi Y. Osteopontin expression by osteoclast and osteoblast progenitors in the murine bone marrow:demonstration of its requirement for osteoclastogenesis and its increase after ovariectomy. Endocrinology 1997;138:3047-3055
    53 Ishii T, Ohshima S, Ishida T.Osteopontin as a positive regulator in the osteoclastogenesis of arthritis. Biochem Biophys Res Commun 2004;316: 809-815
    54 Chellaiah MA, Kizer N, Biswas R. Osteopontin deficiency produces osteoclast dysfunction due to reduced CD44 surface expression. Mol Biol Cell 2003;14:173-189
    55 Dodds RA, Connor JR, James IE. Human osteoclasts, not osteoblasts, deposit osteopontin onto resorption surfaces:an in vitro and ex vivo study of remodeling bone. J Bone Miner Res 1995;10:1666-1680
    56 Merry K, Dodds R, Littlewood A. Expression of osteopontin mRNA by osteoclasts and osteoblasts in modelling adult human bone. J Cell Sci 1993;104:1013-1020
    57 Flores ME, Norgard M, Heinegard D. RGD-directed attachment of isolated rat osteoclasts to osteopontin, bone sialoprotein, and fibronectin. Exp Cell Res 1992;20:526-530
    58 Reinholt FP, Hultenby K, Oldberg A. Osteopontin-a possible anchor of osteoclasts to bone Proc Natl Acad Sci USA 1990;87:4473-4475
    59 McKee MD, Nanci A. Osteopontin:an interfacial extracellular matrix protein in mineralized tissues. Connect Tissue Res 1996;35:197-205
    60 Ross FP, Chappel J, Alvarez JI. Interactions between the bone matrix proteins osteopontin and bone sialoprotein and the osteoclast integrin alpha v beta 3 potentiate bone resorption. J Biol Chem 1993; 268: 9901-9907
    61 Engleman VW, Nickols GA, Ross FP. A peptidomimetic antagonist of the alpha(v)beta3 integrin inhibits bone resorption in vitro and prevents osteoporosis in vivo. J Clin Invest 1997;99:2284-2292
    62 McHugh KP, Hodivala-Dilke K, Zheng MH. Mice lacking beta3 integrinsare osteosclerotic because of dysfunctional osteoclasts.J Clin Invest 2000;105: 433-440
    63 Faccio R, Grano M, Colucci S. Activation of alpha v beta 3 integrin on human osteoclast-like cells stimulates adhesion and migration in response to osteopontin. Biochem Biophys Res Commun 1998;249:522-525
    64 Faccio R, Grano M, Colucci S. Localization and possible role of two different alpha v beta 3 integrin conformations in resting and resorbing osteoclasts. J Cell Sci 2002;115: 2919-1929
    65 Chellaiah MA, Hruska KA. The integrin alpha(v) beta(3)and CD44 regulate the actions of osteopontin on osteoclast motility. Calcif Tissue Int 2003;72: 197-205
    66 Tani-Ishii N, Tsunoda A, Umemoto T. Osteopontin antisense deoxyoligonucleotides inhibit bone resorption by mouse osteoclasts in vitro. J Periodontal Res 1997;32:480-486
    67 Suzuki K, Zhu B, Rittling SR. Colocalization of intracellular osteopontin with CD44 is associated with migration, cell fusion, and resorption in osteoclasts. J Bone Miner Res 2002;17:1486-1497
    1 Von Recklinghausen F. Uber die Multiplen Fibrome der Haut und Ihre Beziehung zu Multiplen Neuromen. Berlin: August Hirschwald; 1882
    2 Friedman JM. Epidemiology of neurofibromatosis type 1. Am J MedGenet 1999; 89:1-6
    3 Moore BD, Denckla MB. Neurofibromatosis. In: Yeates KO, Ris MD, Taylor HG, editors. Textbook of pediatric neuropsychology: research, theory, and practice, Ed. 1 New York, NY: Guilford Press; 2000. 149-170
    4 Riccardi VM, Lewis RA. Penetrance of von Recklinghausen neurofibromatosis: a distinction between predecessors and descendants. Am J Hum Genet 1988; 42:284-289
    5 Neurofibromatosis. Conference statement. National Institutes of Health Consensus Development Conference. Arch Neurol 1988; 45:575-578
    6 Tonsgard JH. Clinical manifestations and management of neurofibromatosis type 1. Semin Pediatr Neurol 2006; 13:2-7
    7 Overdiek A, Feifel H, Schaper J, et al. Diagnostic delay of NF1 in hemifacial hypertrophy due to plexiform neurofibromas. Brain Dev 2006; 28:275- 280
    8 Riccardi VM, Womack JE, Jacks T. Neurofibromatosis and related tumors. Natural occurrence and animal models. Am J Pathol 1994; 145:994-1000
    9 Crawford AH, Schorry EK. Neurofibromatosis in children: the role of the orthopaedist. J Am Acad Orthop Surg 1999; 7:217-230
    10 Gilbert A, Brockman R. Congenital pseudarthrosis of the tibia. Long-term followup of 29 cases treated by microvascular bone transfer. Clin Orthop Relat Res 1995; 314:37-44
    11 Stevenson DA, Birch PH, Friedman JM, et al. Descriptive analysis of tibial pseudarthrosis in patients with neurofibromatosis 1. Am J Med Genet 1999; 84:413-419
    12 Kuorilehto T, Poyhonen M, Bloigu R, et al. Decreased bone mineral density and content in neurofibromatosis type 1: lowest local values are located in the load-carrying parts ofthe body. Osteoporos Int 2005; 16:928- 936
    13 Lee MJ, Su YN, You HL, et al. Identification of forty-five novel and twenty-three known NF1 mutations in Chinese patients with neurofibromatosis type 1. Hum. Mutat 2006; 27:832
    14 Tang SC, Lee MJ, Jeng JS. Novel mutation of neurofibromatosis type 1 in a patient with cerebral vasculopathy and fatal ischemic stroke. J Neurol Sci 2006; 243:53-55
    15 Gao J, Fisher A, Chung J. Color duplex ultrasonography in detecting renal artery abnormalities in a patient with neurofibromatosis 1: a case report. Clin Imaging 2006; 30:140-142
    16 Kraut MA, Gerring JP, Cooper KL, et al. Longitudinal evolution of unidentified bright objects in children with neurofibromatosis-1. Am J Med Genet A 2004; 129:113-119
    17 Ducatman BS, Scheithauer BW, Piepgras DG, et al. Malignant peripheral nerve sheath tumors. A clinicopathologic study of 120 cases. Cancer 1986; 57:2006-2021
    18 Matsui I, Tanimura M, Kobayashi N, et al. Neurofibromatosis type 1 and childhood cancer. Cancer 1993; 72:2746-2754
    19 Sorensen SA, Mulvihill JJ, Nielsen A. Long-term follow-up of von Recklinghausen neurofibromatosis. Survival and malignant neoplasms. N Engl J Med 1986; 314:1010-1015
    20 Manoli A, Potter RT, Perfetto J, Coleman A. Thoracic manifestations of Recklinghausen’s disease. Malignant potential. N Y State J Med 1969; 69:3014-3018
    21 Schorry EK, Crawford AH, Egelhoff JC, et al. Thoracic tumors in children with neurofibromatosis-1. Am J Med Genet 1997; 74:533-537
    22 Belzeaux R, Lancon C. Neurofibromatosis type 1: psychiatric disorders and quality of life impairment. Presse Med 2006; 35:277-280
    23 Page PZ, Page GP, Ecosse E, et al. Impact of neurofibromatosis 1 on quality of life: a cross-sectional study of 176 American cases. Am J Med Genet A . 2006; 140:1893-1898
    24 Wallace MR, Andersen LB, Fountain JW, et al. A chromosome jump crosses a translocation breakpoint in the von Recklinghausen neurofibromatosis region. Genes Chromosomes Cancer 1990; 2:271-277
    25 Viskochil D, Buchberg AM, Xu G, et al. Deletions and a translocationinterrupt a cloned gene at the neurofibromatosis type 1 locus. Cell 1990; 62:187- 192
    26 Wimmer K, Yao S, Claes K, et al. Spectrum of single-and multiexon NF1 copy number changes in a cohort of 1,100 unselected NF1 patients. Genes Chromosomes Cancer 2006; 45:265-276
    27 Huson SM, Compston DA, Clark P. A genetic study of von Recklinghausen neurofibromatosis in south east Wales. I. Prevalence, fitness, mutation rate, and effect of parental transmission on severity. J Med Genet 1989; 26:704-711
    28 Upadhyaya M, Ruggieri M, Maynard J, et al. Gross deletions of the neurofibromatosis type 1 (NF1) gene are predominantly of maternal origin and commonly associated with a learning disability, dysmorphic features and developmental delay. Hum Genet 1998; 102:591-597
    29 Han SS, Cooper DN, Upadhyaya MN. Evaluation of denaturing high performance liquid chromatography (DHPLC) for the mutational analysis of the neurofibromatosis type 1 (NF1) gene. Hum Genet 2001;109:487- 497
    30 Upadhyaya M, Maynard J, Osborn M, et al. Characterisation of germline mutations in the neurofibromatosis type 1 (NF1) gene. J Med Genet 1995; 32:706-710
    31 Fahsold R, Hoffmeyer S, Mischung C, et al. Minor lesion mutational spectrum of the entire NF1 gene does not explain its high mutability but points to a functional domain upstream of the GAP-related domain. Am J Hum Genet 2000; 66:790-818
    32 Heim RA, Kam-Morgan LN, Binnie CG, et al. Distribution of 13 truncating mutations in the neurofibromatosis 1 gene. Hum Mol Genet 1995; 4:975- 981
    33 Messiaen LM, Callens T, Mortier G, et al. Exhaustive mutation analysis of the NF1 gene allows identification of 95% of mutations and reveals a high frequency of unusual splicing defects. Hum Mutat 2000; 15:541-555
    34 Schirinzi A, Drmanac S, Dallapiccola B, et al. Combinatorial sequencing-by hybridization: analysis of the NF1 gene. Genet Test 2006; 10:8-17
    35 Knudson AG Jr. Mutation and cancer: statistical study of retinoblastoma. Proc Natl Acad Sci U S A 1971; 68:820-823
    36 Shannon KM, O’Connell P, Martin GA, et al. Loss of the normal NF1 allele from the bone marrow of children with type 1 neurofibromatosis and malignant myeloid disorders. N Engl J Med 1994; 330:597-601
    37 Legius E, Marchuk DA, Collins FS, Glover TW. Somatic deletion of the neurofibromatosis type 1 gene in a neurofibrosarcoma supports a tumour suppressor gene hypothesis. Nat Genet 1993; 3:122-126
    38 Riccardi VM. Neurofibromatosis: phenotype, natural history and pathogenesis. Baltimore and London: The Johns Hopkins University Press; 1992
    39 Kluwe L, Friedrich R, Mautner VF. Loss of NF1 allele in Schwann cells but not in fibroblasts derived from an NF1-associated neurofibroma. Genes Chromosomes Cancer 1999; 24:283-285
    40 Rutkowski JL, Wu K, Gutmann DH, et al. Genetic and cellular defects contributing to benign tumor formation in neurofibromatosis type 1. Hum Mol Genet 2000; 9:1059-1066
    41 Rosenbaum T, Rosenbaum C, Winner U, et al. Long-term culture and characterization of human neurofibroma-derived Schwann cells. J Neurosci Res 2000; 61:524-532
    42 Serra E, Rosenbaum T, Winner U, et al. Schwann cells harbor the somatic NF1 mutation in neurofibromas: evidence of two different Schwann cell subpopulations. Hum Mol Genet 2000; 9:3055-3064
    43 Maertens O, Brems H, Vandesompele J, et al. Comprehensive NF1 screening on cultured Schwann cells from neurofibromas. Hum Mutat 2006; 27:1030- 1040
    44 Hagstrom SA, Dryja TP. Mitotic recombination map of 13cen-13q14 derived from an investigation of loss of heterozygosity inretinoblastomas. Proc Natl Acad Sci U S A 1999; 96:2952-2957
    45 Vortmeyer AO, Huang SC, Pack SD, et al. Somatic point mutation of the wild- type allele detected in tumors of patients with VHL germline deletion. Oncogene 2002; 21:1167-1170
    46 Kobayashi C, Oda Y, Takahira T, et al. Chromosomal aberrations and microsatellite instability of malignant peripheral nerve sheath tumors: a study of 10 tumors from nine patients. Cancer Genet Cytogenet 2006; 165:98- 105
    47 Nishi T, Lee PS, Oka K, et al. Differential expression of two types of the neurofibromatosis type 1 (NF1) gene transcripts related to neuronal differentiation. Oncogene 1991; 6:1555-1559
    48 Suzuki Y, Suzuki H, Kayama T, et al. Brain tumors predominantly express the neurofibromatosis type 1 gene transcripts containing the 63 base insert in the region coding for GTPase activating protein-related domain. Biochem Biophys Res Commun 1991; 181:955-961
    49 Malhotra R, Ratner N. Localization of neurofibromin to keratinocytes and melanocytes in developing rat and human skin. J Invest Dermatol 1994; 102:812-818
    50 Xu GF, O’Connell P, Viskochil D, et al. The neurofibromatosis type 1 gene encodes a protein related to GAP. Cell 1990; 62:599-608
    51 Bollag G, McCormick F. GTPase activating proteins. Semin Cancer Biol 1992; 3:199-208
    52 Sherman LS, Atit R, Rosenbaum T, et al. Single cell Ras-GTP analysis reveals altered Ras activity in a subpopulation of neurofibroma Schwann cells but not fibroblasts. J Biol Chem 2000; 275:30740-30745
    53 Yang FC, Chen S, Clegg T, et al. Nf1t/- mast cells induce neurofibroma like phenotypes through secreted TGF-beta signaling. Hum Mol Genet 2006; 15:2421-2437
    54 Guo HF, The I, Hannan F, et al. Requirement of Drosophila NF1 for activation of adenylyl cyclase by PACAP38-like neuropeptides. Science 1997; 276:795-798
    55 The I, Hannigan GE, Cowley GS, et al. Rescue of a Drosophila NF1 mutant phenotype by protein kinase A. Science 1997; 276:791-794
    56 Tong J, Hannan F, Zhu Y, et al. Neurofibromin regulates G protein-stimulated adenylyl cyclase activity. Nat Neurosci 2002; 5:95-96
    57 Dasgupta B, Dugan LL, Gutmann DH. The neurofibromatosis 1 gene product neurofibromin regulates pituitary adenylate cyclase-activating polypeptide- mediated signaling in astrocytes. J Neurosci 2003; 23:8949- 8954
    58 Harashima T, Anderson S, Yates JR III, Heitman J. The kelch proteins Gpb1 and Gpb2 inhibit Ras activity via association with the yeast RasGAP neurofibromin homologs Ira1 and Ira2. Mol Cell 2006; 22:819-830
    59 Dasgupta B, Yi Y, Chen DY, et al. Proteomic analysis reveals hyperactivation of the mammalian target of rapamycin pathway in neurofibromatosis 1-associated human and mouse brain tumors. Cancer Res 2005; 65: 2755-2760
    60 Johannessen CM, Reczek EE, James MF, et al. The NF1 tumor suppressor critically regulates TSC2 and mTOR. Proc Natl Acad Sci U S A 2005; 102:8573-8578
    61 Garami A, Zwartkruis FJ, Nobukuni T, et al. Insulin activation of Rheb, a mediator of mTOR/S6K/4E-BP signaling, is inhibited by TSC1 and 2. Mol Cell 2003; 11:1457-1466
    62 Tee AR, Manning BD, Roux PP, et al. Tuberous sclerosis complex gene products, Tuberin and Hamartin, control mTOR signaling by acting as a GTPase-activating protein complex toward Rheb. Curr Biol 2003; 13:1259- 1268
    63 Mangoura D, Sun Y, Li C, et al. Phosphorylation of neurofibromin by PKC is a possible molecular switch in EGF receptor signaling in neural cells. Onco. gene 2006; 25:735-745

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700