用户名: 密码: 验证码:
煤自然活化机理及自燃过程实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
建立了煤自燃过程数学模型。依据模型确定出煤自燃过程数值模拟所需的关键参数为煤的耗氧速度和放热强度及松散煤体内的氧气扩散系数和渗透系数。并建立了一维状态下的煤自燃全过程数学模型。
     对具有代表性的9个煤样进行了绝热氧化模拟实验,获得了煤在理想状态条件下的温升曲线。通过数据分析得到了在煤低温氧化过程中,随着温度的上升,煤的低温氧化表观活化能逐渐下降规律。这说明随着温度的升高,煤中活性结构需要激活的能量不断减小,温度越高,煤中的活性结构越容易激活。
     在上述研究的基础上,提出煤自然活化机理,即:煤自燃过程是因为煤结构中不同官能团(活性结构)先后被激活,既而发生氧化反应的结果,先被激活而发生氧化反应的官能团释放能量使煤温度升高。在煤体温度升高后,煤中的活性结构更容易被活化,需要较小的能量便能被激活,因此煤随着温度的升高变的越来越容易被活化,氧化反应越来越剧烈,热量释放越来越多,温度上升速度也越来越快,直至加速升温而导致自然发火
     基于在对不同煤样不同温度段的活化能进行分析研究后,提出了零活化能理论,即:活化能为零。零活化能是煤活化能由正值向负值转变的过渡值,零活化能意味着煤开始从被动氧化进入自发氧化。煤的零活化能与其R70值成一定的数值关系,因此可以利用零活化能来鉴定煤的自燃倾向性。在零活化能理论的基础上提出了零活化能温度值,即煤活化能为零时刻的温度值。零活化能温度意味着煤从此温度开始,煤进入自发反应阶段。零活化能温度同样与煤的R70存在一个数值关系。利用煤自然活化机理能对煤自燃现象、一般规律和其特征进行充分合理的解释。
     通过两组实验煤样的自燃发火全过程实验,得出了煤自然发火过程中温度变化规律以及高温点移动规律。在实验开始阶段,低温下煤氧化反应速度和温度升高都处于缓慢状态。随着实验的进行,由于空气将水蒸气和热量从下带到上部,导致上部温度升高,第2天时的高温点出现在145cm处。之后,高温点开始向下移动,这是由于下部煤样完全干燥,温度上升迅速,最后高温点出现在60cm处并发火自燃。
     总结了指标气体的产生规律。在煤自燃发火全过程中,CO_2、CO、H_2、乙烯和乙烷含量随着时间的推移,煤体温度逐渐升高。而氧气的产生变化则刚好相反,随着时间的推移而减低。而且这些气体的产生与煤自燃过程的温度呈现一定的关系,因此,这些气体能称为预防预测煤自燃发火的指标气体。同时在煤最终发火前期,煤样的温度升高速率达到120℃/天,对于煤矿而言,没有足够的时间去采取措施来避免发火。因此,防治煤自燃发火需防范于未然,需要长时间的测量监控。
Based on mechanics of fluids in porous media and theory of heat and mass transfer, the mathematical model is set up. According to the model, oxygen consumption rate and heat liberation intensity of coal, diffusion coefficient and osmotic coefficient of oxygen is confirmed for key parameter to numerical simulation of coal self-ignition process, and these parameters are researched and test by experiment. And set up the mathematical model of whole process of self-heating of coal in one-dimensional.
     Furthermore, based on dynamic equation of coal’s adiabatic oxidation, the simulation system for the process of spontaneous combustion of coal is worked out. And the spontaneous combustion simulation using small coal sample was carried out, which is the first successful case nationwide. And coal’s ideal (under the condition of thermal insulation) temperature-rise curve is obtained by doing simulation experiments on nine coal samples in different moisture content, rank and ash content. And obtained some rule about those factors effecting in orientation on self-heating of coal.
     Based on analyzing data from adiabatic testing, the rule that activation energy descend gradually with temperature rise was obtained, which shown that energy that activate active structures in coal is getting low as the temperature rises. It is easier to activate it at more high temperature.
     And based on theory of activation reaction, the simulated experiments and the characters in process of spontaneous combustion of coal, such as index gases, generation heat rate and coal structures changes, the Self-activation Theory of Spontaneous Combustion of Coal is put forward: The process of self-heating of coal is that the different function group (active structures) in coal is activated early or late, and reactive with oxygen and release energy to make the temperature raise. With the higher temperature, active structures are easier to active with lower activation energy. So, active structures are easier to active more and more with temperature rise, and oxidize respond more and more violent, heat releases more and more, the temperature rises also more and more quick, keep accelerating to ignition.
     According to analyses changing rule of activation energy in different temperature range at different coal, the Zero-Activation Energy Theory was put forward: Activation energy amount zero. Zero-Activation Energy is a transition value from positive to negative; it means oxidize with coal turning to self-oxidize.
引文
[1]范维澄.能源化工行业安全生产形势分析和关键技术[M].合肥:中国科学技术大学出版社,2002:85-109.
    [2]黄素逸.能源科学导论[M].中国电力出版社,1999年.
    [3]王省身,张国枢.矿井火灾防治[M].徐州:中国矿业大学出版社,1990.
    [4]胡社荣,蒋大成.煤层自燃灾害研究现状与防治对策[J].中国地质灾害与防治学报,2000,11(4):69-71.
    [5]管海宴,冯·亨特伦,谭永杰等.中国北方煤田自燃环境调查与研究[M].煤炭工业出版社,1998.
    [6] Jones J . C . Towards an alternative criterion for the shipping safety of activated carbons.Journal of Loss Prevention in the Process Industries [J].1998,(11):407-411.
    [7]李树刚,徐精彩.地面储煤堆自燃规律及测试方法[J].西安矿业学院学报,1994,14(4):299-303.
    [8]梁俊芳,詹宏.一起由煤层自燃引起采空区瓦斯爆炸事故浅析[J].煤矿安全,1995(9):30-31.
    [9]罗海珠,梁运涛,吕国金.高瓦斯易燃特厚煤层综放开采自燃防治技术[J].煤炭科学技术,2002,30(9):1-4.
    [10]秦波涛.防治煤炭自燃的三相泡沫理论与技术研究[D].中国矿业大学博士论文,2005.
    [11]傅维镳,张永廉,王清安.燃烧学[M].高等教育出版社,1989,(5):439-440
    [12]李增华.煤炭自燃的自由基反应机理[J].中国矿业大学学报,1996,25(3):111-114.
    [13] Coward, H.F., Research on spontaneous combustion of coal in mines. A review Research Report No.142 U.D.C.622.814:541.128.24[M],Ministry of Power,1957.
    [14] Humphreys D . The spontaneous heating of coal and its relation to petrography composition. BE Thesis [D],The University of Queensland,1976.
    [15] Lopez D. Effect of low-temperature oxidation of coal on hydrogen-transfer capability [J].Fuel,1998,77(14):1623-1628.
    [16] Wang H.Theoretical analysis of reaction regimes in low-temperature oxidation of coal [J].Fuel,1999.78(9):1073-1081.
    [17]舒新前.煤炭自燃的热分析研究[J].中国煤田地质,1994,25(2):25-29.
    [18]路继根,李凡.用热重法研究我国四种煤显微组分的燃烧特性[J].燃料化学学报,1996,24(4):329-334.
    [19]彭本信.应用热分析技术研究煤的氧化自燃过程[J].煤炭工程师,1992(2):1-10.
    [20] GarciaP. The use of differential scanning calorimeter to identify coals susceptible to spontaneous combustion[J].Thermochemieal acta,1999,336(2):41-46.
    [21] Tevrucht M L E,Griffiths P R. Activation energy of air-oxidized bituminous coals [J].Energy & Fuel,1989,3(4):522-527.
    [22] Patil A O,Keleman S R.. In-situ polymerization of parole in coal [J]. Polymeric materials science and engineering.1995,72:298-302.
    [23] Martin R R, MacPhee J A,Younger C. Sequential derivation and the SIMS imaging of coal[J].Energy sources,1989,11(l):l-8.
    [24]刘剑,王继仁,孙宝铮.煤的活化能理论研究[J].煤炭学报,1999,24(3):316-320.
    [25]陆伟,胡千庭,仲晓星.煤自燃逐步自活化反应理论[J].中国矿业大学学报,2007(1):111-115.
    [26]王晓华,宗志敏,秦志宏等.有机波谱法在分子煤化学领域中的研究进展[J].煤炭转化,2001,24(1):5-l0.
    [27]陶著.煤化学[Ml.北京:化学工业出版社,1984.
    [28]郭崇涛.煤化学[M].北京:化学工业出版社,1994.
    [29]刘艳华,车得福,李荫堂等.X射线光电子能谱[M],北京:化学工业出版社,1995.
    [30] Shinn J H. Study of coal molecular structure [J].Fuel,1984,63 (8):83-86.
    [31]王娜,孙成功,李保庆.煤中低分子化合物研究进展[J].煤炭转化,1997,20(3):19-23.
    [32] Sehulten H R,Marzee A. Radical hydrogenation of coal studied by field ionization mass spectrometry [J]. Fuel Processing technology,1986,15(l):307-318.
    [33] Schulten H R, Abbt B G, Frimmel F H. Time-resolved Pyrolysis field ionization masss Peetrome of humic material isolated from fresh water[J]. Environmental science and technology,1987,21(4):349-357.
    [34] Krichko A A, Shpirt M Y,Glazunov M P,etc. Sulfide-molybdenum catalyst for the liquefaetion of coal [J]. Solid fuel chemistry, 1988,22(5):57-61.
    [35] Kriehko A A, Gagarin S G. New ideas of coal organic matter chemical structure and mechanism of hydrogenation Processes [J].Fuel,1990,69(7):885-891.
    [36] Nishioka M. Test of the Proposed two-Phase model for high-volatile bituminous coal [J].Energy&Fuels,1990,4(l):70-73.
    [37] Nishoka M. The assoeiated nature of bituminous coal [J].Fuel,1992,71(8):941-948.
    [38] Takanohashi T,Iino M. Investigation of bituminous structure of Upper Freeport Coal by solvent swelling [J]. Energy Fuels, 1995,9:788-793.
    [39] Given P H, Marzee A, Barton W A .The concept of a mobile or molecular Phase within the mareromolecular network of coals: adebate [J].Fuel,1986,65(8):155-163.
    [40]傅家漠,秦匡宗.干酪根地球化学[M].广东科技出版社,1995.
    [41] Jasienko S,Bieganska C,Matuszewska A. Chemiai FIZyka Wegla [M]. Poland:Wroelaw,1995.
    [42] Carlson G A. Modeling of coal structure by using computer-aided molecular design [A].ACS symposium series, 1991:461-465.
    [43]刘旭光,李保庆.煤大分子结构的计算机模拟[J].煤炭转化,1999,22(3):1-5.
    [44] X J Hou. Theoretical study on the reactivity of coal structure [A]. Prospects for coal science in the 21st century.1999:295-298.
    [45] P Strka. Chemical structure of mineral groups of coal [A].prospeets for coal science in the21stcentury,1999:113-116.
    [46]葛岭梅.煤分子中活性基团氧化与煤的自燃机制探讨[J].西安矿业学院学报,1988,8(l):90-94.
    [47]徐精彩,张辛亥,文虎等.煤氧复合过程及放热强测算方法闭[J].中国矿业大学学报,2000,29(3):253-257.
    [48] Itay M, Hill C R,Glasser D. Study of the low temperature oxidation of coal[J]. Fuel Professing Teclmology, 1989.21(2):81-97.
    [49] Continillo G, Galiere G,Maffettone P L. Characterization of chaotic in the spontaneous combustion of coal stockpiles [A].symposium on combustion,1996:1585-1592.
    [50]贺敦良,徐精彩.煤炭表面反应热与自燃性探讨[J].煤矿安全,1990(6):31-36.
    [51]何萍,唐修义.煤氧化过程中气体的形成特征与煤自燃指标气体选择[J].煤炭学报,1994,19(6):635~643.
    [52]舒新前,葛岭梅.神府煤煤岩组分的结构特征及其差异[J].燃料化学学报,1996.24(5):427-431.
    [53]舒新前,朱书全,王祖呐等.神府煤煤岩组分的表面电位研究[J].中国科学(E辑),1996,26(4):333-338
    [54]晓华,葛岭梅,周安宁等.神府煤流化床低温氧化煤分子中活性基团的变化[J].安科技学院学报,2001,21(1):40-43.
    [55]张玉贵,唐修义,何萍.煤分子结构与煤的自燃倾向性[J].煤矿安全,1989(7):1-5.
    [56]张玉贵.镜煤和丝炭自燃倾向性研究[J].煤矿安全,199l(2):20-24.
    [57] Straszheim W E, Markuszewski R. Automated image analysis of mineral and their association with organic components in bituminous coals[J]. Energy & fuels.1990,4 (6):748-754.
    [58]朱红,李虎林欧泽深等.不同煤阶煤表面改性的FTIR谱研究[J].中国矿业大学学报,2001,30(3):366-370.
    [59]石必明.易自燃煤低温氧化和阻化的微观结构分析[J].煤炭学报,2000,25(3):294-298
    [60] Beamish, B.B., Barakat, M.A., St. George, J.D., Adiabatic testing procedures for determining the self-heating propensity of coal and sample ageing effects [J].Thermochim Acta,2000(362):79–87.
    [61] Chen, X.D., Stott, J.B.,.The effect of moisture content on the oxidation rate of coal during near-equilibrium drying and wetting at 50℃[J]. Fuel,1993(72):787–792.
    [62] CHEN, X.D.,‘Safer estimate of time-to-ignition of reactive porous solid slab based on a simplified heat conduction term in Frank-Kamnetskii theory of thermal ignition’[J]. Chemical Engineering and Processing, 1997(36):195-200.
    [63] Chen, X.D. and Stott, J.B. Calorimetric study of the heat of drying of a sub-bituminous coal[J]. Journal of Fire Sciences, 1992(10):352-361.
    [64] Ren, T.X., Edwards, J.S., Clarke, D.. Adiabatic oxidation study on the propensity of pulverised coals to spontaneous combustion[J]. Fuel,1999(78):1611–1620.
    [65] Vance, W.E., Chen, X.D., Scott, S.C.. The rate of temperature rise of a subbituminous coal during spontaneous combustion in an adiabatic device: the effect of moisture content and drying methods[J]. Combust. Flame,1996(106):261–270.
    [66] Jones, J.C. A new and more reliable test for propensity of coals and carbons to spontaneous heating[J]. Journal of Loss Prevention in the Process Industries, 2000(13):69-71.
    [67] Jones J.C. 'Steady behavior of long duration in the spontaneous heating of a bituminous coal[J] Journal of Fire Sciences, 1996(14):159-166.
    [68] Jones J.C. 'An examination and assessment of basket heating tests to determine propensity to spontaneous combustion' (invited paper) Proceedings of the 24th International Conference on Fire Safety 179-190 Product Safety Corporation, Sissonville[S],West Virginia,1997.
    [69] Chen X. D.,Stott J.B. Oxidation rates of coal as measured from one-dimensional spontaneous heating[J]. Combustion and flame,1997(109):578-586.
    [70] Yael Mirom, Alex C. Smith,Charles P. Lazzara. Sealed flask test for evaluating the self-heating tendencies of coals[S]. U.S. Government Printing Office,1990.
    [71] Ku¨c?u¨k, Y. Kad?og?lu, M.S. Gu¨labog?luc. A study of spontaneous combustion characteristics of a Turkish lignite: particle size, moisture of coal, humidity of air[J].Combustion and Flame, 2003,133(3):255–261.
    [72] Cem Semsogut, Ibrahim Cinar.A Research on The Tendency of Ermines District Coals to Spontaneous Combustion[J]. Mineral resources Engineering,2000,9(4):421-427.
    [73] Zhou F B, Wang D M. Directory of recent testing methods for coals to spontaneous combustion[J]. Journal of Fire Sciences, 2004,22(2):91-96.
    [74]文虎,徐精彩,葛岭梅等.煤自燃性测试技术及数值分析[J].北京科技大学学报,2001,(6):499-501.
    [75]邓军,徐精彩.煤自燃性参数的测试与应用[J].燃料化学学报,2001,29(6):553-556.
    [76]罗海珠.煤低温氧化自燃热物理特性研究[D].中国矿业大学博士论文,2001.
    [77]李仁发,沈洪远.基于物理仿真的煤炭自然发火研究[J].系统仿真学报,2001,13(2):231-233.
    [78]张国枢,戴广龙,王卫平.煤炭自燃模拟实验装置设计与研制[J].淮南工业学院学报,1999,(4):11-13.
    [79]张瑞新,谢和平.煤堆自然发火的实验研究[J].煤炭学报,2001,26(4):168-171.
    [80]张瑞新,谢和,谢之康.露天煤体自然发火的试验研究[J].中国矿业大学学报,2000,29(4):235-238.
    [81] Schmal D. A model for the spontaneous heating of stored coal[D]. PhD thesis, University of Delft,1987.
    [82] Ashlry Hull, Jennifer L. Lanthier and Pradeep K. Agarwal. The role of the diffusion of oxygen in the ignition of a coal stockpile in confined storage [J].Fuel,1997,10(3):975-983.
    [83] Srinivasan Krishnaswamy, Pradeep K.Agarwal and Robert D. Gunn. Low-temperature oxidation of coal 3. Modelling spontaneous combustion in coal stockpiles[J].Fuel, 1996,75(3):353-362.
    [84] F.Akgun, R.H.Essenhigh. Self-ignition characteristics of coal stockpiles: theoretical prediction from a two-dimensional unsteady-state model[J]. Fuel,2001(80):409-415.
    [85] N.Emre Altun, Cahit Hityilmaz, and A. Suat Bagci. Combustion characteristics of coal briquettes. 1. Thermal features[J]. Enerty & Fuels,2003,17:1266-1276.
    [86] N.Emre Altun, Cahit Hityilmaz, and A. Suat Bagci. Combustion characteristics of coal briquettes. 2. Reaction kinetics [J]. Enerty & Fuels,2003, 17: 1277-1282.
    [87]邓军,徐精彩,王洪权.圆柱形煤自燃发火实验台的数值模拟研究[J].辽宁工程技术大学报(自然科学版),2002,4:21-23.
    [88]董希琳,田丽.湿煤堆自燃过程的非稳态数学模拟[J].中国安全科学学报,1999,6:3-9.
    [89]谢之康,张瑞新,蒋曙光等.露天煤矿煤炭自燃进程的数学模型[J].中国矿业大学学报,1996,9:25-29..
    [90]刘高文,徐精彩,李莉.姚桥矿煤最短自然发火期实验和数值分析[J].辽宁工程技术大学报(自然科学版),2002,6:11-14.
    [91]中华人民共和国煤炭行业标准. MT/T 707-1997,煤自燃倾向性色谱吸氧鉴定法[S].北京:中国标准出版社,1997.
    [92]戚颖敏,钱国胤.煤自燃倾向性色谱吸氧鉴定法与应用[J].煤,1996,5(2):5-9.
    [93]董庆年,陈学艺,靳国强等.红外发射光谱法原位研究褐煤的低温氧氧化过程[J].燃料化学学报,1997,25(4):333-338.
    [94]秦书玉,赵书田,张永吉.煤矿井下内因火灾防治技术[M].沈阳:东北大学出版社,1993.
    [95]徐精彩.煤自燃危险区域判定理论[M].北京:煤炭工业出版社,2001.
    [96]谢克昌.煤的结构与反应性[M].北京:科学出版社,2002.
    [97]周世宁.瓦斯在煤层中流动的机理[J].煤炭学报,1990,15(1):15-24.
    [98]赵志根,蒋新生.谈煤的孔隙大小分类[J].标准化报道,2000,21(5):23-24.
    [99]程传煊.表面物理化学[M].北京:科学技术文献出版社,1995.
    [100]虞继舜.煤化学[M].北京:冶金工业出版社,2000.
    [101]徐烈,朱卫东,汤晓英.低温绝热与贮运技术[M].机械出版社,1999.
    [102]陈代珣.渗流气体滑脱现象与渗透率变化的关系[J].力学学报,2001,34(1):96-100.
    [103]林瑞泰.多孔介质传热传质引论[M].北京:科学出版社,1995.
    [104]何学秋,聂百胜.孔隙气体在煤层中扩散的机理[J].中国矿业大学学报,2001,30(1):1-4.
    [105]聂百胜,何学秋,王恩元.瓦斯气体在煤孔隙中的扩散模式[J],煤炭学报,2000 27(5):14-16.
    [106]王省身,张国枢.矿井火灾防治[M].徐州:中国矿业大学出版社,1990.
    [107]秦书玉,赵书田,张永吉.煤矿井下内因火灾防治技术[M].沈阳:东北大学出版社,1993.
    [108]国家煤矿安全监察局.煤矿安全规程[M].北京:煤炭工业出版社,2001.
    [109] ZHOU Fu-bao , WANG De-ming . Directory of recenttesting methods for coals to spontaneous combustion[J]. Journal of Fire Sciences, 2004,22(2):91-96
    [110] Chen XD.The spontaneous Heating of Coal—Large scale laboratory assessment Self-healing &supporting theory.PhD.thesis,University of Canterbury,NZ.2000.
    [111]刘剑王继仁孙宝铮.煤的活化能理论研究[J].煤炭学报,1999(6):45-48.
    [112] Jones JC, Chiz PS, Koh R, Matthew J.Kinetics parameters of oxidationof bituminous coals from heat release rate measurements[J].Fuel,1996,75:5–9.
    [113] Jones JC, Henderson KP, Littlefair J, Rennie S. Kinetics parameters of oxidation of coals by heat-release measurement and their relevance toself-heating tests [J].Fuel, 1998,77(2):19-22.
    [114]戚颖敏等.煤吸附流态氧的燃烧特性及其在矿井火灾预测中的应用[J].煤矿安全,1994,(3):9-11
    [115]刘剑,王继仁,孙宝铮.煤的活化能理论研究[J].煤炭学报,1999,24(3):316-320.
    [116]中华人民共和国煤炭行业标准.MT/T 707-1997,煤自燃倾向性色谱吸氧鉴定法[S].中国标准出版社,1997.
    [117]戚颖敏,钱国胤.煤自燃倾向性色谱吸氧鉴定法与应用[J].煤,1996,5(2):5-9.
    [118] NUGROHO Y S, MCINTOSH A C, GIBBS B M.Low-temperature oxidation of single and blended coals[J].Fuel, 2000(97):1951-1961.
    [119] CHEN X D.Safer estimate of time-to-ignition of reactive porous solid slab based on a simplified heat conduction term in Frank-Kamnetskii theory of ther-mal ignition [J].Chemical Engineering and Process-ing, 1997(36):195-200.
    [120] CHEN X D, STOTT J B. Oxidation rates of coals as measured in from one-dimensional spontaneous heat-ing [J]. Combustion and Flame, 1997(109):578-586.
    [121] STOTT J B, CHEN X D. Measuring the tendency of coal to fire spontaneously [J]. Colliery Guardian, 1992,1:9-16.
    [122] WANG H, DLUGOGORSKI B Z, KENNEDY EM. Analysis of the mechanism of the low-tempera-ture oxidation of coal [J]. Combustion and Flame, 2003,(134): 107-117.
    [123] Davis J D, Byrne J F. An adiabatic method for studying spontaneous heating of coal[J].Journal of Am Ceram Soc,1924(7):809–816.
    [124]罗海珠.煤低温氧化自燃热物理特性研究[D].中国矿业大学博士论文,2001.
    [125]陆伟,王德明,周福宝等.绝热氧化法研究煤的自燃特性[J].中国矿业大学学报,2005,34(2):213-217.
    [126]陆伟,王德明,仲晓星等.基于活化能的煤自燃倾向性研究[J].中国矿业大学报,2006,35(2):201-205.
    [127] Beamish, B.B., Barakat, M.A., St. George, J.D., . Adiabatic testing procedures for determining the self-heating propensity of coal and sample ageing effects[J]. Thermochim. Acta,2000(362):79–87.
    [128] Chen, X.D., Stott, J.B.,. The effect of moisture content on the oxidation rate of coal during near-equilibrium drying and wetting at 50℃[J]. Fuel,1993,(72):787–792.
    [129] CHEN, X.D.,‘Safer estimate of time-to-ignition of reactive porous solid slab based on a simplified heat conduction term in Frank-Kamnetskii theory of thermal ignition’[J]. Chemical Engineering and Processing, 1997(36):195-200.
    [130] Ren, T.X., Edwards, J.S., Clarke, D... Adiabatic oxidation study on the propensity of pulverised coals to spontaneous combustion[R]. Fuel, 1999(78): 1611–1620.
    [131] Kuchta J M, Rowe V R, Burgess D S. Spontaneous combustion susceptibility of US coals[J], US Bureau of Mines Report of Investigations, 1980,4:37-40.
    [132] Humphreys, D., Rowlands, D., Cudmore, J.F., Spontaneouscombustion of some Queensland coals. Proc. Ignitions, Explosionsand Fires in Coal Mines Symposium[R].The AusIMMIllawarra Branch, Melbourne,Australia,1981.
    [133] Moreby, R.. Dartbrook coal—case study. Proc. 6th International Mine Ventilation Congress[R]. The Society of Mining, Metallurgy and Exploration, Littleton, USA, 1997.
    [134] Schmal D, Duyzer J H,Heuven J W. A model for the spontaneous heating of coal. Fuel,1985,(64):963-972.
    [135] Chen X D. On the mathematical modelling of the transient spontaneous heating in a moist coal stockpile[J]. Combustion and Flame, 1992,(90):114-120.
    [136] P.F. Miles, The Prevention and Detection of SpontaneousCombustion in Longwall Waste Areas with Respect to theHuntly East Mine[R] , Undergraduate Project Report , TheUniversity of Otago, New Zealand, 1986.
    [137] A.H. Clemens, T.W. Matheson, D.E. Rogers[J], Fuel,1991(70):215.
    [138] D.R. Humphreys, A Study of the Propensity of QueenslandCoals to Spontaneous Combustion, ME Thesis[D], The Universityof Queensland,1979.
    [139] E.A.C Chamberlain[C], Colliery Guardian March,1974,3:79.
    [140]夏少武.活化能及其计算[M].北京:高等教育出版社,1989.
    [141]鲁崇贤.有机化学[M].北京:科学出版社,2003.
    [142] Boddington T, Feng G-C, Gray P. Procedding of the Royal Society of London A[M]. 1983:385-289.
    [143] J.贝尔.李竞生.多孔介质流体动力学[M].陈崇希译.北京:中国建筑工业出版社,1983.
    [144]孔祥吉.高等渗流利息额[M].合肥:中国科学技术大学出版社,1999.
    [145]费祥麟.高等流体力学[M].西安:西安交通大学出版社,1996,9.
    [146]李汝辉.传质学基础[M].北京:北京航空学院出版社,1987.
    [147] Frank P Incropera, David P Dewitt. Introduction to Heat Transfer [M]. School of Mechanical Engineering Purdue University,1985.
    [148] M W泽门斯基,R H迪特曼.热学和热力学[M].刘皇凤,陈秉乾译.北京:科学出版社,1987.
    [149] A J查普曼.传热学[M].何用梅译.北京:冶金工业出版社,1984.
    [150]邓军,徐精彩,文虎.采空区自燃发火动态数学模型研究[J].湘潭矿业学院学报,1998.8(1):11-16.
    [151]邓军,徐精彩,文虎等.综放采煤法中沿空巷道煤层自然发火预测模型研究[J].煤炭学报,2001,26(1):62-66.
    [152]李庆扬,王能超,易大义.数值分析[M].华中理工大学出版社,1988.
    [153]刘艳华,徐精彩.空气在破碎煤体中的流动规律[J].煤炭学报,2000,25(6):619-623.
    [154]郭勇义,吴世跃.煤粒瓦斯扩散及扩散系数测定方法的[J].山西矿业学院学报,1997,15(1):15-19.
    [155]张勇祥,陈鸿汉.多孔介质溶质运移动力学[M].北京:地震出版社,2000.
    [156]徐精彩,文虎,葛岭梅等.松散煤体中的氧气扩散模型及数值分析[J].煤炭学报,2002,25(4):387-390.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700