用户名: 密码: 验证码:
沥青混凝土的细观力学模型及数值模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
沥青混凝土是一种典型的多相复合材料,在低温或荷载速率较高的状态下呈现弹性特征,而在高温及高应力等环境下显现出明显的粘弹性。目前,我国对沥青混凝土材料性质的研究仍旧主要采用经验与试验相结合的研究方式。而这种传统的研究方式无法反映出沥青混凝土的内部细观结构对整体宏观性能的影响,且费时费力。为了能够循序渐进地进行系统研究,本文采用由面到点的方法,即先对复合材料这一涉及范围较广的材料进行研究,然后进一步分析沥青混凝土材料,以期揭示材料的每一组成成分在整体材料中所起到的物理机制。
     首先,引入快速多极边界元法(FMBEM)的概念,实现了具有多种不同类型夹杂的复合材料二维弹性问题的快速多极边界元分析。在此基础上进一步考虑弱界面的影响,利用弹簧型界面模型及中间层模型,给出了相应的FMBEM基本列式及编程方法。同时,基于广义自洽模型及多步骤方法,给出了能够预报具有多种夹杂及弱界面的复合材料有效宏观性能的细观力学预测模型。
     其次,通过弹性-粘弹性对应原理及时间步长法,给出了多夹杂增强复合材料粘弹性问题的FMBEM算法。在此基础上,引入Kelvin型粘弹性界面,进一步得到了具有弱界面的粘弹性FMBEM算法。此外,基于有效夹杂性质的概念给出了具有Kelvin型粘弹性界面的粘弹性复合材料细观力学方法。
     再次,将上述得到的研究复合材料弹性及粘弹性的数值及解析方法具体应用到沥青混凝土材料的研究中。通过数字图形处理技术,真实再现沥青混凝土试件的二维几何模型。利用已实现的FMBEM算法,对沥青混凝土材料的弹性模量及蠕变特性进行了数值模拟。同时,利用已建立起来的细观力学模型对其弹性模量进行预测。通过数值及解析方法的分析,探讨了沥青胶浆(细集料+沥青)、粗集料、空隙率及空隙大小、级配、最大粒径、沥青胶浆与集料的交界面等对沥青混凝土宏观性能的影响。
     最后,利用傅立叶变换法给出了电磁弹平面问题的基本解,并开发了相应的FMBEM算法。通过数值算例可以看出,本方法可进一步应用于智能混凝土材料的数值模拟。
     研究表明,本文给出的FMBEM法建模简单、存储量低、计算效率高,且无须采用数值积分的方法,因此不存在奇异积分的问题。所以,非常适合处理具有不同尺寸、形状、性质、空间分布的多夹杂复合材料问题(如沥青混凝土)。此外,本文给出的细观力学模型形式简单,易于编程计算,因此,在工程实际中也有一定的应用前景。
Asphalt concrete (AC) is a typical complex multi-phase material. When loading rate is very high and the temperature is low, it can be approximated as an equivalent elastic body in engineering application, while at high temperature and high pressure, it shows apparent viscoelasticity characteristics. To date, the prediction and determination of the bulk behavior of AC is largely based on experiments as well as experience, and it is often time-consuming and can not reflect the influence of the microstructure of AC. To this end, a systematical study will be conducted in this dissertation, to investigate the elastic and viscoelastic properties of the composite and the mechanical behavior of AC.
     First of all, the basic concept of the fast multipole boundary element method (FMBEM) will be introduced, and the corresponding algorithm for 2D multi-inclusion elastic problems will be reviewed. The influence of the interfacial zone on the overall mechanical properties of the composites is investigated, where two different models, the spring layer model and the interphase model, are used to simulate the imperfect interface. Based on these models, the corresponding FMBEM formulations have been developed. A two-layer built-in micromechanical model and a stepping scheme are proposed to predict the effective properties of the multi-inclusion composite with interface imperfection.
     Secondly, a new FMBEM algorithm for 2D viscoelastic problems is formulated by virtue of the elastic-viscoelastic correspondence principle and is solved by the time stepping scheme. The FMBEM formulations are derived by assuming a Kelvin type viscoelastic model, which is adopted to simulate the interface bonding imperfection. Besides, a micromechanical approach is also obtained by introducing the idea of effective properties of inclusions to estimate the creep behavior of the viscoelastic solids, which contain elastic particles but with in-between viscoelastic interfaces.
     Thirdly, the obtained numerical and analytical methods are applied to investigating the mechanical behavior of AC. By means of digital image processing, the cross-sectional digital images of asphalt concrete samples are created for numerical modeling. Then the elastic modulus and creep compliance of AC are predicted by the developed FMBEM arithmetic and micromechanical models. The influence of some factors on the behaviour of AC is investigated, including the asphalt matrix, coarse aggregate, air void, aggregate gradations, the largest aggregate and interface between asphalt matrix and coarse aggregates. It has shown that all of these factors may have significant effects on the mechanical properties of AC.
     Finally, a 2D FMBEM analysis of magneto-electro-elastic media has been developed. Fourier transformation is employed to derive the fundamental solution for the generalized plane-strain magneto-electro-elasticity. The numerical examples of multi-inclusion magneto-electro-elastic composites illustrate the validity and advantages of the proposed approach in the smart structure applications.
     The present study indicates that the developed FMBEM is not only easy in the meshing of complicated geometries, accurate for solving singular fields, but also practical and often superior in solving large class problems, such as AC. It is also shown that the developed micromechanical method is very comprehensive and efficient for fast prediction of effective properties of composites, which makes it possible to be applied in the engineering practice.
引文
[1]Aboudi J. (1991) Mechanics of Composite Materials:A Unified Micromechanical Approach. Elsevier, Amsterdam.
    [2]Achenbach JD, Zhu H. (1989) Effect of interfacial zone on mechanical behavior and failure of fiber-reinforced composites. Journal of the Mechanics and Physics of Solids,37(3): 381-393.
    [3]Achenbach JD, Zhu H. (1990) Effect of interphases on micro and macromechanical behavior of hexagonal-array fiber composites. Journal of Applied Mechanics,57:956-963.
    [4]Anderson DA, Goetz WH. (1973) Mechanical behavior and reinforcement of mineral filler-asphalt mixtures. Journal of Association Asphalt Paving Technologists,42:37-66.
    [5]Bandyopadhyaya Ranja, Animesh Das, Sumit Basu. (2008) Numerical simulation of mechanical behaviour of asphalt mix. Construction and Building Materials,22: 1051-1058.
    [6]Barnes J, Hut P. (1986) A hierarchical O(NlogN) force calculation algorithm. Nature,324: 446-449.
    [7]Benabou L, Abdelaziz MN, Benseddiq N. (2004) Effective properties of a composite with imperfectly bonded interface. Theoretical and Applied Fracture Mechanics,41:15-20.
    [8]Bensoussan A, Lion J, Papanicoulaou G. (1978) Asymptotic Analysis for Periodical Structures North-Holland, Amsterdam.
    [9]Benveniste Y. (1987) A new approach to the application of Mori-Tanaka theory in composite materials. Mechanics of Materials,6:147-157.
    [10]Birgisson B, Soranakom C, Napier JAL, Roque R. (2004) Microstructure and fracture in asphalt mixtures using a boundary element approach. Journal of Materials in Civil Engineering,16(2):116-121.
    [11]Board JA, Causey JW, Leathrum JF. (1992) Accelerated molecular dynamics simulation with the parallel fast multipole method. Chemical Physics Letters,198:89-94.
    [12]Boucher SS. (1976) Modules effectifs de materiaux guasi homogenes etd'inclusions elastiques, Cas des concentrations finies en enclusions. Revue M,22:1.
    [13]Broutman LJ, Agarwal BD. (1974) A theoretical study of the effect of an interfacial layer on the properties of composites. Polymer Engineering Science,14:581-588.
    [14]Budiansky Y. (1965) On the elastic moduli of some heterogeneous material. Journal of the Mechanics and Physics of Solids,13:223-227.
    [15]Buttlar WG, Bozkurt D, Al-Khateebl GG, Waldhoff AS. (1999) Understanding asphalt mastic behavior through micromechanics. Transportation Research Record:Journal of the Transportation Research Board,1681:157-169.
    [16]Buttlar WG, Roque R. (1996) Evaluation of empirical and theoretical models to determine asphalt mixture stiffnesses at low temperature. Journal of Association Asphalt Paving Technologists,65:99-141.
    [17]Chen X, Liu YJ. (2001) Multiple-cell modeling of fiber-reinforced composites with the presence of interphases using the boundary element method. Computational Materials Science,21:86-94.
    [18]Chen YH, Chew WC, Zeroug S. (1997) Fast multipole methods as an efficient solver for 2D elastic wave surface integral equations. Computational Mechanics,20:495-506.
    [19]Christensen RM, Lo KH. (1979) Solutions for effective shear properties in three phase sphere and cylinder models. Journal of the Mechanics and Physics of Solids,27:315-330.
    [20]Dai QL, Martin HS, Venkit P, Arun S. (2005) Prediction of damage behaviors in asphalt materials using a micromechanical finite-element model and image analysis. Journal of Engineering Mechanics,131(7):668-677.
    [21]Dai QL, You ZP. (2007) Prediction of creep stiffness of asphalt mixture with micromechanical finite-element and discrete-element models. Journal of Engineering Mechanics,133(2):163-173.
    [22]Dvorak GJ, Teply JL. (1985) Periodic hexagonal array models for plasticity analysis of composite materials, Plasticity Today:Modeling, Methods and Applicaton. Applied Science Publishers, London,623-642.
    [23]Eshelby JD. (1957) The determination of the elastic field of an ellipsoidal inclusion and related problems. Proceedings of the Royal Society A,240:367-396.
    [24]Eshelby JD. (1959) The elastic field outside an ellipsoidal inclusion. Proceedings of the Royal Society A,252:561-569.
    [25]Gao ZJ. (1995) A circular inclusion with imperfect interface:Eshelby's tensor and related problems. Journal of Applied Mechanics,62:860-866.
    [26]Gomez JE, Power H. A parallel multipolar indirect boundary element method for the Neumann interior Stocks flow problem. International Journal for Numerical Methods in Engineering,48:523-543.
    [27]Greengard L, Rokhlin V. (1987) A fast algorithm for particles simulations. Journal of Computational Physics,73:325-348.
    [28]Gulrajani SN, Mukherjee S. (1993) Sensitivities and optimal design of hexagonal array fiber composites with respect to interphase properties. International Journal of Solids and Structures,30(15):2009-2026.
    [29]郭乃胜,赵颖华.(2007)纤维沥青混凝土的粘弹性分析.交通运输工程学报,7(5):37-40.
    [30]郭乃胜,赵颖华,侯金成,范颖芳.(2008)纤维沥青混凝土的松弛性能研究.建筑材料学报,11(1):28-32.
    [31]郭乃胜,赵颖华,张洪涛.(2006)纤维沥青混凝土的等效劲度模量.公路交通科技,23(9):23-39.
    [32]Hashin Z. (1962) The elastic moduli of heterogeneous materials. Journal of Applied Mechanics,29:143-150.
    [33]Hashin Z. (1991) The spherical inclusion with imperfect interface. Journal of the Mechanics and Physics of Solids,58:444-449.
    [34]Hashin Z. (1992) Extremum principles for elastic heterogeneous media with imperfect interface and their application to bounding effective moduli. Journal of the Mechanics and Physics of Solids,40(4):767-781.
    [35]Hashin Z, Shtrikman S. (1962) A variational approach to the theory of the elatic behavior of multiphase materials. Journal of the Mechanics and Physics of Solids,10:335-342.
    [36]Hayami K, Sauter SA. (1998) Cost estimation of the panel clustering method applied to 3D elastostatics. In:Proceedings of the Second European Boundary Element Mehtod Symposium, EUROBEM 98 (edited by Brebbia C.A.), Southampton Computational Mechanics Publications, pp:33-42.
    [37]Hill R. (1952) The elastic behaviour of a crystalline aggregate. Proceedings of the Royal Society A,65:349-354.
    [38]Hill R. (1965) A self-consistent mechanics of composite materials. Journal of the Mechanics and Physics of Solids,13:213-222.
    [39]Huang BS, Li GQ. (2003) Analytical modeling and experimental study of tensile strength of asphalt concrete composite at low temperatures. Composites PartB:Engineering,34: 705-714.
    [40]Huang Y, Huang KC, Hu KX, Chandra A. (1995) A unified energy approach to a class of micromechanics models for composite materials. Acta Mechanica Sinica,11(1):59-75.
    [41]Kim Y, Little DN. (2004) Linear viscoelastic analysis of asphalt mastic. Journal of Materials in Civil Engineering,16(2):122-132.
    [42]Krishnan JM, Rao CL.(2000) Mechanics of air voids reduction of asphalt concrete using mixture theory. International Journal of Engineering Science,38:1331-1354.
    [43]Kuster GT, Toksoz MN. (1974) Velocity and attenuation of seismic waves in two-phase media:Theoretical formulaion. Geophysics,39:587-606.
    [44]Lagache M, Agbossou A, Pastor J, Muller D. (1994) Role of interphase on the elastic behavior of composite materials:theoretical and experimental analysis. Journal of Composite Materials,28(12):1140-1157.
    [45]Lene F, Leguillon D. (1982) Homogenized constitutive law for a partially cohesive composite material. International Journal of Solids and Structures,18:443-458.
    [46]Li GQ, Li YQ, Metcalf JB, Pang SS.(1999) Elastic modulus prediction of asphalt concrete. Journal of Materials in Civil Engineering,8:236-241.
    [47]Li YQ, Metcalf JB. (2005) Two-step approach to prediction of asphalt concrete modulus from two-phase micromechanical models. Journal of Materials in Civil Engineering,17: 407-415.
    [48]李立寒,张南鹭.(1999)道路建筑材料.同济大学出版社,上海.
    [49]Liu YJ. (2006) A new fast multipole bondary element method for solving large-scale two-dimensional elastostatic problems. International Journal for Numerical Methods in Engineering,65:863-881.
    [50]Liu YJ, Nishimura N. (2005) A fast boundary element method for the analysis of fiber-reinforced composites based on a rigid-inclusion model. Journal of Applied Mechanics,72:115-128.
    [51]Liu YJ, Nishimura N, Otani Y. (2005) Large-scale modeling of carbon-nanotube composites by a fast multipole boundary element method. Computational Materials Science,34:173-187.
    [52]Liu YJ, Shen L. (2007) A dual BIE approach for large-scale modelling of 3D electrostatic problems with the fast multipole boundary element method. International Journal for Numerical Methods in Engineering,71:837-855.
    [53]Liu YJ, Xu N. (2000) Modeling of interface cracks in fiber-reinforced composites with the presence of interphases using the boundary element method. Mechanics of Materials,32: 769-783.
    [54]Liu YJ, Xu N, Luo JF. (2000) Modeling of interphases in fiber-reinforced composites under transverse loading using the boundary element method. Journal of Applied Mechanics,67: 41-49.
    [55]Luo JF, Liu YJ, Berger EJ. (1998) Analysis of two-dimensional thin structures from micro-to nano-scale using the boundary element method. Computational Mechanics,22: 404-412.
    [56]Lytton R. (1990) Materials property relationships for modeling the behavior of asphalt aggregate mixtures in pavements. Internal Memorandum Strategic Highway Research Program, Washington D.C.
    [57]Mclaughlin R. (1977) A study of the differential scheme for composite materials, International Journal of Engineering Science,15:237-244.
    [58]Mori T, Tanaka K. (1973) Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta Metallurgica,21:571-574.
    [59]Mura T. (1982) Micromechanics of Defects in Solids.2nd edn. Martinus Nijhoff Publishers, The Netherlands.
    [60]Nabors K, White J. (1992) Multipole-accelerated capacitance extraction algorithms for 3D structures with multiple dielectrics. IEEE Trans, Circuits Systems,39:946-954.
    [61]Nemat-Nasser S, Hori M. (1991) Micromechanics:overall properties of heterogeneous materials. Elsevier, Amsterdam.
    [62]Nie S, Basaran C. (2005) A micromechanical model for effective elastic properties of particulate composites with imperfect interfacial bonds. International Journal of Solids and Structures,42:4179-4191.
    [63]聂在平,胡俊,姚海英.(1999)用于复杂目标三维矢量散射分析的快速多极子方法.电波学报,27(6):104-109.
    [64]Nishida T, Hayami K. (1997) Application of the fast multipole method the 3D BEM analysis of electron guns. Boundary Elements XIX, Marchetti M et al, Computational Mechanics Publishers, Southampton, pp:613-622.
    [65]Nishimura N. (2002) Fast multipole accelerated boundary integral equation methods. Applied Mechanics Reviews,55(4):299-325.
    [66]Norrics AN. (1985) A differential scheme for the effective moduli of composites. Mechanics of Materials,4:1-16.
    [67]Pan L, Adams DO, Rizzo FJ. (1998) Boundary element analysis for composite materials and a library of Green's functions. Composite Structures,66(5):685-693.
    [68]Popov V, Power H. (2001) An O(N) Taylor series multipole boundary elements methods for three-dimensional elasticity problems. Engineering analysis with boundary elements,25: 7-18.
    [69]Qu J. (1993) Eshelby tensor for an elastic inclusion with slightly weakened interface. Journal of Applied Mechanics,60:1048-1050.
    [70]Reuss AZ. (1929) Berechnung der FlieBgrenze von Mischkristallen auf Grand der Plastizitatsbedingung fur Einkristalle. Angewandte Mathematik und Mechanik,9:49-58.
    [71]Rokhlin V. (1990) Rapid solution of integral equations of scattering theory in two dimensions. Journal of Computational Physics,86:414-439.
    [72]Roscoe RA. (1952) The viscosity of suspensiens of rigid spheres. British Journal of Applied Physics,3:267-269.
    [73]Shashidhar N, Romero P. (1998) Factors affecting the stiffening potertial of mineral fillers. Transportation Research Record 1638, Washington DC, pp:94-100.
    [74]Shashidhar N, Shenoy A. (2002) On using micromechanical models to describe dynamic mechanical behavior of asphalt mastics. Mechanics of Materials,34:657-669.
    [75]沈金安.(2001.5)沥青及沥青混合料路用性能.人民交通出版社,北京.pp:414-418.
    [76]沈观林,胡更开.(2006)复合材料力学.清华大学出版社,北京.
    [77]申光宪,刘德义,于春肖.(2005)多极边界元法和轧制工程.科学出版社,北京.
    [78]Shibata S, Jasiuk I, Mori T, Mura T. (1990) Successive iteration method applied to composites containing sliding inclusion:effective modulus and anelasticity. Mechanics of Materials,9:229-243.
    [79]Shu X, Huang BS. (2008) Dynamic modulus prediction of HMA mixtures based on the viscoelastic micromechanical model. Journal of Materials in Civil Engineering,20(8): 530-538.
    [80]Shu X, Huang BS. (2008) Micromechanics-based dynamic modulus prediction of polymeric asphalt concrete mixtrues. Composites Part B:engineering,39:704-713.
    [81]Taya M, Chou TW. (1981) On two kinds of ellipsoidal inhomogeneities in an infinite elastic body:an application to a hybrid composite. International Journal of Solids and Structures, 17:553-563.
    [82]Tong JZ, Guan LY, Zhang QJ. (1998) Differential geometrical method in elastic composite with imperfect interfaces. Applied Mathematics and Mechanics,19(9):869-879.
    [83]Voigt W. (1889) Nber die Beziehung zwischen den beiden Elastizitatskonstanten isotroper Korper. Kreditanstalt fuer Wiederaufbau SWOT Analysis,38:573-587.
    [84]Wacker G., Bledzki AK, Chate A. (1998) Effect of interphase on the transverse Young's modulus of glass/epoxy composites. Composites,29A:619-626.
    [85]Wang HT, Yao ZH, Wang PB. (2005) On the preconditioners for fast multipole boundary element methods for 2D multi-domian elastostatics. Engineering Analysis with Boundary Elements,29:673-688.
    [86]Watanabe O, Hayami K. (1994) A fast solver for the boundary element method using multipole expansion. Proceedings of BEMTechnology Conference,4:39-44.
    [87]Weng GJ. (1984) Some elastic properties of reinforced solids, with special reference to isotropic ones containing spherical inclusions. International Journal of Engineering Science,22:845-856.
    [88]Xun F, Hu GK, Huang ZP. (2004) Effective in plane moduli of composites with a micropolar matrix and coated fibers. International Journal of Solids and Structures,41: 247-265.
    [89]徐世法.(1991)表征沥青及沥青混合料高低温性能的流变学模型.北京建筑工程学院学报,14(1):57-65.
    [90]Yamada Y, Hayami K. (1995) A multipole boundary element method for two dimensional elastostatics. Technical Reports ofMeterials,95(7):1-20.
    [91]Yao Z, Kong FZ, Wang HT, Wang PB. (2004) 2D simulation of composite materials using BEM, Engineering Analysis with Boundary Elements,28:927-935.
    [92]Yeh JR. (1992) The effect of interface on the transverse properties of composites. International Journal of Solids and Structures,29:2493-2505.
    [93]Yoshida k, Nishimura N, Kobayashi S. (1998) Anaysis of three-dimensional elastostatic crack problems with fast multipole boundary integral equation method. Journal of Applied Mechanics,1:365-372.
    [94]Yu CX, Shen GX, Liu DY. (2005) Program-pattern multipole boundary element method for frictional contact. Acta Mechanica Solida Sinica,18(1):76-82.
    [95]Yu CX, Shen GX, Liu DY. (2005) Mathematical programming solution for the frictional contact multipole BEM. Tsinghua Science& Technology,10(1):51-56.
    [96]张肖宁.(2006)沥青与沥青混凝土的粘弹性力学原理及应用.人民交通出版社,北京.
    [97]赵颖华,侯金成,郭乃胜.(2009)基于细观力学的纤维沥青混凝土有效松弛模量.工程力学,26(2):85-90.
    [98]Zheng QS, Du DX.(1991) Interaction direction derivation for effective elastic properties of composite materials, Key Engineering Materials,1:479-488.
    [99]Zimmerman RW. (1991) Elastic moduli of a solid containing spherical inclusions, Mechanics of Materials,12:17-24.
    [1]Abbas A, Masad E, Papagiannakis T, Harman T. (2007) Micromechanical modeling of the viscoelastic behavior of asphalt mixtures using the discrete-element method. International Journal of Geomechanics,7:131-139.
    [2]Bandyopadhyaya R, Das A, Basu S. (2008) Numerical simulation of mechanical behaviour of asphalt mix. Construction and Building Materials,22:1051-1058.
    [3]Birgisson B, Soranakom C, Napier JAL, Roque R. (2004) Microstructure and fraction in asphalt mixtures using boundary element approach. Journal of Materials in Civil Engineering,16:116-121.
    [4]Christensen RM, Lo, KH. (1979) Solutions for effective shear properties in three phase sphere and cylinder models. Journal of the Mechanics and Physics of Solids,27:315-330.
    [5]Dai QL, You ZP. (2007) Prediction of creep stiffness of asphalt mixture with micromechanical finite-element and discrete-element models. Journal of Engineering Mechanics,133:163-173.
    [6]Erkens SMJG, Liu X, Scarpas A. (2003) 3D finite element model for asphalt concrete response simulation. International Journal of Geomechanics,2:305-330.
    [7]Hu N, Wang B, Tan GW, Yao ZH, Yuan WF. (2000) Effective elastic properties of 2D solids with circular holes:numerical simulations. Composites Science and Technology,60: 1811-1823.
    [8]姜弘道.(2008)弹性力学问题的边界元法.中国水利水电出版社,北京,pp.180-189.
    [9]Kim HW, Buttlar WG (2009) Discrete fracture modeling of asphalt concrete. International Journal of Solids and Structures,46:2593-2604.
    [10]Li G, Li Y, Metcalf JB, Pang SS. (1999) Elastic modulus prediction of asphalt concrete. Journal of Materials in Civil Engineering,11(6):236-241.
    [11]Li YQ, Metcalf JB. (2005) Two-step approach to prediction of asphalt concrete modulus from two-phase micromechanical models. Journal of Materials in Civil Engineering,17: 407-415.
    [12]Liu Y, Dai QL, You ZP. (2009) Viscoelastic model for discrete element simulation of asphalt mixtures. Journal of Engineering Mechanics,135(4):324-333.
    [13]Liu YJ. (2006) A new fast multipole bondary element method for solving large-scale two-dimensional elastostatic problems, International Journal for Numerical Methods in Engineering,65:863-881.
    [14]Shashidhar N, Shenoy A. (2002) On using micromechanical models to describe dynamic mechanical behavior of asphalt mastics. Mechanics of Materials,34:657-669.
    [15]Shu X, Huang BS. (2008) Dynamic modulus prediction of HMA mixtures based on the viscoelastic micromechanical model. Journal of Materials in Civil Engineering,20(8): 530-538.
    [16]Timoshenko SP, Goodier JN. (1970) Theory of Elasticity,3rd Ed. McGraw-Hill, New York.
    [17]Wang HT, Yao ZH, Wang PB. (2005) On the preconditioners for fast multipole boundary element methods for 2D multi-domian elastostatics. Engineering Analysis with Boundary Elements,29:673-688.
    [18]王海涛.(2002)快速多极边界元法在二维弹性力学中的应用.清华大学硕士学位论文, 北京.
    [19]杨庆生,陶绪.(2007)多夹杂问题的分步格式.复合材料学报,24(6):128-134.
    [1]Achenbach JD, Zhu H. (1989) Effect of interfacial zone on mechanical behavior and failure of fiber-reinforced composites. Journal of the Mechanics and Physics of Solids,37(3): 381-393.
    [2]Achenbach JD, Zhu H. (1990) Effect of interphases on micro and macromechanical behavior of hexagonal-array fiber composites. Journal of Applied Mechanics,57:956-963.
    [3]Broutman LJ, Agarwal BD. (1974) A theoretical study of the effect of an interfacial layer on the properties of composites. Polymer Engineering Science,14:581-588.
    [4]Christensen RM, Lo KH. (1979) Solutions for effective shear properties in three phase sphere and cylinder models. Journal of the Mechanics and Physics of Solids,27:315-330.
    [5]Daniel CH, Gary DS, Dimitris CL. (2007) Computational micromechanics of clustering and interphase effects in carbon nanotube composites. Mechanics of Advanced Materials and Structures,14(4):277-294.
    [6]Gao ZJ. (1995) A circular inclusion with imperfect interface:Eshelby's tensor and related problems. Journal of Applied Mechanics,62:860-866.
    [7]Gulrajani SN, Mukherjee S. (1993) Sensitivities and optimal design of hexagonal array fiber composites with respect to interphase properties. International Journal of Solids and Structures,30(15):2009-2026.
    [8]Hashin Z. (1991) The spherical inclusion with imperfect interface. Journal of the Mechanics and Physics of Solids,58:444-449.
    [9]Hashin Z. (1992) Extremum principles for elastic heterogeneous media with imperfect interface and their application to bounding effective moduli. Journal of the Mechanics and Physics of Solids,40(4):767-781.
    [10]Hu N, Wang B, Tan GW, Yao ZH, Yuan WF. (2000) Effective elastic properties of 2D solids with circular holes:numerical simulations. Composites Science and Technology,60: 1811-1823.
    [11]Lane F, Leguillon D. (1982) Homogenized constitutive law for a partially cohesive composite material. International Journal of Solids and Structures,18:443-458.
    [12]Lee SH, Wang Sq, George MP. (2007) Evaluation of interphase properties in a cellulose fiber-reinforced polypropylene composite by nanoindentation and finite element analysis. Composites:Part A (Applied Science and Manufacturing),38(6):1517-1524.
    [13]Mori T, Tanaka K. (1973) Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta Metallurgica,21:571-574.
    [14]Pan L, Adams DO, Rizzo FJ. (1998) Boundary element analysis for composite materials and a library of Green's functions. Composite Structures,66(5):685-693.
    [15]Savin GN. (1961) Stress Concentrations Around Holes. Pergamon Press, Oxford.
    [16]Timoshenko SP, Goodier JN. (1970) Theory of Elasticity,3rd Ed. McGraw-Hill, New York.
    [17]Tong JZ, Guan LY, Zhang QJ. (1998) Differential geometrical method in elastic composite with imperfect interfaces. Applied Mathematics and Mechanics,19(9):869-879.
    [18]Zhu H, Achenbach JD. (1991) Effect of fiber-matrix interphase defects on microlevel stress states at neighboring fibers. Journal of Composite Materials,25:224-238.
    [1]Achenbach JD, Zhu H. (1989) Effect of interfacial zone on mechanical behavior and failure of fiber-reinforced composites. Journal of the Mechanics and Physics of Solids,37(3): 381-393.
    [2]Birgisson B, Sangpetngam B, Roque R. (2002) Prediction of the viscoelastic response and crack growth in asphalt mixtures using the boundary element method. Transportation Research Record,1789:129-135.
    [3]Birgisson B, Soranakom C, Napier JAL, Roque R. (2004) Microstructure and fracture in asphalt mixtures using a boundary element approach. Journal of Materials in Civil Engineering,16:116-121.
    [4]Huang Y, Steven LC, Sofia GM. (2005) A time domain direct boundary integral method for a viscoelastic plane with circular holes and elastic inclusions. Engineering analysis with boundary elements,29:725-737.
    [5]John PW, Georges RD. (1986) Time-domain boundary element method in viscoelasticity with application to a spherical cavity. Soil Dynamics and Earthquake Engineering,5: 138-148.
    [6]Lee SS, Westmann RA. (1993) Application of boundary element method to visco-elastic problems. In:Brebbia CA, Rencis JJ (eds) Boundary element XV. Vol.2, Stress Analysis, Computational Mechanics Publications, Boston.
    [7]Liu YJ. (2008) A fast multipole boundary element method for 2-D multi-domain elastostatic problems based on a dual BIE formulation. Computational Mechanics,42: 761-773.
    [8]Melvin FK, Carl HP. (1985) Advanced Fracture Mechanics. Oxford University Press, New York.
    [9]Mesquita AD, Coda HB. (2001) An alternative time integration procedure for Boltzmann viscoelasticity:aBEM approach. Computers and Structures,79(16):1487-1496.
    [10]Mesquita AD, Coda HB. (2002) Boundary integral equation method for general viscoelastic analysis. International Journal of Solids and Structures,39:2643-2664.
    [11]Mesquita AD., Coda HB. (2003) A simple Kelvin and Boltzmann viscoelastic analysis of three-dimensional solids by the boundary element method. Engineering Analysis with Boundary Elements,27:885-895.
    [12]Mesquita AD, Coda HB, Venturini WS. (2001) An alternative time marching process for viscoelastic analysis by BEM and FEM. International Journal for Numerical Methods in Engineering,51:1157-1173.
    [13]Rizzo FJ, Shippy DJ. (1971) An application of the correspondence principle of linear viscoelasticity theory. Journal of Applied Mechanics,21:321-330.
    [14]Sensale B. (1997) On the solution of viscoelastic problems using boundary elements techniques. D.Sc. Thesis, CEMACOM, UFRGS, Porto Alegre, Portuguese.
    [15]Sensale B, Greus GJ. (1993) Boundary element analysis of viscoelastic fracture. In: Brebbia CA, Rencis JJ (eds) Boundary element XV. Vol.2, Stress Analysis, Computational Mechanics Publications, Boston.
    [16]Sensale B, Partridge PW, Creus GJ. (2001) General boundary elements solution for aging
    viscoelastic structures. International Journal for Numerical Methods in Engineering,50: 1455-1468.
    [17]Sim WJ, Kwak BM. (1988) Linear viscoelastic analysis in times domain by boundary element method. Computers and Structures,29:531-537.
    [18]Tschoegl NW. (1989) The Phenomenological Theory of Linear Viscoelastic Behavior:An Introduction. Springer, New York.
    [19]Wang JL, Birgisson B. (2007) A time domain boundary element method for modeling the quasi-static viscoelastic behavior of asphalt pavements. Engineering Analysis with Boundary Elements,31:226-240.
    [20]周光泉,刘孝敏.(1996)粘弹性理论.中国科学技术大学出版社,安徽,pp.85-96.
    [1]AASHTO. (2000) Standard test method for determining the resilient modulus of bituminous mixtures by indirect tension. Annual Book of AASHTO Standards, Vol.3.
    [2]Anderson DA, Goetz WH. (1973) Mechanical behavior and reinforcement of mineral filler-asphalt mixtures. Journal of Association Asphalt Paving Technologists,42:37-66.
    [3]Bandyopadhyaya R, Das A, Basu S. (2008) Numerical simulation of mechanical behavior of asphalt mix. Construction and Building Materials,22(6):1051-1058.
    [4]Barksdale RD. (1991) The Aggregate Handbook. National Stone Association, Washington DC.
    [5]Buttlar WG, Bozkurt D, Al-Khateebl GG, Waldhoff AS. (1999) Understanding asphalt mastic behavior through micromechanics. Transportation Research Record:Journal of the Transportation Research Board,1681:157-169.
    [6]Buttlar WG, Roque R. (1996) Evaluation of empirical and theoretical models to determine asphalt mixture stiffnesses at low temperature. Journal of Association Asphalt Paving Technologists,65:99-141.
    [7]Dai QL, You ZP. (2007) Prediction of creep stiffness of asphalt mixture with micromechanical finite-element and discrete-element models. Journal of Engineering Mechanics,133(2):163-172.
    [8]交通部公路科学研究所.(2000)公路工程沥青及沥青混合料实验规程.人民交通出版社,北京.
    [9]Li G, Li Y, Metcalf JB, Pang SS. (1999) Elastic modulus prediction of asphalt concrete. Journal of Materials in Civil Engineering,11(6):236-241.
    [10]Li YQ, Metcalf JB. (2005) Two-step approach to prediction of asphalt concrete modulus from two-phase micromechanical models. Journal of Materials in Civil Engineering,17: 407-415.
    [11]李智,徐伟,王绍怀,张肖宁.(2003)沥青混合料数字图像处理技术的方法研究.公路交通科技,20(6):13-16.
    [12]Lytton R. (1990) Materials property relationships for modeling the behavior of asphalt aggregate mixtures in pavements. Internal Memorandum Strategic Highway Research Program, Washington DC.
    [13]彭勇,孙立军.(2009)空隙率对沥青混合料性能影响.武汉理工大学学报(交通科学与工程版),33(5):826-829.
    [14]Shashidhar N, Shenoy A. (2002) On using micromechanical models to describe dynamic mechanical behavior of asphalt mastics. Mechanics of Materials,34:657-669.
    [15]Shu X, Huang BS. (2008) Micromechanics-based dynamic modulus prediction of polymeric asphalt concrete mixtures. Composites:Part B,39:704-713.
    [16]Suhaibani A, Sharaf E, Abdullatif A. (1997) A model for asphalt concrete modulus prediction from basic mix variables in Saudi Arabia. Journal of King Saud University, Engineering Sciences,9(1):1-12.
    [17]You Z, Buttlar WG. (2004) Discrete-element modeling to predict the modulus of asphalt concrete mixtures. Journal of Materials in Civil Engineering,16(2):140-146.
    [18]张肖宁.(2005)沥青与沥青混合料的粘弹性力学原理及应用.人民交通出版社,北京.
    [19]Zhu H, Nodes J. (2000) Contact based analysis of asphalt pavement with the effect of aggregate angularity. Mechanics of Materials,32:193-202.
    [1]Buchanan GR. (2004) Layered versus multiphase magneto-electro-elastic composites. Composites Part B:Engineering,35:413-420.
    [2]Chen WQ, Lee KY, Ding HJ. (2004) General solution for transversely isotropic magneto-electro-thermo-elasticity and the potential theory method. International Journal of Engineering Science,42(13-14):1361-1379.
    [3]Chen WQ, Lee KY, Ding HJ. (2005) On free vibration of non-homogeneous transversely isotropic magneto-electro-elastic plates. Journal of Sound and Vibration,279(1-2): 237-251.
    [4]Davi G, Milazzo A, Orlando C. (2008) Magneto-electro-elastic bimorph analysis by the boundary element method. Mechanics of Advance Materials and Structures,15:220-227.
    [5]Ding HJ, Jiang AM. (2004) A boundary integral formulation and solution for 2D problems in magneto-electro-elastic media. Composite Structures,82:1599-1607.
    [6]Ding HJ, Jiang AM, Hou PF, Chen WQ. (2005) Green's functions for two-phase transversely isotropic magneto-electro-elastic media. Engineering Analysis with Boundary Elements,29:551-561.
    [7]Dong BQ, Li ZJ. (2005) Cement-based piezoelectric ceramic smart composites. Composites Science and Technology,65:1363-1371.
    [8]Hou PF, Ding HJ, Chen JY. (2005) Green's functions for transversely isotropic magnetoelectroelastic media. International Journal of Engineering Science,43:826-858.
    [9]Lee J, Boyd JG, Lagoudas DC. (2005) Effective properties of three-phase electro-magneto-elastic composites. International Journal of Engineering Science,43: 790-825.
    [10]Liu YJ, Nishimura N. (2006) The fast multipole boundary element method for potential problems:A tutorial. Engineering Analysis with Boundary Elements,30:371-381.
    [11]Milazzo A, Orlando C, Alaimo A. (2009) An analytical solution for the magneto-electro-elastic bimorph beam forced vibrations problem. Smart Materials and Structures,18:1-14.
    [12]Pan E. (2001) Exact solution for simply supported and multilayered magneto-electro-elastic plates. Journal of Applied Mechanics,68:608-618.
    [13]Pan E, Heylinger PR. (2002) Free vibration of simply supported and multilayered magneto-electro-elastic plates. Journal of Sound and Vibration,253(3):429-442.
    [14]Pan E. (2002) Three dimensional Green's function in anisotropic magneto-electro-elastic bimaterials. Zeitschrift fur angewandte Mathematik und Physik,53:815-838.
    [15]Pettermann HE, Suresh S. (2000) A comprehensive unit cell model:a study of coupled effects in piezoelectric 1-3 composites. International Journal of Solids and Structures,37: 5447.5464.
    [16]Sabariego RV, Gyselinck J, Geuzaine C, Dular P, Legros W. (2003) Application of the fast multipole method to the 2D finite element-boundary element analysis of electromechanical devices. Compel,22(3):659-673.
    [17]Song ZF, Sih GC. (2002) Electromechanical influence of crack velocity at bifurcation for poled ferroelectric materials. Theoretical and Applied Fracture Mechanics,38(2):121-39.
    [18]Wang X, Shen YP. (2002) The general solution of three-dimensional problems in magneto-electro-elastic media. International Journal of Engineering Science,40: 1069-1680.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700