用户名: 密码: 验证码:
新型双绕组磁悬浮开关磁阻发电机及其控制系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
磁悬浮开关磁阻电机具有磁轴承电机的优点,并且还兼有轴向利用率高、体积小和功耗低的特点。作为发电机运行时,可以将无轴承技术与开关磁阻发电机技术结合起来,克服传统机械支承方式的机械磨损和摩擦损耗,同时发电电流为直流脉动电流,在电动汽车、电力工程等领域有广阔的应用前景,尤其适用于可再生能源的动量补偿,峰值调节和负载平衡,具有重要的研究意义。然而传统磁悬浮开关磁阻电机内,悬浮绕组与主绕组之间存在复杂的非线性强耦合关系,并且传统磁悬浮开关磁阻电机的发电运行方式为周期性分时发电模式,主绕组仅在负转矩区间内向外输出电能,发电功率密度较低,这些已经成为制约其发展的瓶颈问题。因此,研究一种能克服上述问题的新型磁悬浮开关磁阻发电机,并对其驱动控制算法和高速数字系统等进行研究是非常有必要的。
     本文提出一种新型的双绕组磁悬浮开关磁阻发电机,针对其工作原理、电机基本参数设计、有限元分析、径向力及绕组电压数学模型、悬浮及发电系统控制算法、转子径向位移自检测、以及高速数字控制系统设计等一系列关键理论和技术问题,在国家自然科学基金(60774044,61074019)和江苏省普通高校研究生科研创新计划(CXZZ11_0571)等项目的支持下,开展了本课题的研究。将磁悬浮开关磁阻电机技术与双绕组发电机技术相结合,由悬浮极的悬浮力绕组提供悬浮力,由发电极的激励绕组提供励磁,由发电极的发电绕组向外输出发电电压,显著减弱悬浮和发电系统之间的耦合影响,并且发电绕组在整个周期内均向外输出电能,发电功率密度较高。论文主要研究工作如下:
     (1)利用Ansoft/Maxwell-2D建立了该新型双绕组磁悬浮开关磁阻电机的有限元模型,分析了其磁场特性,阐述了运行原理,并进行了基本参数优化设计。
     (2)考虑磁饱和影响,建立了径向悬浮力和发电系统的数学模型,并通过对相同参数样机进行Ansoft有限元分析计算,验证了模型的正确性。
     (3)研究了悬浮力绕组电流以及激励绕组电流的控制算法,为径向悬浮系统设计了鲁棒PID控制器,以克服外力扰动、系统参数摄动,以及激励、发电电流对悬浮力的干扰,增强转子悬浮的鲁棒性和稳定性。
     (4)结合FPGA自身特点完成复杂的控制信号组合逻辑,与DSP主控制器单元、信号检测电路、以及外围硬件接口电路共同构成磁悬浮开关磁阻电机高速数字控制系统,并且为悬浮力绕组、激励绕组和发电绕组设计了功率变换器。
     (5)基于高频注入检测方法的原理,研究了该新型双绕组磁悬浮开关磁阻电机的无位移传感器运行方法,构建了径向位移自检测系统。
     可以取得的有益效果如下:
     (1)电机定子凸极依次间隔设置为悬浮极和发电极,悬浮绕组单独绕制在悬浮极上,激励绕组和发电绕组同时绕制在发电极上,结构清晰,功能明确,便于维护和控制。
     (2)有效减小了悬浮绕组和发电绕组之间的互感,削弱了悬浮极与发电极之间的耦合影响,解决了传统磁悬浮开关磁阻发电机内悬浮和发电系统间的强耦合问题。
     (3)径向悬浮力不随转子位置角改变,克服了传统磁悬浮开关磁阻电机定转子不对齐位置处不能有效产生悬浮力的问题,增强了电机的径向负载能力,改善了电机的悬浮性能。
     (4)在转子极与发电极定子部分对齐位置期间,发电绕组磁链不存在平坦区域,通过合适的控制方法,发电绕组在全工作周期均可向外以整流形式输出电能,提高了发电功率密度,且输出电压调节方便。
     (5)将建模机理、有限元分析和仿真数据有机结合,建立了对线性、饱和磁路以及不同转子偏心度均适用的数学模型,可以弥补现有基于无磁饱和假设的各种建模方法不适用磁饱和工况的缺陷,并且可以为电机的运行特性分析、本体优化设计以及控制策略研究提供更准确的理论依据。
     (6)采用偏心自传感技术,设计了转子位移观测器,可以克服传统的位移传感器灵敏度容易受温度、电磁噪声干扰等问题,能缩小电机尺寸和结构复杂度,降低总体成本,提高系统的可靠性。
     (7)依据已建立的较精确的数学模型,设计了悬浮力绕组电流以及激励绕组电流的控制算法,并且为径向悬浮系统设计了鲁棒PID控制器,可以克服外力扰动、系统参数摄动,以及激励、发电电流对悬浮力的干扰,增强转子悬浮的鲁棒性和稳定性。
A bearingless switched reluctance motor(BSRM) not only has the merits of magnetic bearing motors, but also can work high axial utilization ratio, small capacity, and low power consumption. By synchronously utilizing bearingless technology and generation technology, it runs as a generator. Mechanical wear and friction loss can be eliminated, and it can output direct current(DC) current, which can be widely applicated in electromobile and power engineering fields, and is especially fit for momentum compensation, peak adjustment, and load balance in regenerative energy synchronizing, and has wide engineering applicaton foreground and reaserch significance. However, in traditional bearingless switched reluctance motors, there exists complex electromagnetic coupling between radial force windings and torque windings. Furthermore, traditional BSRMs usually generate in periodically time-sharing generation mode, in which the torque winding can only output electric egergy in negative-torque period and the generation power density is low. All the shortcomings mentioned above for traditional BSRMs and periodically time-sharing generation mode have formed the bottleneck restriction for their development. So, it is necessary to design a novel bearingless switched reluctance generator(BSRG) which can conquer these problems, and study its drive control methods.
     A novel double-winding bearingless switched reluctance generator is proposed in this thesis, then the study is carried out aiming at a series of key theories and technique problems such as magnetic characteristic analysis, magnetism parameter design, basic mathematic model deduction, control system design and so on. This s work is supported by the National Natural Science Foundation of China(60774044,61074019) and2011Jiangsu Regular High School Postgraduate Students'Scientific Research Innovation Program (CXZZ11_D571). In this generator, the technique of both BSRM and double-winding generation are combined together. Its hybrid stator consists of suspension poles and generation poles.The radial force windings can provide radial force to suspend the rotor. Within the generation poles, the excitation windings provide magnetic excitation, and the generation windings output electric power. The decoupling between suspension subsystem and generation subsystem can be weakened significantly. And the generation windings can output power even when the excitation windings are conducted, that is to say, during the whole period, there is electric power to be generated. And the generation power density can be increased.
     The main contents of this paper are as follows:
     (1) Build the Ansoft model of this novel double winding bearingless switched reluctance generator to analyze its magnetic characteristics. Then with the finite element analysis results, the running principle is described and magnetism parameter is designed and optimized.
     (2) The mathematical models of radial force and generation voltage are calculated considering the nonlinear magnetizing characteristic. Then matlab and ansoft are utilized to confirm the mathematical model.
     (3) The control algorithms for suspension winding current and generation winding current are studied. And robust PID controllers for radial suspension system are designed to conquer the problems of external force disturbance, parameter perturbation, and the interference of excition current for stability and robustness increment for rotor suspension.
     (4) Utilize FPGA to realize complex combinational logic of control signal, then combines with DSP main control unit, signal detection circuit, and surrounding interface circuit to constitute the high-speed digital control system. And the power inverters for radial force winding, excitation winding, and generation winding are designed as well.
     (5) The radial displacement sensorless technique is studied based on high-frequency injection method, and the radial displacement self-testing system is also erected.
     The achievements are as follows:
     (1) The salient poles of stator are set as suspension poles and generation poles in turn. The radial force windings are solely coiled in suspension poles. While the excitation windings and generation windings are synchronously coiled in generation poles. This novel double-winding bearingless generator has clear struct and explicit functions, and is easy to maintain and control.
     (2) The mutual inductance between suspension winding and generation winding is effectively decreased, and the coupling between suspension poles and generation poles is correspondingly weakened. So the serious coupling between suspension system and generation system in traditional bearingless switched reluctance generators can be conquered.
     (3) Radial force does not vary with rotor position angle. So when rotor is totally unaligned to rotor, the problem of insufficient radial force production in traditional BSRMs can be conquered. Radial load ability can be increased, and the radial suspension can be improved.
     (4) Generation winding flux linkage changes with rotor position angle, and no smooth region exsits, that is to say, there will be rectified generation voltage to be output during the full working period. So, the generation power density can be increased, and output voltage is easy to be adjusted.
     (5) Modeling by mechanism, finite element analysis, and simulation are bonded to buid the mathematical models fit for not only linear magnetic circuit but also saturated nonlinear magnetic circuit. So it can remedy the shortcomings of those existing models based on non-saturation hypothesis, which are not suitable for magnetic-saturated condition. And can also provide more reliable theoretical rules for running characteristics analysis, motor optimum design, and control strategy study.
     (6) A kind of practical radial displacement self-test method is put forward in this paper. With this method, no special radial displacement sensor is required anymore, and the temperature and electronic sensity of traditional displacement sensors can be conquered. Even the geometry size, cost, and complexity can be reduced, and the reliability of whole system can also be improved.
     (7) The control algorithms for suspension winding current and generation winding current are studied. And robust PID controllers for radial suspension system are designed to conquer the problems of external force disturbance, parameter perturbation, and the interference of excition current for stability and robustness increment for rotor suspension.
引文
[1]施韦策H.布鲁勒等着.虞烈,袁崇军译.主动磁轴承基础、性能及应用[M].北京:新时代出版社,1997.3.
    [2]虞烈著.可控磁悬浮转子系统[M],科学出版社,2003.
    [3]朱熀秋,张伟霞,费德成,Hugel Joerg.磁悬浮无轴承电动机发展、应用和前景[J],微特电机,2006,3:39-41.
    [4]R. Bosch. Development of a bearingless motor[A]. In:Proc. Int. Conf. Electric Machines (ICEM'88)[C],1988,3:373-375.
    [5]邓智泉,严仰光.无轴承交流电动机的基本理论和研究现状[J].电工技术学报,2000,15(2):29-35.
    [6]曾励,朱烷秋.曾学明,等.单自由度混合磁悬浮轴承控制系统模型的研究[J].南京航空航天大学学报,1998,12.30(6):685-690.
    [7]曾励,朱熀秋,刘止埙等.永磁偏置的混和磁悬浮轴承的研究[J].中国机械工程,1999,10.10(4):387-389.
    [8]王水泉.五轴主动控制型电磁悬浮轴承的研究[D].国防科技大学,1998.
    [9]朱熀秋,邓智泉等.永磁偏置径向-轴向磁悬浮轴承工作原理和参数设计[J].中国电机工程学报,2002,22(9):54-58.
    [10]A.Chiba, T.Fukao. A Review of Developments in Bearingless Motors[C]. In:7th International Symposium Magnetic Bearings, ETH Zurich, August 2000:335-400.
    [11]J.Bichse. The Bearingless Electrical Machine[C]. In:Proc. Int. Symposium Magnetic Suspension Technology, NASA Langley Res.Center, Hampton,1991:561-573.
    [12]M.Oshima, SMiyazawa, A.Chiba,et al. Performance Evaluation and Test Results of a 11, OOOr/min 4KW Surface-mounted Permanent Magnet-type Bearingless Motor[C]. In:7th International Symposium on Magnetic Bearings, ETH Zurich, August 2000:377-382.
    [13]R.Schob, N.Barletta. Principle and Application of a Bearingless Slice Motor[C].In:5th International Symposium on Magnetic Bearings, Japan, August 1996:313-318.
    [14]A.Chiba, T.Deido, T.Fukao, et al. An Analysis of Bearingless AC Motors[J].IEEE Transactions on Energy Conversion,1994,9(1):61-67.
    [15]A.Chiba, D.T. Power, M.A.Rahman. Characteristics of a Bearingless Induction Motors[J]. IEEE Trans. on Magnetic,1991,27(6):5199-5201.
    [16]A.Chiba,D.T.Power, M.A.Rahman. Analysis of No-load Characteristics of a Bearingless Induction Motor[J]. IEEE Transactions on Industry Applications,1995,31(1):77-83.
    [17]A.Chiba, R. Furuichi, Y. Aikawa, et al. Stable Operation of Induction-type Bearingless Motors Under Loaded Conditions[J]. IEEE Trans. on Industry Applications,1997,33(4): 919-924.
    [18]S.Mori, S.Tadashi, M.Ohswa. Experiments on a Bearingless Synchronism Reluctance Motor with Load[C]. In:ISMB, Japan Sep.1996:339-343.
    [19]M.Oshima, S.Miyazawa, T.Deido, et al. Characteristics of a Permanent Magnet Type Bearingless Motor[J]. IEEE Transactions on Industry Applications,1996,32(2):363-370.
    [20]A.Chiba, S.Onoya, T.Kikuchi, et al. An Analysis of a Prototype Permanent Magnet Bearingless Motor Using Finite Element Method[C]. In:5th International Symposium on Magnetic Bearings, Japan, August 1996:351-356.
    [21]A.Chiba, M.Hanazawa, T.Fukao, et al. Effects of Magnetic Saturation on Radial Force of Bearingless Synchronous Reluctance Motors[J]. IEEE Transactions on Industry Applications, 1996,32(2):354-362.
    [22]C.Michioka, T.Sakamoto, O.Ichikawa, A.Chiba, et al. A decoupling Control Method of Reluctance-Type Bearingless Motors Considering Magnetic Saturation[J].IEEE Transactions. on Industry Applications,1996,32(5):1204-1210.
    [23]A.O.Salazar, A.Chiba, T.Fukao. A Review of Developments in Bearingless Motors[A]. In: 7th International Symposium on Magnetic Bearings[C],Zurich,2000:335-4001.
    [24]Morrison C R, Siebert M W, Ho E J. Electromagnetic forces in a hybrid magnetic-bearing switched-reluctance motor[J]. IEEE Transactions on Magnetics,2008,44(12):4626-4638.
    [25]T. Higuchi. Magnetically floating actuator having angular positioning function [P]. America: 4683391,1985.
    [26]R.Schoeb, J.Bichsel. Vector control of the bearingless motor[A]. In:Proc.4th Int. Symp. Magnetic Bearings[C], Zurich, Switzerland.1994:327-332.
    [27]Pascal N. Boesch, N. Barletta.High power bearingless slice motor for bearingless canned pumps[A]. In:9th International Symposium on Magnetic Bearings[C], Kentucky, USA, August 2004.
    [28]A.Chiba, M.Hanazawa, T.Fukao, et al. Effects of Magnetic Saturation on Radical Force of Bearingless Synchronous Reluctance Motors[J].IEEE Trans. on Industry Applications,1996, 32(2)354-362.
    [29]M.Ooshima, A.Chiba, T.Fukao. Characteristics of a permanent magnet type bearingless motor [J]. IEEE Trans. Indus. Application,1996,32(2):363-370.
    [30]M.Ooshima, S.Miyazawa, A.Chiba, et al. Performance Evaluation and Test Results of a 11, 000r/min,4kW Surface-mounted Permant Magnet-type Bearingless Motor [A]. In:7th International Symposium on Magnetic Bearings[C], ETH Zurich,2000:377-382.
    [31]Lyndon S. Stephens, H. Chin. Robust stability of the Lorentz-type self bearing servomotor[A]. In:8th International Symposium on Magnetic Bearings[C], Mito, Japan, 2002:27-33.
    [32]Zhaohui Ren, Lyndon S. Stephens. Performance of a six degree-of-freedom precision pointing test rig using slotless self-bearing motors[A]. In:9th International Symposium on Magnetic Bearings[C], Kentucky, USA, August 2004.
    [33]M.Takemoto, H.Suzuki. A.Chiba,et al. Improved Analysis of a Bearingless Switched Reluctance Motor[C].In:International Conference IEMD'99:773-775.
    [34]M.Takemoto, A.Chiba, T.Fukao et al. A new control method of bearingless switched reluctance motors using square-wave currents[C]. In:IEEE Power Engineering Society Winter Meeting,2000(1):375-380.
    [35]Takemoto M, Chiba A, Akagi H, et al. Radial force and torque of a bearingless switched reluctance motor operating in a region of magnetic saturation[J]. IEEE Transactions on Industry Applications,2004,40(1):103-112.
    [36]M.Takemoto, A.Chiba, T.Fukao. A Feed-Forward Compensator for Vibration Reduction Considering Magnetic Attraction Force in Bearingless Switched Reluctance Motors[C].In:7th International Symp. On Magnetic Bearings,August 23-25, ETH Zurich, 2000:395-400.
    [37]吴建华.开关磁阻电机设计与应用[M].北京:机械工业出版社,2000,6.
    [38]王宏华.开关磁阻电机调速控制技术[M].北京:机械工业出版社,1999,7.
    [39]刘迪吉等.开关磁阻调速电动机[M].北京:北京:机械工业出版社,1994.
    [40]陈吴.开关磁阻调速电动机的原理·设计·应用[M].徐州:中国矿业大学出版社,2000.10.
    [41]冬雷.基于开关磁阻电机系统的电动车辆驱动及相关技术研究与实践[D].南京:南京航空航天大学,2000
    [42]刘雁玲.基于逆系统的磁悬浮开关磁阻电机控制方法的研究[D].江苏镇江:江苏大学,2007.
    [43]邓智泉,杨钢,张媛,等.一种新型的无轴承开关磁阻电机数学模型[J].中国电机工程学报,2005,25(9):139-146.
    [44]孙玉坤,吴建兵,项倩雯.基于有限元法的磁悬浮开关磁阻电机数学模型[J].中国电机工程学报,2007,27(12):33-40.
    [45]孙玉坤,刘羡飞,王德明,等.基于有限元分析的磁悬浮开关磁阻电机数学模型的全角度拓展[J].电工技术学报,2007,22(9):34-39.
    [46]曹鑫,邓智泉,杨钢,等.新型无轴承开关磁阻电机双向导通数学模型[J].电工技术学报,2006,21(4):50-56.
    [47]曹鑫,邓智泉,杨钢,等.无轴承开关磁阻电机麦克斯韦应力法数学模型[J].中国电机工程学报,2009,29(3):78-83.
    [48]周云红,孙玉坤,朱志莹,孙雪蕾.磁悬浮开关磁阻电机的一体化数学模型[J].江苏大学学报,2011,32(1):79-83.
    [49]杨艳,邓智泉,曹鑫,等.无轴承开关磁阻电机径向电磁力模型[J].电机与控制学报,2009,13(3):377-382.
    [50]曹鑫,邓智泉,杨刚,等.一种无轴承开关磁阻电机独立控制策略[J].中国电机工程学报,2008,28(24):94-100.
    [51]杨刚,邓智泉,曹鑫,等.无轴承开关磁阻电机平均悬浮力控制策略[]J.航空学报,2009,30(3):505-511.
    [52]张亮,孙玉坤.基于微分几何的BSRM径向力的变结构控制[J].中国电机工程学报,2006,26(19):121-126.
    [53]刘国海,孙玉坤,张浩,等.基于神经网络逆系统的磁悬浮开关磁阻电机的解耦控制[J].电工技术学报,2005,20(9):39-43.
    [54]孙玉坤,任元,黄永红.BSRM悬浮力与旋转力的神经网络逆解祸控制[J].中国电机工程学报,2008,28(9):81-85.
    [55]Sun Yukun, Zhou Yunhong, Huang Yonghong. Wang Weiran. Modeling and Radial-displacement Sensorless Method for a hybrid-stator bearingless switched reluctance motor, Advanced Materials Research[C], v 433-440, pp.2987-2990,2012, Materials Science and Information Technology, MSIT2011.
    [56]项倩雯,孙玉坤,张新华.磁悬浮开关磁阻电机建模与参数优化设计[J].电机与控制学报,2011,15(4):74-79.
    [57]范冬,杨艳,邓智泉,等.无轴承高速开关磁阻电机设计中的关键问题[J].电机与控制学报,2006,10(6):547-552.
    [58]王秋蓉,葛宝明.无轴承开关磁阻电机磁场及力特性的分析[J].电机与控制学报,2007,11(3):217-220.
    [59]王秋蓉.无轴承开关磁阻电机的分析与设计[D].北京:北京交通大学,2007.
    [60]项倩雯.磁悬浮开关磁阻电机的设计与磁场计算研究[D].江苏镇江:江苏大学,2006.
    [61]刘泽远,邓智泉,曹鑫,王世山.全周期无轴承开关磁阻发电机的设计[J].中国电机工程学报,2011,31(12):77-83.
    [62]南京航空航天大学.无轴承开关磁阻电机全周期发电机的控制方法:中国,200910026777.4[P].2009-05-06.
    [63]南京航空航天大学.无轴承开关磁阻全周期发电机加宽导通控制方法:中国,200910184946.7[P].2009-10-21.
    [64]叶霜.无轴承开关磁阻电机的基础研究:[D]南京:南京航空航天大学,2003.
    [65]吉敬华.磁悬浮开关磁阻电机基本理论的研究[D].江苏镇江:江苏大学,2003.
    [66]周云红.磁悬浮开关磁阻电机非理想状态的数学模型及解耦控制[D].江苏镇江:江苏大学,2010.
    [67]南京航空航天大学.一种单相无轴承开关磁阻电机:中国,200910263106.x[P].2009-12-06.
    [68]吉敬华,赵文祥,郑宏.开关磁阻电机电磁场有限元计算[J].中国农村水利水电,2007,6:134-136.
    [69]张媛,邓智泉.无轴承开关磁阻电机控制系统的设计与实现[J].航空学报,2006,27(1):77-81.
    [70]杨钢,邓智泉,张媛,等.无轴承开关磁阻电机实验平台的设计与实现[J].中国电机工程学报,2006,26(22):97-103.
    [71]刘贤兴,孙宇新,孙玉坤,等.无轴承永磁同步电动机发展、应用和前景[J].中国机械工程,2004,15(17):1594-1597.
    [72]L Dong-Hee, W Huijun, A Jin-Woo. Modeling and control of novel bearingless switched reluctance motor[C]//2009 IEEE Energy Conversion Congress and Exposition. San Jose, CA, United states:Electric Power Research Institute, ECN Magazine, e-Drive Magazine,Electronic Products Magazine, the Institute of Engineering and Technology, Magnetics,2009:276-281.
    [73]Cao Xin, Deng Zhiquan. A full-period generating mode for Bearingless switched reluctance generators[J]. IEEE Transactions on Applied Superconductivity,2010,20(3):1072-1076.
    [74]曾励,朱熀秋.曾学明,等.单自由度混合磁悬浮轴承控制系统模型的研究[J].南京航空航天大学学报,1998,12.30(6):685-690.
    [75]曾励,朱熀秋,刘正埙等.永磁偏置的混和磁悬浮轴承的研究[J].中国机械工程,1999,10.10(4):387-389.
    [76]朱熀秋,邓智泉等.永磁偏置径向-轴向磁悬浮轴承工作原理和参数设计[J].中国电机工程学报,2002,22(9):54-58.
    [77]朱熀秋.无轴承电动机轴向磁轴承参数设计与控制系统研究[J],电工技术学报,2002,6(3):12-16.
    [78]汤蕴璆.电机内的电磁场[M].北京:科学出版社,1998:341-368.
    [79]阎秀阁,谢德馨,高彰燮,等.电磁力有限元分析中麦克斯韦应力法的积分路径选取的研究[J].电工技术学报,2003,18[5]:32-36.
    [80]Zhang Qionghua, Wang Shuanghong, Ma Zhiyuan, et al. Design of a 50 kW switched reluctance machine for HEV propulsion system[C]. Vehicular Technology Conference,2003. VTC 2003-Fall.2003 IEEE 58th, Volume 5,6-9 Oct.2003, Vol.5:3207-3211.
    [81]LIU Z, DENG Z, CAI J, et al. Optimal design of a bearingless switched reluctance motor[C]. Proceeding of 2009 IEEE International Conference on Applied Superconductivity and Electronmagnetic Devices. Chengdu, China:IEEE,2009:241-245.
    [82]A V. Radun. Design considerations for the switched reluctance motor[J]. IEEE Transactions on Industry Applications,1995,31(5):1079-1087.
    [83]I. Husain, A. Radun, J. Nairus. Unbalance fore calculation in switched-reluctance machines[J]. IEEE Transactions on Industry Applications,2000,36(1):330-338.
    [84]杨柳,陈艳萍.求解非线性方程组的一种新的全局收敛的Levenberg-Marquardt算法[J].计算数学,2008,30(8):388-396.
    [85]Cai Jun, Deng Zhiquan, Liu Zheyuan, et al. A new flux-linkage model for Bearingless switched reluctance motor[C]//Proceedings of 2009 IEEE International Conference on Applied Superconductivity and Electromagnetic Devices. Chengdu:Journal of Electronic Science and Technology, Applied Superconductivity and Electrotechnology Research Center.2009:250-254.
    [86]赵文祥,吉敬华.白血等.基于ANSOFT的矿用开关磁阻电机电磁场有限元分析[J].煤矿机械,2002,27(6):986-987.
    [87]王军,徐龙祥.磁悬浮轴承转子位移自检测系统研究[J].传感器技术,2005,24(3):27-29.
    [88]程兆刚,卢健康,曹吕平,等.一种无传感器磁悬浮轴承感应电动机转子位置检测方法研究[J].微电机,2008,41(5):90-93.
    [89]蒯松岩,谭国俊,何凤有.一种新型无位置传感器开关磁阻电机控制方法[J].电力电子技术,2007,41(2):54-56.
    [90]]夏长亮,贺子鸣.周亚娜,等.基于支持向量机的开关磁阻电机转子位置估计[J].电工技术学报,2007,,22(10):12-17.
    [91]Tera T, Yamauchi Y, Chiba A, et al. Performances of bearingless and sensorless induction motor drive based on mutual inductances and rotor displacements estimation [J]. IEEE Transactions on Industrial Electronics,2006,53(1):187-194.
    [92]年珩,贺益康,秦峰,等.永磁型无轴承电机的无传感器运行研究[J].中国电机工程学报,2004,24(11):101-105.
    [93]杨婷.磁悬浮开关磁阻电机分相控制模型及其高速数字系统研究[D].江苏镇江:江苏大学,2011.
    [94]三恒星科技.TMS320F2812 DSP原理与应用实例[M].北京:电子工业出版社,2009:21-24.
    [95]章云,谢莉萍等.DSP控制器及其应用[M].北京:机械工业出版社,2001:11-32.
    [96]周润景,图雅等.基于Quartus Ⅱ的FPGA/CPLD数字系统设计实例[M].北京:电子工业出版社,2007:39-96.
    [97]霍红义,李雷军等.几种新型的SRM功率变换器[J].实用技术,2002,1(1):38-39.
    [98]冯菁.IGBT驱动器的选择[J].科技资讯,2008,10:47.
    [99]王占扩,樊生文等.基于光耦HCPL316J的大功率IGBT驱动电路研究[J].高压变频器,2010.7:80-84.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700