用户名: 密码: 验证码:
大亚湾反应堆中微子实验中基于VME的RPC电子学研制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大亚湾反应堆中微子实验的主要目的是精确测量中微子混合角013,实验的设计目标是在90%置信区间内对sin22013的测量达到0.01的精度。因为大亚湾实验的本底主要来自宇宙射线,所以大亚湾实验设计了由水契伦克夫探测器和阻性板室(Resistive Plate Chamber, RPC)探测器组成的两重反符合探测器对宇宙线产生的中子本底进行排除。本文主要介绍的是大亚湾中微子实验中基于VME (Visa Module Euro card)的RPC电子学的设计、实现、测试结果及其分析和总结。本文第一章介绍了中微子实验的背景和大亚湾反应堆中微子实验的概况;第二章首先介绍了国际上运行的几个Muon读出电子学系统的结构,然后从大亚湾RPC电子学的设计需求出发,介绍了RPC电子学的系统结构、系统的工作流程、系统中的各个模块和系统在抗干扰方面的考虑;第三章介绍了触发子系统的设计和实现,重点介绍了RPC触发插件(RPC Trigger Module, RTM)的硬件设计和逻辑设计;第四章介绍了读出子系统的设计和实现,重点介绍了VME读出插件(Readout Module, ROM)的设计、实现和改造;第五章给出了RPC电子学的相关测试;第六章对本论文的工作进行了总结并展望了未来的工作。
     根据大亚湾实验对RPC电子学系统的设计需求,在总结国际上已经在运行的Muon读出电子学系统的经验的基础上,我们设计研制了由触发子系统和读出子系统组成的基于VME的RPC电子学。触发子系统主要完成触发相关的功能,由前端板FEC(Front-End Card)、读出传输板ROT(Readout Transceiver)和VME触发插件RTM组成。在触发子系统中,前端板FEC负责收集来自RPC探测器的感应条输出信号,并产生符合信号;读出传输板ROT负责将FEC产生的符合信号上传给RTM,并将RTM产生的本地触发信号下发给FEC;RTM负责接收来自FEC的符合信号,根据符合信号产生本地触发信号并下发给FEC,同时,在有符合信号产生时产生触发数据。在整个触发子系统的设计中,VME触发插件RTM具有重要的地位。RTM通过大规模可编程逻辑器件的运用,形成对应于整个实验厅的RPC模块的Trigger map,以完成周边触发的功能。为了与其它探测器系统交叉检查触发的性能和研究本底,RTM还具备接收来自主触发系统的Cross Trigger的功能。读出子系统主要实现事例数据的读出功能,由前端板FEC、读出传输板ROT和读出插件ROM组成。读出子系统使用大量的FPGA (Field Programmable Gate Array),以完成事例数据的实时读出。ROM和RTM都是9U的VME插件。RPC电子学通过VME总线的CBLT (Chain BlockTransfer)协议将ROM中的事例数据和RTM中的触发数据上传给DAQ系统。
     我们在设计系统结构的时候充分的考虑了系统的抗干扰性能。主要采用了以下抗干扰的措施:
     1)系统的前端(ROT与FEC之间的连接)采用了星形的连接方式;
     2)ROT与ROM(或RTM)之间的采用了光纤传输以隔离地线;
     3)系统中使用的电缆采用了带屏蔽的电缆,并且使电缆的屏蔽层在ROT一侧单端接地;
     4)系统中的FEC和ROT都使用了屏蔽盒和机箱进行了屏蔽;
     5)设计中对于本地触发等关键信号采取了防干扰的设计。
     为了验证RPC电子学系统的功能和性能,我们进行了一系列的测试。测试结果显示,RPC电子学系统完全满足系统的设计需求。大亚湾近厅的安装结束后,RPC电子学与RPC探测器的联合测试更是说明了电子学系统可以在实验现场稳定运行,并且能够满足探测器取数的需求。
     目前RPC电子学3个实验厅的安装已经结束。整个大亚湾实验经过安装调试和试运行之后,已经进入了实际取数的阶段。北京时间2012年3月8日14时,大亚湾中微子实验国际合作组发言人王贻芳在北京宣布,大亚湾中微子实验发现了一种新的中微子振荡,并测量到其振荡几率
     本论文设计主要有如下几个特点:
     1)系统结构使用了前端星形连接的方式;
     2)系统中采用了本地触发与系统触发相结合的触发方式;
     3)在事例数据和触发数据中都添加了与全球定位系统(Global Positioning System,GPS)同步的绝对时间标记,用来对齐不同的探测器系统之间的数据;
     4)事例数据中的秒内时标和秒级时标分别在FEC和ROM上添加,并通过对秒级时间的奇偶校对解决了由于数据传输引起的秒级时标错误问题;
     5)在数据读出的逻辑设计中,采用了轮询的读出方式实现了多通道数据的实时读出;
     6)采用大量可编程逻辑器件FPGA,以实现本地触发功能和数据的缓冲功能。
The Daya Bay Reactor Neutrino Experiment aims to measure the neutrino mixing angle θ13to a precision of0.01with90%confidence. Because the major part of the background comes from cosmic ray, the anti-coincidence detectors, which are composed of the water Cherenkov detector and the Resistive Plate Chamber (RPC) detector, are designed to identify neutron background generated by the cosmic ray. This thesis introduces the design and implementation of the VME-based RPC electronics, and gives the test results analysis. The first chapter presents the background of the neutrino experiment and the overview of the Daya Bay reactor neutrino experiment. The second chapter introduces the design requirements and the architecture of the VME-based RPC electronics. The third chapter is about the design and development of the trigger sub-system of the RPC electronics, and the hardware and firmware designs of the RPC Trigger Module (RTM) are especially introduced. And the fourth chapter is about the design and development of the readout sub-system of the RPC electronics, and the design and upgrade of the Readout Module (ROM) are especially introduced. The test results of the RPC electronics are given in the fifth chapter. The sixth chapter summaries work in this thesis and looks forward to the future work.
     According to the design requirements of the RPC electronics, we designed the VME-based RPC electronics that are composed of trigger sub-system and readout sub-system after summing up the Muon readout systems of other high energy physics experiments. The trigger sub-system consists of Front-End Card (FEC), Readout Transceiver (ROT) and the RTM. The FEC collects the RPC strip output signals and generates coincidence signals based on the strip output signals. ROT is responsible for the conversion of the data transmission between the RTM and the FEC. The RTM generates local triggers based on the coincidence signals from the FECs and sends these local triggers back to the related FECs. Using the Field Programmable Gate Array (FPGA), the RTM forms a trigger map corresponds to all the RPC modules in the experiment hall to fulfill the adjacent trigger mechanism. The adjacent trigger mechanism is that when there is a coincidence signal from one FEC, the trigger sub-system should generate a local trigger for this FEC, and also for each of the adjacent FECs. In order to evaluate the trigger performance and assess the background, the RPC trigger system must also be capable of accepting a cross trigger from the master trigger system. The readout sub-system consists of Front-End Card (FEC), Readout Transceiver (ROT) and the ROM. The readout sub-system uses FPGA to achieve the real-time data readout. Both ROM and RTM are9U size VME modules. The RPC electronics transfer the event data and trigger data to the DAQ system via the VME bus by using the Chain Block Transfer (CBLT) mode.
     The anti-interference performance has been fully considered during the design of the system architecture. Following measures are adopted:
     ●The connection between FEC and ROT adopts the star connection.
     ●Between ROT and RTM (or ROM), the optical fiber transmission is used.
     ●The shield cable is used between FEC and ROT.
     ●The ROT and FEC are shielded by using chassis and shield box.
     ●Adopting the anti-interference transmission design for the critical signals such as the local trigger.
     In order to verify the functionality and performance of the RPC electronics system, a series of test have been completed. Test results indicate that the RPC electronics fully meet the design requirements. The joint test with the RPC modules in Daya Bay near hall indicates that the RPC electronics have stable operation in the experimental field and meet the demand of detector data readout.
     The installation of the RPC electronics in the three experimental halls in Daya Bay has been completed. The first result from Daya Bay:Discovery of a new kind of neutrino transformation is announced on March8,2012by Yifang Wang, the spokesman for the international cooperation group in Daya Bay neutrino experiment.
     The work of this thesis has the following characteristics:
     ●The front-end of the RPC electronics adopts the star connection.
     ●The combination of system trigger and local trigger is adopted in RPC electronics.
     ●Both event data and trigger data contain the timestamps that are synchronized with other detector systems and Global Positioning System (GPS).
     ●The UNIX second and nanosecond in the timestamp are added separately to the event data. The UNIX second is added to the event data on FEC and the nanosecond is added to the event data on ROM. The UNIX second error caused by the data transmission is solved by second parity check.
     ●A polling readout method is adopted to achieve the real-time data readout of multiple channels.
     ●FPGA are widely used in the RPC electronics to buffering data and achieve the local trigger function.
引文
[1].何景棠。中微子质量和中微子振荡实验。《物理学进展》2001年第21卷第2期。
    [2]. "Detection of the Free Neutrino:A Confirmation", C.L. Cowan, Jr., F. Reines, KB. Harrison, H.W. Kruse and A.D. McGuire, Science 124,103(1956).
    [3]. T.D. Lee and C.N. Yang, Phys. Rev.105:1671(1957).
    [4].叶子飘,胡宝坚。中微子振荡与太阳中微子问题。湖南大学学报,2002年第29卷第1期.
    [5]. B. Pontecorvo, Sov. Phys. JETP 6,429(1957); B. Pontecorvo, Sov. Phys. JETP 26, 984(1968).
    [6]. Z. Maki, M. Nakagawa and S. Sakata, Prog. Theor. Phys.28,870(1962).
    [7].曹据。大亚湾反应堆中微子实验。中国核科学技术进展报告。第一卷(2009年):120-126.
    [8].王贻芳。大亚湾反应堆中微子实验。物理。36卷(2007年)3期。
    [9]. The Super-Kamiokande Collaboration, Y. Fukuda er al., Phys. Rev. Lett.81,1562(1998); Phys. Rev. D 71,112005(2005).
    [10].The K2K Collaboration, M.H. Ahn et al., Phys. Rev. D 74,072003(2003).
    [11].The MINOS Collaboration, P. Adamson et al., Phys. Rev. Lett.101,131802(2008).
    [12].The SNO Collaboration, Q.R. Ahmad et al., Phys. Rev. Lett.89,011301(2002); Phys. Rev. Lett.92,181301(2004); Phys. Rev. Lett.101,111301(2008).
    [13].J.N. Bahcall, W.A. Fowler, I. Iben and R.L. Sears, Astrophys. J.137,344 (1963); J.N. Bahcall, M.H. Pinsonneault and S. Basu, Astrophys. J.555,990 (2001); J.N. Bahcall and M.H. Pinsonneault, Phys. Rev. Lett.92,121301 (2004).
    [14].The KamLAND Collaboration, S. Abe et al., Phys. Rev. Lett.100,221803 (2008).
    [15].F. Bohem et al., Palo Verde collaboration, Phys. Rev. D 62(2000)072002.
    [16].Fogli et al., hep-ph/0506083.
    [17]. Anderson K et al. hep-ex/0402041.
    [18].H.Kwon et al.,Phys.Rev.D 24,1097(1981).
    [19].G. Zacek et al., Phys.Rev.D 34,2621 (1986).
    [20]. Y. Declais et al., Nucl. Phys. B434,503 (1995).
    [21].F. Boehm et al., Phys. Rev. D62,072002 (2000).
    [22].M. Apollonio et al., Eur. Phys. J. C27,331 (2003).
    [23]. Wang Yi-Fang, "A neutrino experiment using the Daya Bay reactor". Physics.2007.
    [24].2008年大亚湾中微子实验的技术设计书:http://dayabay.bnl.gov/private/documents/tdr/tex/tdr2008.pdf
    [25].R. Santonico, R. Cardarelli. Nucl. Instr. and Meth. A 187 (1981) 377.
    [26].谢一冈等。粒子探测器与数据获取。北京:科学出版社,2003.
    [27]. ATLAS Muon Collaboration, CERN/LHCC 97-22,5 June 1997.
    [28].BaBar Collaboration, Nucl. Instr. and Meth. A,2002,479:1.
    [29].BELLE Collaboration, Nucl. Instr. and Meth. A,2002,479:117.
    [30].The BESIII detector, IHEP-BEPCII-SB-13, IHEP, Beijing.
    [31].Zhen Cao, The ARGO-YBJ Experiment Progresses and Future Extension, arXiv:1006.4298.
    [32].徐吉磊。大亚湾RPC探测器性能及其对本底测量的研究。中国科学院研究生院博士学位论文。
    [33].Liehua Ma et al., "The Mass Production and Quality Control of RPCs for the Daya Bay Experiment", Nuclear Instruments and Methods in Physics Research A. Vol.659. (2011)154-160.
    [34]. Jilei Xu, Daya Bay DocDB3072.
    [35].Zhang Jiawen, Long strip performance, Daya Bay DocDB1101.
    [36].XU Ji-Lei et al., "Designing and preliminary test results of Daya Bay RPC modules", Chinese Physics C. Vol.35. No.9:844-850.2011.
    [37].黄明阳等。利用大亚湾中微子实验装置探测超新星中微子。原子核物理评论。2011年第28卷第2期。
    [1]. BELLE Collaboration, Nucl. Instr. and Meth. A,2002,479:117.
    [2]. BaBar Collaboration, Nucl. Instr. and Meth. A,2002,479:1.
    [3].刘宝莹。BESⅢ μ子鉴别器VME数据读出板研究。中国科学技术大学硕士学位论文。
    [4]. Heng Y. Hao L.et al. Towards an Efficient Prototype of a RPC Detector Readout System for the Daya Bay Neutrino Experiment. TNS, IEEE.2010 June.
    [5]. Hui Gong, "Design of the local trigger board for Daya Bay reactor neutrino experiment". Nuclear Instruments and Methods in Physics Research A Vol.637(2011)138-142
    [6].杨珩。大亚湾中微子实验中RPC电子学前端读出插件和读出插件的研制。中国科学技术大学博士学位论文。
    [7].黄隆锦。大亚湾反应堆中微子振荡实验RPC读出电子学光线数据传输系统设计。中国科学技术大学硕士学位论文。
    [8].赵恒。大亚湾中微子实验RPC读出电子学时钟分配插件和USB光纤读出插件的研制。中国科学技术大学硕士学位论文。
    [9].薛涛,龚光华,陈少敏,邵贝贝。大亚湾中微子实验时标广播系统的初步设计。核电子学与探测技术。2009年第29卷第6期。
    [10].季筱璐等。大亚湾中微子实验DAQ读出子系统模型。第13届全国计算机、网络在现代科学技术领域的应用学术会议论文集。2007年。
    [11].诸邦田,《电子电路实用抗干扰技术》,人民邮电出版社,1994。
    [12].毛楠孙瑛,《电子电路的抗干扰实用技术》,国防工业出版社,1996。
    [1].谢一冈等。粒子探测器与数据获取。北京:科学出版社,2003.
    [2]. Cyclone Device Handbook, Altera Corporation.
    [3]. Data Sheet for M25P80. ST.2007.
    [4]. Data Sheet for MAX9375. MAXIM.2003.
    [5]. Data Sheet for MC100EPT21. ON Semiconductor.2009.
    [6]. Data Sheet for SN65LVDS31. Texas Instruments Inc.1997.
    [7]. Data Sheet for SN74AS757. Texas Instruments Inc.1995.
    [8]. Data Sheet for SN74LVTH16245. Texas Instruments Inc.2003.
    [9]. Data Sheet for LM317. ST.1999.
    [10].薛涛,龚光华,陈少敏,邵贝贝。大亚湾中微子实验时标广播系统的初步设计。核电子学与探测技术。2009年第29卷第6期。
    [11].季筱璐。大亚湾中微子实验数据获取系统的研究与实现。中国科学院研究生院博士学位论文。
    [12].Viktor Yodiken, "The RTLinux Manifesto", http://www.rtlinux.org.
    [13]. American National Standard for VME64 Extensions for Physics and Other Applications.VMEbus International Trade Association.
    [1]. Cyclone Ⅲ FPGA Family Data Sheet. Altera Corporation.2007.
    [2]. Data Sheet for SN65LVDS31. Texas Instruments Inc.1997.
    [3]. Data Sheet for SN65LVDS32B. Texas Instruments Inc.2001.
    [4].谢一冈等。粒子探测器与数据获取。北京:科学出版社,2003。
    [5]. American National Standard for VME64 Extensions for Physics and Other Applications.VMEbus International Trade Association.
    [6].吴继华等。Altera FPGA/CPLD设计(高级篇)第2版。北京:人民邮电出版社,2011年。
    [7].林昌辉,樊晓桠。FPGA设计中优化时序的原则与方法。微处理机。(2007年)3期。
    [1].郝慧峰,杨珩等。大亚湾实验RPC探测器VME插件专家鉴定会报告。大亚湾中微子实验工程内部文献。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700