用户名: 密码: 验证码:
含有C_(60)或石墨烯的纳米氧化物光催化剂的制备及其催化活性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光催化能够将光能转化为化学能,从而实现空气的净化和废水中有机污染物的降解。作为该领域研究最多的一种材料,TiO_2有着廉价、无毒,不发生光腐蚀,稳定性好,氧化性强等特点,但是,其光量子转换效率低、不能有效利用可见光等,极大限制了它的应用。为寻求活性更高的光催化剂,人们一方面对TiO_2的改性进行探索,另一方面尝试以相似材料作为替代。ZnO也是最好的光催化材料之一。
     本文分别以TiO_2和ZnO作为研究体系,采用C_(60)或石墨烯对其进行修饰、改性,旨在利用C_(60)、石墨烯的特殊结构和光电化学性质实现TiO_2和ZnO光生载流子的有效分离,从而提高二者的催化活性。主要研究内容如下:
     以水溶性C_(60)和TiO_2胶体为前驱体,利用水热法将不同量的C_(60)引入到TiO_2中,得到C_(60)与锐钛矿型TiO_2的纳米复合物。以对硝基苯酚为模型污染物,分别考察了在紫外光和可见光照射下,C_(60)/TiO_2复合光催化剂的降解活性。结果表明,适量引入C_(60)可以提高TiO_2的光催化活性,初步筛选出C_(60)的最佳引入量为0.5wt%。通过荧光光谱、固体漫反射紫外-可见光谱的结果表明,C_(60)可以促进TiO_2光生载流子的有效分离,起到传输电子的作用。随后,我们对C_(60)/TiO_2纳米复合物的光催化降解机理进行了初步探讨,认为该过程是一种催化的光反应。通过比较不同循环后0.5wt%C_(60)/TiO_2复合物光催化降解对硝基苯酚的降解效率,发现C_(60)/TiO_2复合光催化剂稳定性较高。另外,通过吸附法制备了水溶性C_(60)与锐钛矿型TiO_2纳米复合物,进而对比了这两种方法制备的C_(60)/TiO_2对对硝基苯酚的降解活性。结果表明,相对于水热法,吸附法制备的C_(60)/TiO_2中处于TiO_2表面的C_(60)更有利于TiO_2的光生电子向C_(60)的迁移,使其具有更高的光催化活性,但该方法制备的催化剂由于C_(60)容易脱落,稳定性较差。
     采用简单的无模板水热法成功地制备了不同负载量的C_(60)/ZnO纳米棒复合物。XRD和TEM结果显示,适量引入C_(60)对ZnO棒的晶型和形貌影响不大。以罗丹明B的可见光催化降解考察了C_(60)/ZnO复合物的催化活性,结果说明,C_(60)在复合光催化剂中起到了促进光生电子转移,抑制光生电子与RhB+·之间复合的作用,从而提高ZnO的光催化活性。对比纯ZnO棒,引入C_(60)后ZnO对罗丹明B的吸附量明显提高,这可能是C_(60)引入后ZnO对罗丹明B光催化活性提高的另一原因。结合光催化结果和荧光光谱的结果,说明引入C_(60)后,C_(60)/ZnO复合光催化剂对罗丹明B的降解是一种自敏化的过程。循环实验的结果显示,C_(60)/ZnO复合光催化剂的稳定性高,循环使用7次后仍能达到约90%的降解效率。
     以石墨烯与TiO_2胶体为前驱体,通过溶剂热法合成了石墨烯与锐钛矿型TiO_2的复合物。红外光谱显示,在用热还原石墨氧化物法制备石墨烯过程中,石墨烯的结构中引入了羧酸基团,这使得石墨烯能够更好地与TiO_2结合,有利于电子的传输。通过考察石墨烯负载TiO_2在紫外光下降解罗丹明B的活性,发现,石墨烯的引入量对TiO_2纳米粒子的光催化活性影响很大,适量引入石墨烯有利于提高TiO_2的光催化活性,其最佳引入量为0.5%。结合荧光光谱的结果可知石墨烯在反应中起到了捕获电子、促进TiO_2电子/空穴分离的作用。
Both air purification and degradation of organic pollutants in waste water can be achived by means of light-to-chemical energy conversion realized by photocatalysis. As one of the most widely researched materials, TiO_2 possesses many kinds of advantages, such as lower cost, non-toxicity, no photocorrosion, good stability and strong oxidative capacity. But some disadvantages limit its application. For example, the quantum transfer efficiency of TiO_2 is very low, and visible light cannot be utilized due to its large band gap. In order to explore the photocatalysts with higher activity, the modification of TiO_2 is studied, furthermore, alternative materials are also attempted. It is found that ZnO is another one of the best photocatalysts.
     In this thesis, TiO_2 and ZnO were modified by C6o and graphene with special structural characteristics and photoelectrochemical properties, respecitively. The purpose was to realize the efficient separation of photoinduced electron/hole pairs and to improve the photocatalytic activity of TiO_2 and ZnO.
     Anatase TiO_2 nanoparticles loaded with different mass fractions of C_(60) were synthesized in a hydrothermal process using water soluble C_(60) and TiO_2 colloid as precursors. The photocatalytic activity of the C_(60)/TiO_2 nanocomposites as investigated by using p-nitrophenol as a model pollutant under UV and visible light irradiation, respectively. The results showed that the TiO_2 loaded with C_(60) possessed higher photocatalytic activity than pure anatase TiO_2, and an optimal mass fraction of C_(60) in TiO_2 was about 0.5wt%. The results of photoluminescence spectra, solid diffuse UV-vis spectra suggested that C_(60) could transfer electrons and promoted the separation of photoinduced electron-hole pairs. Furthermore, the photocatalytic degradation mechanism of the C_(60)/TiO_2 nanocomposites was discussed, which was considered as a catalyzed photoreaction. By the comparison of photocatalytic degradation efficiency with 0.5wt% C_(60)/TiO_2 as a photocatalyst after various recycles, it was found that the photocatalyst was well stable. In addition, the nanocomposite of water-soluble C_(60) and anatase TiO_2 was prepared by adsorption method. The degradation activities of the C_(60)/TiO_2 prepared by the two methods were compared using PNP as a model contaminant. The results showed that the C_(60) in the C_(60)/TiO_2 prepared by adsorption method was profitable for photoelectrons transferring towards C_(60) relative to that prepared by hydrothermal process, which made the C_(60)/TiO_2 prepared by adsorption method display higher photocatalytic activity. However, the stability of the catalyst prepared by adsorption method was worse because the C6o on the surface of TiO_2 easily falled off.
     The x%C_(60)/ZnO nanorods composites with vavious amounts of C6o were synthesized in the hydrothermal processes without any template. The results of XRD and TEM showed that the C6o of certain amounts in ZnO had little effect on the crystal and morphology of ZnO. In addition, the photocatalytic activity of the C_(60)/ZnO nanocomposites was investigated by using rhodamine B as a model pollutant under visible light irradiation. The results showed that the C6o in the C6o/ZnO photocatalysts was served as a photo-electron trap, facilitated transfer of photoinduced electrons, and inhibited recombination of electrons with RhB+.Subsequently, the photocatalytic activity of ZnO was improved by loading with C_(60)-Compared with pure ZnO nanorods, the adsorbance of the x%C_(60)/ZnO nanorods to rhodamine B increased significantly. Perhaps, it was another reason for the enhanced photocatalytic activity of the x%C6o/ZnO nanorod photocatalysts. Combined the result of photocatalysis with that of photoluminescence spectra, it was demonstrated that the degradation of rhodamine B was a self-sensitized photoreaction process with the C_(60)/ZnO composite as a photocatalyst. Importantly, the stability of the C_(60)/TiO_2 photocatalyst is high, and the degradation efficency of RhB can still reach 90% after being recycled for seven times.
     With graphene and TiO_2 colloid as precursors, nanocomposites of graphene and anatase TiO_2 were prepared in a solvothermal process. The results of IR spectra showed that the carboxylic groups were produced in the structures of graphenes during thermally reduced graphite oxide, which made graphene interacte with TiO_2 more easily. It was benefit for the separation of electron/hole pairs. The photocatalytic activity of the graphene loaded anatase TiO_2 was investigated by using rhodamine B as a model pollutant under UV light irradiation. The results showed that the loading amounts of graphene had great influence on the photocatalytic activity of TiO_2. It is profitable for improving the photocatalytic activity of TiO_2 by loading proper amounts graphene in TiO_2, and an optimal mass fraction of C_(60) in TiO_2 was about 0.5wt%. Combined with the result of photoluminescence spectra, it was suggested that the graphene can serve as electron traps and promote the electron/hole separation of TiO_2.
引文
[1]A. Fujishima, K. Honda. Electrochemical photolysis of water at a semiconductor electrode. Nature.1972,238:37-38
    [2]R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki. Y. Taga. Visible-light photocatalysis in nitrogen-doped titanium oxides. Science.2001,293:269-271
    [3]O. Khaselev, J. A. Turner. A monolithic photovoltaic-photoelectrochemical device for hydrogen production via water splitting. Science.1998,280:425-427
    [4]Z. G. Zou, J. H. Ye, K. Sayama, H. Arakawa. Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst. Nature.2001,414:625-627
    [5]S. Khan, M. Al-Shahry, W. B. Jr Ingler. Efficient photochemical water splitting by a chemically modified n-TiO2. Science.2002,297:2243-2245
    [6]S. N. Frank, A. J. Bard. Heterogeneous photocatalytic oxidation of cyanide ion in aqueous solutions at TiO2 powder. Journal of the American Chemical Society.1977,99:303-304
    [7]Y. F. Zhu, S. B. Xu, D. Yi. Photocatalytic degradation of methyl orange using polythiophene/titanium dioxide composites. Reactive and Functional Polymers.2010,70: 282-287
    [8]S. T. Martin, H. Herrmann, W. Choi, M. R. Hoffmann. Time-resolved microwave conductivity. Part 1.-TiO2 photoreactivity and size quantization. Journal of the Chemical Society, Faraday Transactions.1994,90:3315-3322
    [9]S. J. Tsai, S. Cheng. Effect of TiO2 crystalline structure in photocatalytic degradation of phenolic contaminants. Catalysis Today.1997,33:227-237
    [10]R. I. Bickley, T. Gonzalea-Carreoo, J. S. Less. A structural investigation of titanium dioxide photocatalysts. Journal of Solid State Chemistry.1991,92:178-190
    [11]G. Liu, X. Yan, Z. Chen, X. Wang, L. Wang, G. Lu, H. Cheng. Synthesis of rutile-anatase core-shell structured TiO2 for photocatalysis. Journal of Materials Chemistry. 2009,19:6590-6596
    [12]N. Mahdjoub, N. Allen, P. Kelly, V. Vishnyakov. Thermally induced phase and photocatalytic activity evolution of polymorphous titania. Journal of Photochemistry and Photobiology A:Chemistry.2010,210:125-129
    [13]张金龙,陈锋,何斌.光催化.华东理工大学出版社.2004
    [14]S. Tunesi, M. Anderson. Influence of chemlsorption on the photodecomposition of salicylic acid and related compounds using suspended TiO2 ceramic membranes. The Journal of Physical Chemistry.1991,95:3399-3405
    [15]S. Cho, H. Jeong, D-H. Park, S-H. Jung, H-J. Kim, K-H, Lee. The effects of vitamin C
    on ZnO crystal formation. Crystal Engineering Communications.2010,12:968-976
    [16]L. Wu, Y. Wu, W. Lu. Preparation of ZnO nanorods and optical characterizations. Physica E.2005,28:76-82
    [17]J. Ge, B. Tang, L. H. Zhuo, Z. Shi. A rapid hydrothermal route to sisal-like 3D ZnO nanostructure via the assembly of CTA+ and Zn(OH)42-:Growth mechanism and photoluminescence properties. Nanotechnology.2006,17:1316-1322
    [18]U. Pal, P. Santiago. Controlling the morphology of ZnO nanostructures in a low-temperature hydrothermal process. The Journal of Physical Chemistry B.2005,109: 15317-15321
    [19]Y. Y. Zhang, J. Mu. Controllable synthesis of flower- and rod-like ZnO nanostructures by simply tuning the ratio of sodium hydroxide to zinc acetate. Nanotechnology.2007,18:1-6
    [20]W. D. Zhang, L. C. Jiang, J. S. Ye. Photoelectrochemical study on charge transfer properties of ZnO nanowires promoted by carbon nanotubes. The Journal of Physical Chemistry C.2009,113:16247-16253
    [21]S. Baruah, C. Thanachayanont, J. Dutta. Grovrth of ZnO nanowires on nonwoven polyethylene fibers. Science and Technology of Advanced Materials.2008,9:1-8
    [22]M. Ni, Mi. K. H. Leung, D. Y. C. Leung, K. Sumathy. A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production. Renewable and Sustainable Energy Reviews.2007,11:401-425
    [23]M. Hussain, R. Ceccarelli, D. L. Marchisio, D. Fino, N. Russo, F. Geobaldo. Synthesis, characterization, and photocatalytic application of novel TiO2 Nanoparticles. Chemical Engineering Journal.2010,157:45-51
    [24]R. Tao, J. Wu, H. Xue, X. Song, X. Pan, X. Fang, X. D. Fang, S. Y. Dai. A novel approach to titania nanowire arrays as photoanodes of back-illuminated dye-sensitized solar cells. Journal of Power Sources.2010,195:2989-2995
    [25]M. Wong, S. Hsu, K. K. Rao, C. P. Kumar. Influence of crystallinity and carbon content on visible light photocatalysis of carbon doped titania thin films. Journal of Molecular Catalysis A. Chemical.2008,279:20-26
    [26]T. Lopez-Luke, A. Wolcott, L. P. Xu, S. W. Chen. Z. H. Wen, J. H. Li, E. D. L. Rosa, J. Z. Zhang. Nitrogen-doped and CdSe quantum-dot-sensitized nanocrystalline TiO2 films for solar energy conversion applications. The Journal of Physical Chemistry C.2008,112: 1282-1292
    [27]I. M. Arabatzis, T. Stergiopoulos, D. Andreeva, S. Kitova, S. G. Neophvtides, P. Falaras. Characterization and photocatalytic activity of Au/TiO2 thin films for azo-dye degradation. Journal of Catalysis.2003,220:127-135
    [28]K. Page, R. G. Palgrave, I. P. Parkin, M. Wilson, S. L. P. Savin, A. V. Chadwick. Titania and silver-titania composite films on glass-potent antimicrobial coatings. Journal of Materials Chemistry.2007,17:95-104
    [29]A. Rampaul, I. P. Parkin, S. A. O'Neill, J. DeSouza, A. Mills, N. Elliot. Titania and tungsten doped titania thin films on glass; active photocatalysts. Polyhedron.2003,22:35-44
    [30]A. Kafizas, I. P. Parkin, S. Kellici, J. A. Darr. Titanium dioxide and composite metal/metal oxide titania thin films on glass:A comparative study of photocatalytic activity. Journal of Photochemistry and Photobiology A:Chemistry.2009,204:183-190
    [31]A. Kafizas, A. Mills, I. P. Parkin. A comprehensive aerosol spray method for the rapid photocatalytic grid area analysis of semiconductor photocatalyst thin films. Analytica Chimica Acta.2010,663:69-76
    [32]J. G. Yu, H. G. Yu, B. Cheng, X. J. Zhao, Q. J. Zhang. Preparation and photocatalytic activity of mesoporous anatase TiO2 nanofibers by a hydrothermal method. Journal of Photochemistry and Photobiology A:Chemistry.2006,182:121-127
    [33]W. Choi, A. Termin, M. R. Hoffmann. The role of metal ion dopants in quantum-sized TiO2:Correlation between photoreactivity and charge carrier recombination dynamics. The Journal of Physical Chemistry.1994,98:13669-13679
    [34]J. F. Zhu, Z. G. Deng, F. Chen. Hydrothermal doping method for preparation of Cr3+-TiO2 photocatalysts with concentration gradient distribution of Cr3+. Applied Catalysis B: Environmental.2006,62:329-335
    [35]C. H. Liang, F. B. Li, C. S. Liu, H. L. Lu, X. G. Wang. The enhancement of adsorption and photocatalytic activity of rare earth ions doped TiO2 for the degradation of Orange I. Dyes and Pigments.2008,76:477-484
    [36]J. J. Xua, Y. H. Ao, M. D. Chen, D. G. Fu. Low-temperature preparation of Boron-doped titania by hydrothermal method and its photocatalytic activity. Journal of Alloys and Compounds.2009,484:73-79
    [37]J. Wang, D. N. Tafen, J. P. Lewis, Z. L. Hong, A. Manivannan, M. J. Zhi, M. Li, N. Q. Wu. Origin of photocatalytic activity of Nitrogen-doped TiO2 nanobelts. Journal of the American Chemical Society.2009,131:12290-12297
    [38]G. L. Liu, D. W. Zhu, A. B. Zhou, S. J. Liao, J. Z. Cui, K. Wu, D. Hamilton. Solid-phase photocatalytic degradation of polystyrene plastic with goethite modified by boron under UV-vis light irradiation. Applied Surface Science.2010,256:2546-2551
    [39]D. Chen, D. Yang, J. Geng, J. Zhu, Z. Jiang. Improving visible-light photocatalytic activity of N-doped TiO2 nanoparticles via sensitization by Zn porphyrin. Applied Surface Science.2008,255:2879-2884
    [40]S-H. Lee, E. Yamasue, K. N. Ishihara, H. Okumura. Photocatalysis and surface doping states of N-doped TiOx films prepared by reactive sputtering with dry air. Applied catalysis B: Environmental.2010,93:217-226
    [41]X. J. Ye, W. Zhong, M. H. Xu, X. S. Qi, C. T. Au, Y. W. Du. The magnetic property of carbon-doped TiO2. Physics Letters A.2009,373:3684-3687
    [42]Y. Park, W. Kim, H. Park, T. Tachikawa, T. Majima, W. Choi. Carbon-doped TiO2 photocatalyst synthesized without using an external carbon precursor and the visible light activity. Applied Catalysis B:Environmental.2009,91:355-361
    [43]H. Znad, Y. Kawase. Synthesis and characterization of S-doped Degussa P25 with application in decolorization of Orange Ⅱ dye as a model substrate. Journal of Molecular Catalysis A:Chemical.2009,314:55-62
    [44]W. K. Ho, J. C. Yu, S. C. Lee. Synthesis of hierarchical nanoporous F-doped TiO2 spheres with visible light photocatalytic activity. Chemical Communications.2006,10: 1115-1117
    [45]Y. Cong, F. Chen, J. Zhang, Anpo M. Carbon and nitrogen-codoped TiO2 with high visible light photocatalystic activity. Chemistry Letters.2006,35:800-801
    [46]X. Yang, C. Cao, L. Erickson, K. Hohn, R. Maghirang, K. Klabunde. Photo-catalytic degradation of Rhodamine B on C-, S-, N-, and Fe-doped TiO2 under visible-light irradiation. Applied Catalysis B:Environmental.2009,91:657-662
    [47]闫鹏飞,周德瑞,王建强,水热法制备掺杂铁离子的TiO2纳米粒子及光催化反应研究.高等学校化学学报.2002,23:2317-2321
    [48]Z. Wu, F. Dong, W. Zhao, S. Guo. Visible light induced electron transfer process over nitrogen doped TiO2 nanocrystals prepared by oxidation of titanium nitride. Journal of Hazardous Materials.2008,157:57-63
    [49]X. Hu, S. Dong. Metal nanomaterials and carbon nanotubes-synthesis, functionalization and potential applications towards electrochemistry. Journal of Materials Chemistry.2008,18: 1279-1295
    [50]D. Vairavapandian, P. Vichchulada, M. D. Lay. Preparation and modification of carbon nanotubes:Review of recent advances and application in catalysis and sensing. Analytica Chimica Acta.2008,626:119-129
    [51]T. Wu, G. Liu, J. Zhao. Photoassisted degradation of dye pollutants. V. Self-photosensitized oxidative transformation of rhodamine B under visible light irradiation in aqueous TiO2 dispersions.The Journal of Physical Chemistry B.1998,102:5845-5851
    [52]沈海军.纳米科技概论.国防工业出版社.2007
    [53]P. V. Kamat, I. Bedja, S. Hotchandani. Photoinduced charge transfer between carbon and semiconductor clusters. One-electron reduction of C60 in colloidal TiO2 semiconductor suspensions. The Journal of Physical Chemistry.1994,98:9137-9142
    [54]V. I. Makarov, S. A. Kochubei, I. V. Khmelinskii. Photoconductivity of the TiO2 plus
    Fullerene-C60 bilayers:steady-state and time-resolved measurements. Chemical Physics Letters.2002,355:504-508
    [55]T. Konishi, M. Fujitsuka, O. Ito, Y. Toba, Y. Usui. C60 as photosensitizing electron-transfer mediator for ion-pair charge-transfer complexes between borate anions and methyl viologen dication. The Journal of Physical Chemistry A.1999,103:9938-9942
    [56]J. W. Arbogast, A. P. Darmanyan, C. S. Foote, Y. Rubin, F. N. Diederich, M. M. Alvarez, S. J. Anz, R. L. Whetten. Photophysical properties of C60. The Journal of Physical Chemistry. 1991,95:11-12
    [57]M. Terazima, N. Hirota, H. Shinohara, Y. Saito. Photothermal investigation of the trlplet state of C60. The Journal of Physical Chemistry.1991,95:9080-9085
    [58]沈海军,刘根林.新型碳纳米材料——富勒烯.国防工业出版社.2008
    [59]P.A. Troshin, R. N. Lyubovskaya. Organic chemistry of fullerenes:the major reactions, types of fullerene derivatives and prospects for practical use. Russian Chemical Reviews. 2008,77:305-349
    [60]F. Loske, R. Bechstein, J. Schutte, F. Ostendorf, M. Reichling, A. Kiihnle. Growth of ordered C60 islands on TiO2(110). Nanotechnology.2009,20:065606/1-065606/5
    [61]Manolis D. Tzirakis, J. Vakros, L. Loukatzikou, V. Amargianitakis, M. Orfanopoulos, Ch. Kordulis, A. Lycourghiotis. γ-Alumina-supported [60]fullerene catalysts:Synthesis, properties and applications in the photooxidation of alkenes. Journal of Molecular Catalysis A: Chemical.2010,316:65-74
    [62]K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang. S. V. Dubonos, I. V. Grigorieva, A. A. Firsov. Electric field effect in atomically thin carbon films. Science.2004, 306:666-669
    [63]C. Rao, A. Sood, K. Subrahmanyam, A. Govindaraj. Graphene:The new two-dimensional nanomaterial. Angewandte Chemie International Edition.2009,48: 7752-7777
    [64]K. S. Novoselov, D. Jiang, F. Schedin, T. J. Booth, V. V. Khotkevich, S. V. Morozov, A. K. Geim. Two-dimensional atomic crystals. Proceedings of the National Academy of Sciences. 2005,102:10451-10453
    [65]M. Moreno-Moreno, A. Castellanos-Gomez, G. Rubio-Bollinger, J. Gomez-Herrero, N. Agrait. Ultralong natural graphene nanoribbons and their electrical conductivity. Small,2009, 5:924-927
    [66]S. Sonde, F. Giannazzo, V. Raineri, E. Rimini. Investigation of graphene-SiC interface by nanoscale electrical characterization. Physica status solidi B-Basic solid state physics.2010, 247:912-915
    [67]S. Weingart, C. Bock. U. Kunze, K. V. Emtsev, Th. Seyller, L. Ley. Influence of the growth conditions of epitaxial graphene on the film topography and the electron transport properties. Physica E.2010,42:687-690
    [68]C. Berger, Z. Song, X. Li, X. Wu, N. Brown, C. Naud, D. Mayou, T. Li, J. Hass, A. N. Marchenkov, E. H. Conrad, P. N. First, W. A. de Heer. Electronic confinement and coherence in patterned epitaxial graphene. Science.2006,312:1191-1196
    [69]H. Huang, W. Chen, S. Chen, A. T. S. Wee. Bottom-up growth of epitaxial graphene on 6H-SiC(0001). ACS Nano.2008,2:2513-2518
    [70]D. Dikin, S. Stankovich, E. Zimney, R. Piner, G. Dommett, G. Evmenenko, S. T. Nguyen, R. Ruoff. Preparation and characterization of graphene oxide. Nature.2007,448:457-460
    [71]J. C. Meyer, A. K. Geim, M. I. Katsnelson, K. S. Novoselov, T. J. Booth, S. Roth. The structure of suspended graphene sheets. Nature.2007,446:60-63
    [72]J. C. Meyer, A. K. Geim, M. I. Katsnelson, K. S. Novoselov. On the roughness of single-and bi-layer graphene membranes. Solid State Communications.2007,143:101-109
    [73]A. Fasolino, J. H. Los, M. L. Katsnetson. Intrinsic ripples in graphene. Nature Mater. 2007,6:858-861
    [74]T. Szabo. A. Szeri. I. Dekany. Composite graphitic nanolayers prepared by self-assembly between finely dispersed graphite oxide and a cationic polymer. Carbon.2005,43:87-94
    [75]S. Stankovich, R. D. Piner. X. Chen, N. Wu, S. T. Nguyen. R. S. Ruoff. Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence of poly(sodium 4-styrenesulfonate). Journal of Materials Chemistry.2006,16: 155-158
    [76]S. Stankovich, D. A. Dikin, G. H. B. Dommett, K. M. Kohlhaas, E. J. Zimney, E. A. Stach. R. D. Piner, S. T. Nguyen, R. S. Ruoff. Graphene-based composite materials. Nature. 442:282-285
    [77]M. V. Savoskin, A. P. Yaroshenko, N. I. Lazareva, V. N. Mochalin, R. D. Mysyk. Using graphite intercalation compounds for producing exfoliated graphite-amorphous cabon-TiO2 composites. Journal of physics and chemistry of solids.2006,67:1205-1207
    [78]G. Williams, B. Seger, P. V. Kamat. TiO2-graphene nanocomposites. Uv-assisted photocatalytic reduction of graphene oxide. ACS Nano.2008,2:1487-1491
    [79]D. H. Wang, D. W. Choi, J. Li, Z. G. Yang, Z. M Nie, R. Kou, D. H. Hu, Ch. M Wang. Self-assembled TiO2-graphene hybrid nanostructures for enhanced Li-Ion insertion. ACS Nano.2009,3:907-914
    [80]Y. Qu, S. Song, L. Q. Jing, Y. B. Luan, H. G. Fu. Effects of the co-addition of Zn2+ and sodium dodecylbenzenesulfonate on photocatalytic activity and wetting performance of anatase TiO2 nanoparticle films. Thin Solid Films.2010,518:3177-3181
    [81]R. Y. Zheng, Y. Guo, C. Jin. J. L. Xie, Y. X. Zhu, Y. C. Xie. Novel thermally stable phosphorus-doped TiO2 photocatalyst synthesized by hydrolysis of TiCl4. Journal of Molecular Catalysis A:Chemical.2010,319:46-51
    [82]Q. H. Shen, H. Yang, Q. Xu, Y. Zhu, R. Hao. In-situ preparation of TiO2/SnO2 nanocrystalline sol for photocatalysis. Materials Letters.2010,64:442-444
    [83]S. Gardin, R. Signorini, A. Pistore, G. D. Giustina, G. Brusatin, M. Guglielmi, R. Bozio. Photocatalytic performance of hybrid SiO2-TiO2 films. The Journal of Physical Chemistry C. 2010,114:7646-7652
    [84]Y. Amao. Phtotenergy conversion system based on the photosynthesis dyes conjugated nanoparticle. Current Nanoscience.2008,4:45-52
    [85]H. F. Guo, M. Kemell, M. Heikkila, M. Leskela. Noble metal-modified TiO2 thin film photocatalyst on porous steel fiber support. Applied Catalysis B:Environmental.2010,95: 358-364
    [86]A. Kongkanand, P. V. Kamat. Electron storage in single wall carbon nanotubes. Fermi level equilibration in semiconductor-SWCNT suspensions. ACS Nano.2007,1:13-21
    [87]W. B. Ko, J. Y. Heo, J. H. Nam, K. B. Lee. Synthesis of a water-soluble fullerene [60] under ultrasonication. Ultrasonics.2004,41:727-730
    [88]Z. Ding, G. Q. Lu, P. F. Greenfield. Role of the crystallite phase of TiO2 in heterogeneous photocatalysis for phenol oxidation in water. The Journal of Physical Chemistry B.2000,104: 4815-4820
    [89]H. Irie, Y. Watanabe, K. Hashimoto. Carbon-doped anatase TiO2 powder as a visible-light sensitive photocatalyst. Chemistry Letters,2003,32:722-773
    [90]郑风英,钱沙华,李顺兴等.3,5-二硝基水杨酸表面修饰纳米TiO2吸附对硝基苯酚.环境科学,2006,27(6):1140-1143
    [91]沈喜海,邵丽君,宋爱君,赵莹,郑国勇.TiO2/Fe3O4光催化降解对硝基苯酚.河北科技师范学院学报.2007,21(3):30-32
    [92]Y. Z. Long, Y. Lu, Y. Huang, Y. C. Peng, Y. J. Lu, S. Z. Kang, J. Mu. Effect of C60 on the photocatalytic activity of TiO2 nanorods. The Journal of Physical Chemistry C.2009,113: 13899-13905
    [93]周明华,吴祖成,祝巨,叶倩,傅锦.基于均相光化学氧化的光电一体化降解对硝基苯酚的研究.催化学报,2002,23:376-380
    [94]Y. Y. Zhang, J. Mu. One-pot synthesis, photoluminescence, and photocatalysis of Ag/ZnO composites. Journal of Colloid and Interface Science.2007,309,478-484
    [95]T. Tachikawa, T. Majima. Exploring the spatial distribution and transport behavior of charge carriers in a single titania nanowire. Journal of the American Chemical Society.2009, 131,8485-8495
    [96]A. L. Stroyuk, V. V. Shvalagin, S. Y. Kuchmii. Photochemical synthesis and optical properties of binary and ternary metal-semiconductor composites based on zinc oxide nanoparticles. Journal of Photochemistry and Photobiology A:Chemistry.2005,173(2): 185-194
    [97]Z. Zhu, T. L. Chen, Y. Gu, J. Warren, Jr. R. M. Osgood. Zinc oxide nanowires grown by vapor-phase transport using selected metal catalysts:A comparative study. Chemistry of Materials.2005,17(16):4227-4234
    [98]M. J. Allen, V. C. Tung, R. B. Kaner. Honeycomb carbon:A review of graphene. Chemical Reviews.2010,110:132-145
    [99]H. He, J. Klinowski, M. Forster, A. Lerf. A new structural model for graphite oxide. Chemical Physics Letters.1998,287:53-56
    [100]A. Lerf, H. He, M. Forster, J. Klinowski. Structure of graphite oxide revisited. The Journal of Physical Chemistry B.1998,102:4477-4482
    [101]M. Hirata, T. Gotou, M. Ohba. Thin-film particles of graphite oxide 2:Preliminary studies for internal micro fabrication of single particle and carbonaceous electronic circuits. Carbon.2005,43:503-510
    [102]P. Steurer, R. Wissert, R. Thomann, R. Mulhaupt. Functionalized graphenes and thermoplastic nanocomposites based upon expanded graphite oxide. Macromolecular Rapid Communications.2009,30:316-327
    [103]H. C. Schniepp, J. L. Li, M. J. McAllister, et al. Functionalized single graphene sheets derived from splitting graphite oxide. The Journal of Physical Chemistry B.2006,110(17): 8535
    [104]W. F. Chen, L. F. Yan. Preparation of graphene by a low-temperature thermal reduction at atmosphere pressure. Nanoscale.2010,2:559-563
    [105]J. L. Wu, X. Q. Shen, L. Jiang, K. Wang, K. M. Chen. Solvothermal synthesis and characterization of sandwich-like graphene/ZnO Nanocomposites. Applied Surface Science. 2010,256,2826-2830
    [106]S. Z. Kang, Z. Y. Cui, J. Mu. Composite of carboxyl-modified multi-walled carbon nanotubes and TiO2 nanoparticles:Preparation and photocatalytic activity. Fullerenes Nanotubes and Carbon Nanostructures.2007,15,81-88
    [107]M. Li, Z. Hong, Y. N. Fang, F. Q. Huang. Synergistic effect of two surface complexes in enhancing visible-light photocatalytic activity of titanium dioxide. Materials Research Bulletin.2008,43:2179-2186
    [108]S. Lee, S. Lim, E. Lim, K. K. Lee. Synthesis of aqueous dispersion of graphenes via reduction of graphite oxide in the solution of conductive polymer. Journal of Physics and Chemistry of Solids.2010,71:483-486

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700