用户名: 密码: 验证码:
水中溶解性物质对氯霉素类和氟喹诺酮类抗生素光降解的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
抗生素作为一类新兴污染物在环境水体中不断被监测到。这类污染物因具有“假”持久性并能引起环境菌群的抗药性而受到广泛关注。氯霉素类与氟喹诺酮类抗生素广泛应用于水产养殖,是环境中特别是在水产养殖区及附近水域中普遍存在的两类抗生素,研究其环境转化、归趋和生态风险具有重要意义。表层水体中,光化学降解是抗生素类污染物的主要消减方式。因此,本论文选取2种氯霉素类抗生素与8种氟喹诺酮类抗生素(FQs),研究其光解动力学、光解产物、路径和机理,并着重考察重要水环境因子对光解的影响与作用机制,旨在深入理解其环境光化学行为。
     考察了纯水中氯霉素类抗生素甲砜霉素和氟甲砜霉素的光降解,结果表明:这两种化合物在太阳光或模拟日光(λ>290 nm)照射下不发生光解,而在UV-vis(λ>200 nm)照射下发生了光解,其光解反应遵循准一级动力学,表观量子产率分别为0.022±0.002和0.029±0.002。运用电子顺磁共振(EPR)技术及活性氧物种(ROS)淬灭实验,确定了甲砜霉素和氟甲砜霉素的光解反应涉及直接光解和单线态氧(~1O_2)参与的自敏化光解。利用HPLC-MS/MS和离子色谱(IC),鉴定了甲砜霉素和氟甲砜霉素的光降解产物,据此推测的光降解路径包括自敏化光氧化、光致水解、脱氯及氯化。
     考察了甲砜霉素和氟甲砜霉素在不同水中的光解动力学差异,发现:UV-vis照射下,它们在海水中光解最快,纯水中次之,淡水中最慢;而在太阳光或模拟日光照射下,仅在淡水中发生了光解。这表明水中溶解性物质对光解的作用依赖于光源发射光谱。为揭示这种依赖效应,深入研究了不同光源照射下海水的优势成分Cl~-、淡水中重要的光活性物质腐殖酸(HA)以及其他溶解性物质(Fe(Ⅲ)、NO_3~-、HCO_3~-等)对甲砜霉素和氟甲砜霉素光解的作用,并用EPR技术检测了ROS。结果表明,在UV-vis照射下,Cl~-促进了~1O_2的生成并加快了自敏化光解;而在模拟日光照射下,即使存在Cl~-,光解也没有发生。在UV-vis照射下,HA通过光掩蔽效应抑制了光解;而在模拟日光照射下,HA光敏化生成~1O_2,引发了甲砜霉素和氟甲砜霉素的降解。与其他溶解性物质的作用相比,Cl~-和HA对光解的作用较为显著,据此可以有效解释不同光源照射下甲砜霉素和氟甲砜霉素在海水、淡水和纯水中光解动力学的差异。
     为进一步揭示水中溶解性物质对抗生素光解的影响规律,研究了沙拉沙星等8种FQs的环境光化学行为。模拟日光(λ>290 nm)照射下,纯水中FQs的光解符合准一级反应动力学,量子产率为(0.47~7.0)×10~(-2)。通过ROS淬灭实验和产物鉴定得知,FQs发生了直接光解及·OH和~1O_2参与的自敏化光降解,光解路径依赖于母体结构,主要为N~4-烷基脱除、光致脱羧和羟基化脱氟。发光菌(Vibrio fischeri)毒性实验表明,FQs光降解生成了具有较高环境风险的中间产物,对Vibrio fischeri表现出光修饰毒性。
     与纯水中相比,淡水、海水中FQs表现出了相似或较弱的光降解能力。为理解FQs在不同环境水体中的光化学行为,以沙拉沙星和加替沙星为模型化合物,分别考察了pH、Cl~-和HA对光解的作用,并运用中心组合实验,系统评估了Fe(Ⅲ)、Cl~-、HA和NO_3~-的复合效应。结果表明,淡水、海水中FQs相似或较弱的光降解能力归因于pH与水中溶解性物质对光解的综合作用。在pH 5~11范围内,FQs在其等电点附近光解最快。Cl~-没有显著影响FQs的光解动力学(p>0.05),其他溶解性物质HA和NO_3~-等对FQs光解均表现为抑制作用,其不仅通过光掩蔽效应减慢光解,而且能够捕获·OH和~1O_2,抑制自敏化光解。
     综上,氯霉素类与氟喹诺酮类抗生素均可以发生直接光解和自敏化光解,其光降解动力学受到水中溶解性物质的影响。本研究所揭示的溶解性物质对光解的作用机制,对于理解抗生素类污染物的环境光化学行为具有重要意义。
Antibiotics have been increasingly detected in environmental waters as emerging contaminants.These pollutants are pseudopersistent and have been proved to induce bacterial resistance,making them of acute concern.Phenicol and fluoroquinolone antibiotics(FQs) are commonly used in aquaculture and ubiquitous in the environment,especially in fish farms and ambient waters,so it is of great significance to investigate their environmental transformation, fate and ecological risk.In surface waters,photochemical degradation is a central factor in determining the fate of antibiotics.Therefore,the present study selected 2 phenicols and 8 FQs as model compounds,investigated their photodegradation kinetics,photoproducts,pathways and mechanisms,and elucidated the effects of main aqueous environmental factors on the photodegradation so as to better understand their environmental photochemical behavior.
     Photodegradation experiments on thiamphenicol and florfenicol were performed in pure water under irradiation of different light sources.The two phenicols did not photodegrade under solar or simulated solar irradiation(λ>290 nm),but photolyzed quickly when exposed to UV-vis irradiation(λ>200 nm).The UV-vis photodegradation reactions followed the pseudo-first-order kinetics,and their quantum yields were 0.022±0.002 and 0.029±0.002, respectively.Electron paramagnetic resonance(EPR) measurements and scavenging experiments indicated that the phenicols underwent direct photolysis and self-sensitized photodegradation via singlet oxygen(~1O_2).The photodegradation intermediates were identified by HPLC-MS/MS and IC,and the proposed degradation pathways involve self-sensitized photo-oxidation,photoinduced hydrolysis,dechlorination and chlorination.
     Photodegradation kinetics of the two phenicols in different waters were investigated.It was found that under UV-vis irradiation,they photodegraded the fastest in seawater,followed by pure water and freshwater,whereas under solar or simulated sunlight,they photodegraded in freshwater only.The effects of Cl~-(the dominant seawater constituent),humic acids(HA, main constituents in freshwater) and other water constituents(Fe(Ⅲ),NO_3~-,HCO_3~-,etc.) on the photodegradation of the antibiotics as a function of different light sources were studied so as to interpret the light-source-dependent effects of different waters.Under UV-vis irradiation,Cl~- was found to promote ~1O_2 formation and accelerated the photodegradation of the two phenicols,whereas the phenicois did not photolyze under simulated solar irradiation, irrespective of Cl~-.In contrast,the presence of HA inhibited phenicol photolysis under UV-vis irradiation through competitive photoabsorption,but HA photosensitized degradation under simulated solar irradiation.Assessing the role of all the water constituents showed that the light-source-dependent effects of Cl~- and HA on the photodegradation explained most of the different photolytic kinetics in natural waters and pure water.
     To further understand the effects of aqueous dissolved matter on photodegradation of antibiotics,we explored the environmental photochemical behavior of eight FQs,such as sarafloxacin,gatifloxacin,etc.These FQs were exposed to simulated solar irradiation(λ>290 nm) and their photodegradation followed apparent first-order kinetics.The quantum yields ranged from 4.7×10~(-3) to 7.0×10~(-2).Scavenging experiments revealed that the FQs underwent direct photolysis and self-sensitized photodegradation via·OH and ~1O_2.Product studies indicated that three main photodegradation pathways co-occurred and were highly parent-structure dependent.The three pathways are piperazinyl N~4-dealkylation,photoinduced decarboxylation,and hydroxylated defluorination.The photodegradation solutions of the FQs exhibited photomodified toxicities to luminescent bacterium Vibrio fischeri,indicative of the formation of some hazardous products.
     The FQs exhibited a similar or less photodegradable potential in freshwater and seawater, compared to that in pure water.In order to elucidate the photochemical behavior in natural waters,sarafloxacin and gatifloxacin were selected as model compounds to examine the individual role of pH,HA and Cl~- on the photodegradation kinetics of the two FQs.Moreover, the multivariate effects of Fe(Ⅲ),HA,NO_3~- and Cl~- were investigated by a four-factor central composite design.It was observed that the FQs photodegraded the fastest around their isoelectric points.The photodegradation kinetics were not affected by Cl~-(p>0.05).HA and NO_3~- inhibited the photodegradation for they acted mainly as radiation filters and had an important role in scavenging reactive oxygen species.These results suggested that the similar or less photodegradable potential of FQs in natural waters was attributed to the integrative effects ofpH and the different aqueous dissolved matter.
     In conclusion,both the phenicols and the FQs underwent direct photolysis as well as self-sensitized photodegradation.Their photodegradation kinetics were affected by the aqueous dissolved matter.The study revealed the mechanisms for the aqueous dissolved matter affecting the photodegradation,which are of great significance to better understand the environmental photochemical behavior of the antibiotics.
引文
[1]邓南圣,吴峰.环境光化学.北京:化学工业出版社,2003.
    [2]王连生.有机污染化学.北京:高等教育出版社,2004.
    [3]Richard,C.The Handbook of Environmental Chemistry,Vol.2M:Environmental Photochemistry Part Ⅱ.Heidelberg:Springer Berlin 2005.
    [4]Martin,N.H.,Jefford,C.W.Self-Sensitized photo-oxygenation of 1-benzyl-3,4-dihydroisoquinolines.Helvetica Chimica Acta,2004,64(7):2189-2192.
    [5]Cogan,S.,Haas,Y.Self-sensitized photo-oxidation of para-indenylidene-dihydropyridine derivatives.Journal of Photochemistry and Photobiology A:Chemistry,2008,193(1):25-32.
    [6]Hatchard,C.G.,Parker,C.A.A new sensitive chemical actinometer.Ⅱ.Potassium ferrioxalate as a standard chemical actinometer.Proceedings of the Royal Society of London.Series A,Mathematical and Physical Sciences,1956,235(1203):518-536.
    [7]Barkani,H.,Catastini,C.,Emmelin,C.,et al.Study of the phototransformation of imazaquin in aqueous solution:a kinetic approach.Journal of Photochemistry and Photobiology A:Chemistry,2005,170(1):27-35.
    [8]Dulln,D.,Mill,T.Development and evaluation of sunlight actinometers.Environmental Science &Technology,1982,16(11):815-820.
    [9]Edhlund,B.L.,Arnold,W.A.,McNeill,K.Aquatic photochemistry of nitrofuran antibiotics.Environmental Science & Technology,2006,40(17):5422-5427.
    [10]Liu,Q.T.,Williams,H.E.Kinetics and degradation products for direct photolysis of beta-blockers in water.Environmental Science & Technology,2007,41(3):803-810.
    [11]Liu,B.,Liu,X.L.Direct photolysis of estrogens in aqueous solutions.Science of the Total Environment,2004,320(2-3):269-274.
    [12]Torrents,A.,Anderson,B.G.,Bilboulian,S.,et al.Atrazine photolysis:Mechanistic investigations of direct and nitrate mediated hydroxy radical processes and the influence of dissolved organic carbon from the Chesapeake Bay.Environmental Science & Technology,1997,31(5):1476-1482.
    [13]Chin,Y.P.,Miller,P.L.,Zeng,L.K.,et al.Photosensitized degradation of bisphenol A by dissolved organic matter.Environmental Science & Technology,2004,38(22):5888-5894.
    [14]Walse,S.S.,Morgan,S.L.,Kong,L.,et al.Role of dissolved organic matter,nitrate,and bicarbonate in the photolysis of aqueous fipronil.Environmental Science & Technology,2004,38(14):3908-3915.
    [15]Chen,Y.,Hu,C.,Hu,X.X.,et al.Indirect photodegradation of amine drugs in aqueous solution under simulated sunlight.Environmental Science & Technology,2009,43(8):2760-2765.
    [16]Ter Halle,A.,Richard,C.Simulated solar light irradiation of mesotrione in natural waters.Environmental Science & Technology,2006,40(12):3842-3847.
    [17]Lam,M.W.,Young,C.J.,Mabury,S.A.Aqueous photochemical reaction kinetics and transformations of fluoxetine.Environmental Science & Technology,2005,39(2):513-522.
    [18]Boreen,A.L.,Edhlund,B.L.,Cotner,J.B.,et al.Indirect photodegradation of dissolved free amino acids:The contribution of singlet oxygen and the differential reactivity of DOM from various sources.Environmental Science & Technology,2008,42(15):5492-5498.
    [19] Zepp, R. G., Ritmiller, L. F. "Photoreactions providing sinks and sources of halocarbons in aquatic environments". In Aquatic Chemistry - Inerfacial and Interspecies Processes, American Chemical Society, Washington, DC, 1995.
    [20] Zepp, R. G., Braun, A. M., Hoigne, J., et al. Photoproduction of hydrated electrons from natural organic solutes in aquatic environments. Environmental Science & Technology, 1987,21(5): 485-490.
    [21] Werner, J. J., Arnold, W. A., McNeill, K. Water hardness as a photochemical parameter: Tetracycline photolysis as a function of calcium concentration, magnesium concentration, and pH. Environmental Science & Technology, 2006,40(23): 7236-7241.
    [22] Chen, Y., Hu, C, Qu, J. H., et al. Photodegradation of tetracycline and formation of reactive oxygen species in aqueous tetracycline solution under simulated sunlight irradiation. Journal of Photochemistry and Photobiology A: Chemistry, 2008, 197(1): 81-87.
    [23] Engel, E., Schraml, R., Maisch, T., et al. Light-induced decomposition of indocyanine green.Investigative Ophthalmology & Visual Science, 2008,49(5): 1777-1783.
    [24] Zepp, R. G., Cline, D. M. Rates of direct photolysis in aquatic environment. Environmental Science & Technology, 1977, 11(4): 359-366.
    [25] Rosenfeldt, E. J., Linden, K. G. Degradation of endocrine disrupting chemicals bisphenol A, ethinyl estradiol, and estradiol during UV photolysis and advanced oxidation processes. Environmental Science & Technology, 2004, 38(20): 5476-5483.
    
    [26] 戴树桂.环境化学.北京:高等教育出版社, 1996.
    
    [27] Fisher, J. M., Reese, J. G., Pellechia, P. J., et al. Role of Fe(III), phosphate, dissolved organic matter,and nitrate during the photodegradation of domoic acid in the marine environment. Environmental Science & Technology, 2006, 40(7): 2200-2205.
    [28] Hassett, J. P. Dissolved natural organic matter as a microreactor. Science, 2006, 311(5768):1723-1724.
    [29] Fasani, E., Rampi, M., Albini, A. Photochemistry of some fluoroquinolones: Effect of pH and chloride ion. Journal of the Chemical Society-Perkin Transactions 2,1999, (9): 1901-1907.
    [30] Chiron, S., Minero, C, Vione, D. Photodegradation processes of the antiepileptic drug carbamazepine,relevant to estuarine waters. Environmental Science & Technology, 2006,40(19): 5977-5983.
    [31] U.S. E.P.A. Fate, transport and transformation test guidelines. Indirect photolysis screening test. U.S.Environmental Protection Agency, 1998.
    [32] Garbin, J. R., Milori, D. M. B. P., Simoes, M. L., et al. Influence of humic substances on the photolysis of aqueous pesticide residues. Chemosphere, 2007, 66(9): 1692-1698.
    [33] Prosen, H., Zupancic-Krajl, L. Evaluation of photolysis and hydrolysis of atrazine and its first degradation products in the presence of humic acids. Environmental Pollution, 2005, 133(3): 517-529.
    [34] Kwon, J. W., Armbrust, K. L. Degradation of citalopram by simulated sunlight. Environmental Toxicology and Chemistry, 2005,24(7): 1618-1623.
    [35] Zhai, G. S., Liu, J. F., He, B., et al. Ultraviolet degradation of methyltins: Elucidating the mechanism by identification of a detected new intermediary product and investigating the kinetics at various environmental conditions. Chemosphere, 2008, 72(3): 389-399.
    [36] Chen, L., Zhou, H. Y., Deng, Q. Y. Photolysis of nonylphenol ethoxylates: The determination of the degradation kinetics and the intermediate products. Chemosphere, 2007, 68(2): 354-359.
    [37] Mihas, O., Kalogerakis, N., Psillakis, E. Photolysis of 2,4-dinitrotoluene in various water solutions: effect of dissolved species. Journal of Hazardous Materials, 2007, 146(3): 535-539.
    [38] Conceicao, M, Mateus, D. A., da Silva, A. M, et al. Kinetics of photodegradation of the fungicide fenarimol in natural waters and in various salt solutions: Salinity effects and mechanistic considerations. Water Research, 2000, 34(4): 1119-1126.
    [39] Zepp, R. G., Schlotzhauer, P. F., Sink, R. M. Photosensitized transformations involving electronic energy transfer in natural waters: Role of humic substances. Environmental Science & Technology,1985, 19(1): 74-81.
    [40] Werner, J. J., Chintapalli, M., Lundeen, R. A., et al. Environmental photochemistry of tylosin:Efficient, reversible photoisomerization to a less-active isomer, followed by photolysis. Journal of Agricultural and Food Chemistry, 2007, 55(17): 7062-7068.
    [41] Lam, M. W., Tantuco, K., Mabury, S. A. PhotoFate: A new approach in accounting for the contribution of indirect photolysis of pesticides and pharmaceuticals in surface waters. Environmental Science & Technology, 2003, 37(5): 899-907.
    [42] Liao, C. H., Kang, S. F., Wu, F. A. Hydroxyl radical scavenging role of chloride and bicarbonate ions in the H_2O_2/UV process. Chemosphere, 2001,44(5): 1193-1200.
    [43] Zwiener, C., Frimmel, F. H. Oxidative treatment of pharmaceuticals in water. Water Research, 2000,34(6): 1881-1885.
    [44] Mack, J., Bolton, J. R. Photochemistry of nitrite and nitrate in aqueous solution: A review. Journal of Photochemistry and Photobiology A: Chemistry, 1999,128(1-3): 1-13.
    [45] Nelieu, S., Perreau, F., Bonnemoy, F., et al. Sunlight nitrate-induced photodegradation of chlorotoluron: Evidence of the process in aquatic mesocosms. Environmental Science & Technology,2009,43(9): 3148-3154.
    [46] Neamtu, M., Popa, D. M., Frimmel, F. H. Simulated solar UV-irradiation of endocrine disrupting chemical octylphenol. Journal of Hazardous Materials, 2009, 164(2-3): 1561-1567.
    [47] Tercero Espinoza, L. A., Neamtu, M., Frimmel, F. H. The effect of nitrate, Fe(III) and bicarbonate on the degradation of bisphenol A by simulated solar UV-irradiation. Water Research, 2007, 41(19):4479-4487.
    [48] ASTM. Standard guide for use of lighting in laboratory testing. American Society for Testing and Materials, 2002: 1733-1795.
    [49] Katagi, T. Photodegradation of pesticides on plant and soil surfaces. Reviews of Environmental Contamination and Toxicology, 2004, 182: 1-189.
    [50] Boreen, A. L., Arnold, W. A., McNeill, K. Photodegradation of pharmaceuticals in the aquatic environment: A review. Aquatic Sciences, 2003, 65(4): 320-341.
    [51] Wang, Y., Chen, J. W., Lin, J., et al. Combined experimental and theoretical study on photoinduced toxicity of an anthraquinone dye intermediate to Daphnia magna. Environmental Toxicology and Chemistry, 2009, 28(4): 846-852.
    [52] Niu, J. F., Chen, J. W., Martens, D., et al. Photolysis of polycyclic aromatic hydrocarbons adsorbed on spruce [Picea abies (L.) Karst.] needles under sunlight irradiation. Environmental Pollution, 2003,123(1): 39-45.
    [53]Niu,J.F.,Chen,J.W.,Henkelmann,B.,et al.Photodegradation of PCDD/Fs adsorbed on spruce (Picea abies(L.) Karst.) needles under sunlight irradiation.Chemosphere,2003,50(9):1217-1225.
    [54]王德高.多环芳烃和多溴代联苯醚的光化学行为研究(博士学位论文).大连:大连理工大学,2007.
    [55]Wolters,A.,Steffens,N.Photodegradation of antibiotics on soil surfaces:Laboratory studies on sulfadiazine in an ozone-controlled environment.Environmental Science & Technology,2005,39(16):6071-6078.
    [56]Gomez,M.J.,Sirtori,C.,Mezcua,M.,et al.Photodegradation study of three dipyrone metabolites in various water systems:Identification and toxicity of their photodegradation products.Water Research,2008,42(10-11):2698-2706.
    [57]Kummerer,K.Antibiotics in the aquatic environment - A review - Part Ⅰ.Chemosphere,2009,75(4):417-434.
    [58]Schwarzenbach,R.P.,Escher,B.I.,Fenner,K.,et al.The challenge of micropollutants in aquatic systems.Science,2006,313(5790):1072-1077.
    [59]Segura,P.A.,Francois,M.,Gagnon,C.,et al.Review of the occurrence of anti-infectives in contaminated wastewaters and natural and drinking waters.Environmental Health Perspectives,2009,117(5):675-684.
    [60]贾瑷,胡建英,孙建仙等.环境中的医药品与个人护理品.化学进展,2009,21(2/3):389-399.
    [61]Watkinson,A.J.,Murby,E.J.,Kolpin,D.W.,et al.The occurrence of antibiotics in an urban watershed:From wastewater to drinking water.Science of the Total Environment,2009,407(8):2711-2723.
    [62]Gulkowska,A.,Leung,H.W.,So,M.K.,et al.Removal of antibiotics from wastewater by sewage treatment facilities in Hong Kong and Shenzhen,China.Water Research,2008,42(1-2):395-403.
    [63]尤启冬,彭司勋.药物化学.北京:化学工业出版社,2004.
    [64]赵娜.珠三角地区典型菜地土壤抗生素污染特征研究(硕士学位论文).广州:暨南大学,2007.
    [65]徐维海.典型抗生素类药物在珠江三角洲水环境中的分布、行为与归宿(博士学位论文).广州:中国科学院广州地球化学研究所,2007.
    [66]王冰,孙成,胡冠九.环境中抗生素残留潜在风险及其研究进展.环境科学与技术,2007,30(3):108-111.
    [67]Richardson,B.J.,Larn,P.K.S.,Martin,M.Emerging chemicals of concern:Pharmaceuticals and personal care products(PPCPs) in Asia,with particular reference to Southern China.Marine Pollution Bulletin,2005,50(9):913-920.
    [68]Diaz-Cruz,M.S.,de Alda,M.J.L.,Barcelo,D.Environmental behavior and analysis of veterinary and human drugs in soils,sediments and sludge.Trac-Trends in Analytical Chemistry,2003,22(6):340-351.
    [69]Jung,J.,Kim,Y.,Kim,J.,et al.Environmental levels of ultraviolet light potentiate the toxicity of sulfonamide antibiotics in Daphnia magna.Ecotoxicology,2008,17(1):37-45.
    [70]董玉瑛,张阳,郭幸丽等.畜牧业中抗生素的环境归趋·危害与防治.安徽农业科学,2008,36(6):2512-2513,2519.
    [71]叶赛.水环境抗生素分析及全国沿岸陆源排海浓度分布研究(博士学位论文).大连:大连海事大学,2008.
    [72]McArdell,C.S.,Molnar,E.,Suter,M.J.F.,et al.Occurrence and fate of macrolide antibiotics in wastewater treatment plants and in the Glatt Valley Watershed,Switzerland.Environmental Science &Technology,2003,37(24):5479-5486.
    [73]Tamtam,F.,Mercier,F.,Le Bot,B.,et al.Occurrence and fate of antibiotics in the Seine River in various hydrological conditions.Science of the Total Environment,2008,393(1):84-95.
    [74]Kemper,N.Veterinary antibiotics in the aquatic and terrestrial environment.Ecological Indicators,2008,8(1):1-13.
    [75]Ye,Z.Q.,Weinberg,H.S.,Meyer,M.T.Trace analysis of trimethoprim and sulfonamide,macrolide,quinolone,and tetracycline antibiotics in chlorinated drinking water using liquid chromatography electrospray tandem mass spectrometry.Analytical Chemistry,2007,79(3):1135-1144.
    [76]Minh,T.B.,Leung,H.W.,Loi,I.H.,et al.Antibiotics in the Hong Kong metropolitan area:Ubiquitous distribution and fate in Victoria Harbour.Marine Pollution Bulletin,2009,58(7):1052-1062.
    [77]Hamscher,G.,Sczesny,S.,Hoper,H.,et al.Determination of persistent tetracycline residues in soil fertilized with liquid manure by high-performance liquid chromatography with electrospray ionization tandem mass spectrometry.Analytical Chemistry,2002,74(7):1509-1518.
    [78]Weigel,S.,Kuhlmann,J.,Huhnerfuss,H.Drugs and personal care products as ubiquitous pollutants:occurrence and distribution of clofibric acid,caffeine and DEET in the North Sea.Science of the Total Environment,2002,295(1-3):131-141.
    [79]Kim,S.C.,Carlson,K.Temporal and spatial trends in the occurrence of human and veterinary antibiotics in aqueous and river sediment matrices.Environmental Science & Technology,2007,41(1):50-57.
    [80]Xu,W.H.,Zhang,G.,Zou,S.C.,et al.Determination of selected antibiotics in the Victoria Harbour and the Pearl River,South China using high-performance liquid chromatography-electrospray ionization tandem mass spectrometry.Environmental Pollution,2007,145(3):672-679.
    [81]Tong,L.,Li,P.,Wang,Y.X.,et al.Analysis of veterinary antibiotic residues in swine wastewater and environmental water samples using optimized SPE-LC/MS/MS.Chemosphere,2009,74(8):1090-1097.
    [82]Lin,A.Y.C.,Yu,T.H.,Lin,C.F.Pharmaceutical contamination in residential,industrial,and agricultural waste streams:Risk to aqueous environments in Taiwan.Chemosphere,2008,74(1):131-141.
    [83]Sorensen,L.K.,Elbaek,T.H.Simultaneous determination of trimethoprim,sulfadiazine,florfenicol and oxolinic acid in surface water by liquid chromatography tandem mass spectrometry.Chromatographia,2004,60(5-6):287-291.
    [84]叶赛,户江涛,宗虎民等.液相色谱-串联质谱测定养殖海水中氟苯尼考残留.沈阳农业大学学报,2008,39(3):368-370.
    [85]Managaki,S.,Murata,A.,Takada,H.,et al.Distribution of macrolides,sulfonamides,and trimethoprim in tropical waters:Ubiquitous occurrence of veterinary antibiotics in the Mekong Delta.Environmental Science & Technology,2007,41(23):8004-8010.
    [86]Golet,E.M.,Alder,A.C.,Giger,W.Environmental exposure and risk assessment of fluoroquinolone antibacterial agents in wastewater and river water of the Glatt Valley Watershed,Switzerland.Environmental Science & Technology,2002,36(17):3645-3651.
    [87]孙广大,苏仲毅,陈猛等.固相萃取-超高压液相色谱-串联质谱同时分析环境水样中四环素类和喹诺酮类抗生素.色谱,2009,27(1):54-58.
    [88]Hirsch,R.,Ternes,T.,Haberer,K.,et al.Occurrence of antibiotics in the aquatic environment.Science of the Total Environment,1999,225(1-2):109-118.
    [89]Ternes,T.A.,Joss,A.,Siegrist,H.Scrutinizing pharmaceuticals and personal care products in wastewater treatment.Environmental Science & Technology,2004,38(20):392A-399A.
    [90]Miege,C.,Choubert,J.M.,Ribeiro,L.,et al.Fate of pharmaceuticals and personal care products in wastewater treatment plants - Conception of a database and first results.Environmental Pollution,2009,157(5):1721-1726.
    [91]Tolls,J.Sorption of veterinary pharmaceuticals in soils:A review.Environmental Science &Technology,2001,35(17):3397-3406.
    [92]Sassman,S.A.,Lee,L.S.Sorption of three tetracyclines by several soils:Assessing the role ofpH and cation exchange.Environmental Science & Technology,2005,39(19):7452-7459.
    [93]Kurwadkar,S.T.,Adams,C.D.,Meyer,M.T.,et al.Effects of sorbate speciation on sorption of selected sulfonamides in three loamy soils.Journal of Agricultural and Food Chemistry,2007,55(4):1370-1376.
    [94]Lertpaitoonpan,W.,Ong,S.K.,Moorman,T.B.Effect of organic carbon and pH on soil sorption of sulfamethazine.Chemosphere 2009,76(4):558-564.
    [95]Lai,H.T.,Liu,S.M.,Chien,Y.H.Transformation of chloramphenicol and oxytetracycline in aquaculture pond sediments.Journal of Environmental Science and Health Part a-Environmental Science and Engineering & Toxic and Hazardous Substance Control,1995,30(9):1897-1923.
    [96]Nowara,A.,Burhenne,J.,Spiteller,M.Binding of fluoroquinolone carboxylic acid derivatives to clay minerals.Journal of Agricultural and Food Chemistry,1997,45(4):1459-1463.
    [97]Hari,A.C.,Paruchuri,R.A.,Sabatini,D.A.,et al.Effects of pH and cationic and nonionic surfactants on the adsorption of pharmaceuticals to a natural aquifer material.Environmental Science &Technology,2005,39(8):2592-2598.
    [98]Gao,J.A.,Pedersen,J.A.Adsorption of sulfonamide antimicrobial agents to clay minerals.Environmental Science & Technology,2005,39(24):9509-9516.
    [99]Vasudevan,D.,Bruland,G.L.,Torrance,B.S.,et al.pH-dependent ciprofloxacin sorption to soils:Interaction mechanisms and soil factors influencing sorption.Geoderma,2009,151(3-4):68-76.
    [100]Sibley,S.D.,Pedersen,J.A.Interaction of the macrolide antimicrobial clarithromycin with dissolved humic acid.Environmental Science & Technology,2008,42(2):422-428.
    [101]Pils,J.R.V.,Laird,D.A.Sorption of tetracycline and chlortetracycline on K- and Ca-saturated soil clays,humic substances,and clay-humic complexes.Environmental Science & Technology,2007,41(6):1928-1933.
    [102]Figueroa,R.A.,Mackay,A.A.Sorption of oxytetracycline to iron oxides and iron oxide-rich soils.Environmental Science & Technology,2005,39(17):6664-6671.
    [103] Gu, C, Karthikeyan, K. G. Interaction of tetracycline with aluminum and iron hydrous oxides.Environmental Science & Technology, 2005, 39(8): 2660-2667.
    [104] Carrasquillo, A. J., Bruland, G. L., Mackay, A. A., et al. Sorption of ciprofloxacin and oxytetracycline zwitterions to soils and soil minerals: Influence of compound structure. Environmental Science & Technology, 2008,42(20): 7634-7642.
    [105] Gu, C, Karthikeyan, K. G. Sorption of the antimicrobial ciprofloxacin to aluminum and iron hydrous oxides. Environmental Science & Technology, 2005, 39(23): 9166-9173.
    [106] Peterson, J. W., O'Meara, T. A., Seymour, M. D., et al. Sorption mechanisms of cephapirin, aveterinary antibiotic, onto quartz and feldspar minerals as detected by Raman spectroscopy.Environmental Pollution, 2009, 157(6): 1849-1856.
    
    [107] 章明奎,王丽平,郑顺安.两种外源抗生素在农业土壤中的吸附与迁移特性.生态学报,2008,28(2): 761-766.
    [108] Sukul, P., Lamshoft, M., Zuhlke, S., et al. Sorption and desorption of sulfadiazine in soil and soil-manure systems. Chemosphere, 2008, 73(8): 1344-1350.
    [109] Beausse, J. Selected drugs in solid matrices: a review of environmental determination, occurrence and properties of principal substances. Trac-Trends in Analytical Chemistry, 2004, 23(10-11):753-761.
    [110] Vione, D., Feitosa-Felizzola, J., Minero, C, et al. Phototransformation of selected human-used macrolides in surface water: Kinetics, model predictions and degradation pathways. Water Research,2009, 43(7): 1959-1967.
    [111] Pouliquen, H., Delpepee, R., Larhantec-Verdier, M., et al. Comparative hydrolysis and photolysis of four antibacterial agents (oxytetracycline oxolinic acid, flumequine and florfenicol) in deionised water,freshwater and seawater under abiotic conditions. Aquaculture, 2007, 262(1): 23-28.
    [112] Cunningham, V. L., Constable, D. J. C, Hannah, R. E. Environmental risk assessment of paroxetine.Environmental Science & Technology, 2004, 38(12): 3351-3359.
    [113] Al-Ahmad, A., Daschner, F. D., Kummerer, K. Biodegradability of cefotiam, ciprofloxacin,meropenem, penicillin G, and sulfamethoxazole and inhibition of waste water bacteria. Archives of Environmental Contamination and Toxicology, 1999, 37(2): 158-163.
    [114] Alexy, R., Kumpel, T., Kummerer, K. Assessment of degradation of 18 antibiotics in the Closed Bottle Test. Chemosphere, 2004, 57(6): 505-512.
    [115] Halling-Sorensen, B., Lutzhoft, H. C. H., Andersen, H. R., et al. Environmental risk assessment of antibiotics: comparison of mecillinam, trimethoprim and ciprofloxacin. Journal of Antimicrobial Chemotherapy, 2000,46: 53-58.
    [116] Junker, T., Alexy, R., Knacker, T., et al. Biodegradability of C-14-labeled antibiotics in a modified laboratory scale sewage treatment plant at environmentally relevant concentrations. Environmental Science & Technology, 2006,40(1): 318-324.
    [117] Ingerslev, F., Torang, L., Loke, M. L., et al. Primary biodegradation of veterinary antibiotics in aerobic and anaerobic surface water simulation systems. Chemosphere, 2001, 44(4): 865-872.
    [118] Chen, W. R., Huang, C. H. Transformation of tetracyclines mediated by Mn(II) and Cu(II) ions in the presence of oxygen. Environmental Science & Technology, 2009, 43(2): 401-407.
    [119]Kobayashi,T.,Suehiro,F.,Tuyen,B.C.,et al.Distribution and diversity of tetracycline resistance genes encoding ribosomal protection proteins in Mekong river sediments in Vietnam.Ferns Microbiology Ecology,2007,59(3):729-737.
    [120]Volkmann,H.,Schwartz,T.,Bischoff,P.,et al.Detection of clinically relevant antibiotic-resistance genes in municipal wastewater using real-time PCR(TaqMan).Journal of Microbiological Methods,2004,56(2):277-286.
    [121]Agerso,Y.,Sandvang,D.Class 1 integrons and tetracycline resistance genes in Alcaligenes,Arthrobacter,and Pseudomonas spp.isolated from pigsties and manured soil.Applied and Environmental Microbiology,2005,71(12):7941-7947.
    [122]Pei,R.T.,Kim,S.C.,Carlson,K.H.,et al.Effect of River Landscape on the sediment concentrations of antibiotics and corresponding antibiotic resistance genes(ARG).Water Research,2006,40(12):2427-2435.
    [123]Zhang,T.,Zhang,M.,Zhang,X.X.,et al.Tetracycline resistance genes and tetracycline resistant lactose-fermenting Enterobacteriaceae in activated sludge of sewage treatment plants.Environmental Science & Technology,2009,43(10):3455-3460.
    [124]Auerbach,E.A.,Seyfried,E.E.,McMahon,K.D.Tetracycline resistance genes in activated sludge wastewater treatment plants.Water Research,2007,41(5):1143-1151.
    [125]Zhang,X.X.,Zhang,T.,Fang,H.Antibiotic resistance genes in water environment.Applied Microbiology and Biotechnology,2009,82(3):397-414.
    [126]Thompson,S.A.,Maani,E.V.,Lindell,A.H.,et al.Novel tetracycline resistance determinant isolated from an environmental strain of Serratia marcescens.Applied and Environmental Microbiology,2007,73(7):2199-2206.
    [127]Adelowo,O.O.,Fagade,O.E.The tetracycline resistance gene tet39 is present in both Gram-negative and Gram-positive bacteria from a polluted river,Southwestern Nigeria.Letters in Applied Microbiology,2009,48(2):167-172.
    [128]Chee-Sanford,J.C.,Aminov,R.I.,Krapac,I.J.,et al.Occurrence and diversity of tetracycline resistance genes in lagoons and groundwater underlying two swine production facilities.Applied and Environmental Microbiology,2001,67(4):1494-1502.
    [129]吴永宁,邵兵,沈建忠.兽药残留检测与监控技术.北京:化学工业出版社,2007.
    [130]Crane,M.,Watts,C.,Boucard,T.Chronic aquatic environmental risks from exposure to human pharmaceuticals.Science of the Total Environment,2006,367(1):23-41.
    [131]鲍艳宇.四环素类抗生素在土壤中的环境行为及生态毒性研究(博士后研究工作报告).南开大学,2008.
    [132]Martinez,L.J.,Sik,R.H.,Chignell,C.F.Fluoroquinolone antimicrobials:Singlet oxygen,superoxide and phototoxicity.Photochemistry and Photobiology,1998,67(4):399-403.
    [133]Hayashi,N.,Nakata,Y.,Yazaki,A.New findings on the structure-phototoxicity relationship and photostability of fluoroquinolones with various substituents at position 1.Antimicrobial Agents and Chemotherapy,2004,48(3):799-803.
    [134]Jiao,S.J.,Zheng,S.R.,Yin,D.Q.,et al.Aqueous photolysis of tetracycline and toxicity of photolytic products to luminescent bacteria.Chemosphere,2008,73(3):377-382.
    [135] Agrawal, N., Ray, R. S., Farooq, M., et al. Photosensitizing potential of ciprofloxacin at ambient level of UV radiation. Photochemistry and Photobiology, 2007, 83(5): 1226-1236.
    [136] Knapp, C. W., Cardoza, L. A., Hawes, J. N., et al. Fate and effects of enrofloxacin in aquatic systems under different light conditions. Environmental Science & Technology, 2005, 39(23): 9140-9146.
    [137] de Vries, H., Henegouwen, B. v., Huf, F. A. Photochemical decomposition of chloramphenicol in a 0.25% eyedrop and in a therapeutic intraocular concentration. International Journal of Pharmaceutics,1984,20(3): 265-271.
    [138] Lunn, G., Rhodes, S. W., Sansone, E. B., et al. Photolytic Destruction and Polymeric Resin Decontamination of Aqueous Solutions of Pharmaceuticals. Journal of Pharmaceutical Sciences, 1994,83(9): 1289-1293.
    [139] Al-Deeb, O. A., Abdel-Moety, E. M., Abounassif, M. A., et al. Photochemical stability of norfloxacin in solutions, bulk form and tablets. Bollettino Chimico Farmaceutico, 1996, 135(6): 397-400.
    [140] Vasconcelos, T. G., Henriques, D. M., Konig, A., et al. Photo-degradation of the antimicrobial ciprofloxacin at high pH: Identification and biodegradability assessment of the primary by-products.Chemosphere, 2009, 76(4): 487-493.
    [141] Lunestad, B. T., Samuelsen, O. B., Fjelde, S., et al. Photostability of 8 Antibacterial Agents in Seawater. Aquaculture, 1995, 134(3-4): 217-225.
    [142] Andreozzi, R., Raffaele, M., Nicklas, P. Pharmaceuticals in STP effluents and their solar photodegradation in aquatic environment. Chemosphere, 2003, 50(10): 1319-1330.
    [143] Andreozzi, R., Caprio, V., Ciniglia, C, et al. Antibiotics in the environment: Occurrence in Italian STPs, fate, and preliminary assessment on algal toxicity of amoxicillin. Environmental Science & Technology, 2004, 38(24): 6832-6838.
    [144] Burhenne, J., Ludwig, M., Nikoloudis, P., et al. Photolytic degradation of fluoroquinolone carboxylic acids in aqueous solution .1. Primary photoproducts and half-lives. Environmental Science and Pollution Research, 1997,4(1): 10-15.
    [145] Kusari, S., Prabhakaran, D., Lamshoft, M., et al. In vitro residual anti-bacterial activity of difloxacin,sarafloxacin and their photoproducts after photolysis in water. Environmental Pollution, 2009, 157(10):2722-2730.
    [146] Boreen, A. L., Arnold, X. A., McNeill, K. Photochemical fate of sulfa drugs in the aquatic environment: Sulfa drugs containing five-membered heterocyclic groups. Environmental Science & Technology, 2004, 38(14): 3933-3940.
    [147] Boreen, A. L., Arnold, W. A., McNeill, K. Triplet-sensitized photodegradation of sulfa drugs containing six-membered heterocyclic groups: Identification of an SO_2 extrusion photoproduct. Environmental Science & Technology, 2005, 39(10): 3630-3638.
    [148] Leifer, A. The Kinetics of Environmental Aquatic Photochemistry: Theory and Practice. American Chemical Society: Washington, DC, 1988.
    [149] OECD. Guidance Document on Direct Phototransformation of Chemicals in Water. OECD Environmental Health and Safety Publication. Series on Testing and Assessment No.7, Paris, France,1997.
    [150] Latch, D. E., Packer, J. L., Stender, B. L., et al. Aqueous photochemistry of triclosan: Formation of 2,4-dichlorophenol, 2,8-dichlorodibenzo-p-dioxin, and oligomerization products. Environmental Toxicology and Chemistry, 2005, 24(3): 517-525.
    [151] Andreozzi, R., Canterino, M., Lo Giudice, R., et al. Lincomycin solar photodegradation, algal toxicity and removal from wastewaters by means of ozonation. Water Research, 2006,40(3): 630-638.
    [152] Cooper, W. J., Zika, R. G., Petasne, R. G., et al. Cooper, W. J.; Zika, R. G.; Petasne, R. G.; Fischer,A. M. Sunlight-induced photochemistry of humic substances in natural waters: major reactive species; Suffet, I. H., MacCarthy, P., Eds.; American Chemical Society: Washington, DC, 1989; pp 333-62.
    [153] Miller, P. L., Chin, Y. P. Indirect photolysis promoted by natural and engineered wetland water constituents: Processes leading to alachlor degradation. Environmental Science & Technology, 2005,39(12): 4454-4462.
    [154] Halladja, S., Amine-Khodja, A., ter Halle, A., et al. Photolysis of fiuometuron in the presence of natural water constituents. Chemosphere, 2007, 69(10): 1647-1654.
    [155] Schwarzenbach, R. P., Gschwend, P. M., Imboden, D. M. Environmental Organic Chemistry (Second Edition). New Jersey: John Wiley & Sons, Inc., 2003.
    [156] Latch, D. E., Stender, B. L., Packer, J. L., et al. Photochemical fate of Pharmaceuticals in the environment: Cimetidine and ranitidine. Environmental Science & Technology, 2003, 37(15):3342-3350.
    [157] Packer, J. L., Werner, J. J., Latch, D. E., et al. Photochemical fate of pharmaceuticals in the environment: Naproxen, diclofenac, clofibric acid, and ibuprofen. Aquatic Sciences, 2003, 65(4):342-351.
    
    [158] Mill, T. Predicting photoreaction rates in surface waters. Chemosphere, 1999, 38(6): 1379-1390.
    [159] Larson, R. A., Weber, E. J. Reaction mechanisms in environmental organic chemistry Carbohydrate Polymers, 1996,29(3): 293-294.
    [160] Werner, J. J., McNeill, K., Arnold, W. A. Photolysis of Chlortetracycline on a Clay Surface. J. Agric.Food Chem, 2009, 57(15): 6932-6937.
    [161] Albini, A., Monti, S. Photophysics and photochemistry of fluoroquinolones. Chemical Society Reviews, 2003,32(4): 238-250.
    [162] Bilski, P., Martinez, L. J., Koker, E. B., et al. Photosensitization by norfloxacin is a function of pH.Photochemistry and Photobiology, 1996, 64(3): 496-500.
    [163] Guerard, J. J., Miller, P. L., Trouts, T. D., et al. The role of rulvic acid composition in the photosensitized degradation of aquatic contaminants. Aquatic Sciences, 2009, 71(2): 160-169.
    [164] Araki, T., Kawai, Y., Ohta, I., et al. Photochemical behavior of sitafloxacin, fluoroquinolone antibiotic, in an aqueous solution. Chemical & Pharmaceutical Bulletin, 2002, 50(2): 229-234.
    [165] Cardoza, L. A., Knapp, C. W., Larive, C. K., et al. Factors affecting the fate of ciprofloxacin in aquatic field systems. Water Air and Soil Pollution, 2005, 161(1-4): 383-398.
    [166] Ahmad, I., Fasihullah, Q., Vaid, F. H. M. Effect of phosphate buffer on photodegradation reactions of riboflavin in aqueous solution. Journal of Photochemistry and Photobiology B-Biology, 2005, 78(3):229-234.
    [167] Sanchez-Prado, L., Llompart, M., Lores, M., et al. Monitoring the photochemical degradation of triclosan in wastewater by UV light and sunlight using solid-phase microextraction. Chemosphere,2006, 65(8): 1338-1347.
    [168] Bachman, J., Patterson, H. H. Photodecomposition of the carbamate pesticide carbofuran: Kinetics and the influence of dissolved organic matter. Environmental Science & Technology, 1999, 33(6):874-881.
    [169] Evgenidou, E., Fytianos, K. Photodegradation of triazine herbicides in aqueous solutions and natural waters. Journal of Agricultural and Food Chemistry, 2002, 50(22): 6423-6427.
    [170] Vione, D., Maurino, V., Minero, C, et al. Phenol chlorination and photochlorination in the presence of chloride ions in homogeneous aqueous solution. Environmental Science & Technology, 2005,39(13): 5066-5075.
    [171] Zhan, M. J., Yang, X., Xian, Q. M., et al. Photosensitized degradation of bisphenol A involving reactive oxygen species in the presence of humic substances. Chemosphere, 2006, 63(3): 378-386.
    [172] Vione, D., Falletti, G., Maurino, V., et al. Sources and sinks of hydroxyl radicals upon irradiation of natural water samples. Environmental Science & Technology, 2006,40(12): 3775-3781.
    [173] Oka, H., Ikai, Y., Kawamura, N., et al. Photodecomposition products of tetracycline in aqueous solution. Journal of Agricultural and Food Chemistry, 1989, 37(1): 226-231.
    [174] Paesen, J., Cypers, W., Busson, R., et al. Isolation of decomposition products of tylosin using liquid-chromatography. Journal of Chromatography A, 1995, 699(1-2): 99-106.
    [175] Wong-Wah-Chung, P., Rafqah, S., Voyard, G., et al. Photochemical behaviour of triclosan in aqueous solutions: Kinetic and analytical studies. Journal of Photochemistry and Photobiology A:Chemistry, 2007, 191(2-3): 201-208.
    [176] Schnick, R. A., Alderman, D. J., Armstrong, R., et al. Worldwide Aquaculture Drug and Vaccine Registration Process [2009, 05, 25]. http://govdocs.aquake.org/cgi/reprint/2005/801/8010190.pdf.
    [177] Sapkota, A., Sapkota, A. R., Kucharski, M., et al. Aquaculture practices and potential human health risks: Current knowledge and future priorities. Environment International, 2008, 34(8): 1215-1226.
    [178] Lai, H. T., Hou, J. H., Su, C. I., et al. Effects of chloramphenicol, florfenicol, and thiamphenicol on growth of algae Chlorella pyrenoidosa, Isochtysis galbana, and Tetraselmis chui. Ecotoxicology and Environmental Safety, 2009, 72(2): 329-334.
    [179] Alexy, R., Sommer, A., Lange, F. T., et al. Local use of antibiotics and their input and fate in a small sewage treatment plant - significance of balancing and analysis on a local scale vs. nationwide scale.Acta Hydrochimica Et Hydrobiologica, 2006, 34(6): 587-592.
    [180] Hormazabal, V., Steffenak, I., Yndestad, M. Simultaneous extraction and determination of florfenicol and the metabolite florfenicol amine in sediment by high-performance liquid chromatography. Journal of Chromatography A, 1996, 724(1-2): 364-366.
    [181] Van De Riet, J. M., Potter, R. A., Christie-Fougere, M., et al. Simultaneous determination of residues of chloramphenicol, thiamphenicol, florfenicol, and florfenicol amine in farmed aquatic species by liquid, chromatography/mass spectrometry. Journal of AOAC International, 2003, 86(3): 510-514.
    [182] Pfenning, A. P., Roybal, J. E., Rupp, H. S., et al. Simultaneous determination of residues of chloramphenicol, florfenicol, florfenicol amine, and thiamphenicol in shrimp tissue by gas chromatography with electron capture detection. Journal of AOAC International, 2000, 83(1): 26-30.
    [183]Zhang,S.,Sun,F.Y.,Li,J.C.,et al.Simultaneous determination of florfenicol and florfenicol amine in fish,shrimp,and swine muscle by gas chromatography with a microcell electron capture detector.Journal of AOAC International,2006,89(5):1437-1441.
    [184]彭涛,李淑娟,储晓刚等.高效液相色谱/串联质谱法同时测定虾中氯霉素、甲砜霉素和氟甲砜霉素残留量.分析化学,2005,33(4):463-466.
    [185]Zhang,S.X.,Liu,Z.W.,Guo,X.,et al.Simultaneous determination and confirmation of chloramphenicol,thiamphenicol,florfenicol and florfenicol amine in chicken muscle by liquid chromatography-tandem mass spectrometry.Journal of Chromatography B-Analytical Technologies in the Biomedical and Life Sciences,2008,875(2):399-404.
    [186]Pfenning,A.P.,Madson,M.R.,Roybal,J.E.,et al.Simultaneous determination of chloramphenicol,florfenicol and thiamphenicol residues in milk by gas chromatography with electron capture detection.Journal of AOAC International,1998,81(4):714-720.
    [187]Martins,H.A.,Bustillos,O.V.,Pires,M.A.F.,et al.Determination of chloramphenicol residues in industrialized milk and honey samples using LC-MS/MS.Quimica Nova,2006,29(3):586-592.
    [188]Boer,Y.,Pijnenburg,A.HPLC determination of chloramphenicol degradation in eye drops.Pharmacy World & Science,1983,5(3):95-101.
    [189]Hayes,J.M.,Eichman,J.,Katz,T.,et al.Stability of florfenicol in drinking water.Journal of AOAC International,2003,86(1):22-29.
    [190]Halling-Sorensen,B.,Nielsen,S.N.,Lanzky,P.F.,et al.Occurrence,fate and effects of pharmaceutical substances in the environment - A review.Chemosphere,1998,36(2):357-394.
    [191]Hektoen,H.,Berge,J.A.,Hormazabal,V.,et al.Persistence of Antibacterial Agents in Marine-Sediments.Aquaculture,1995,133(3-4):175-184.
    [192]Schering Plough Animal Health.EnVironmental Assessment for the Use of Nuflor(?) Injectable Solution in Cattle(NADA 141-063EA);U.S.Food and Drug Administration,Center for Veterinary Medicine:Rockville,MD,1996[2009,05,22].http://www.fda.gov/cvm/FOI/141-063EA.pdf.
    [193]Okeniyi,S.O.,Kolawole,J.A.,Odunola,M.T.,et al.Kinetics of light induced degradation of aqueous solution of chloramphenicol.Research Journal of Applied Sciences,2006,1(1-4):123 - 127.
    [194]Hu,J.Y.,Wang,W.,Zhu,Z.,et al.Quantitative structure - Activity relationship model for prediction of genotoxic potential for quinolone antibacterials.Environmental Science & Technology,2007,41(13):4806-4812.
    [195]杜黎明,吴昊,陈彩萍.喹诺酮类药物的分析方法与应用.北京:科学出版社,2006.
    [196]Paul,T.,Miller,P.L.,Strathmann,T.J.Visible-light-mediated TiO_2 photocatalysis of fluoroquinolone antibacterial agents.Environmental Science & Technology,2007,41(13):4720-4727.
    [197]Zhang,H.C.,Huang,C.H.Oxidative transformation of fluoroquinolone antibacterial agents and structurally related amines by manganese oxide.Environmental Science & Technology,2005,39(12):4474-4483.
    [198]Gulkowska,A.,He,Y.H.,So,M.K.,et al.The occurrence of selected antibiotics in Hong Kong coastal waters.Marine Pollution Bulletin,2007,54(8):1287-1293.
    [199]Xu,W.H.,Zhang,G.,Li,X.D.,et al.Occurrence and elimination of antibiotics at four sewage treatment plants in the Pearl River Delta(PRD),South China.Water Research,2007,41(19):4526-4534.
    [200] Kolpin, D. W., Furlong, E. T., Meyer, M. T., et al. Pharmaceuticals, hormones, and other organic wastewater contaminants in US streams, 1999-2000: A national reconnaissance. Environmental Science & Technology, 2002, 36(6): 1202-1211.
    [201] Lindberg, R. H., Wennberg, P., Johansson, M. I., et al. Screening of human antibiotic substances and determination of weekly mass flows in five sewage treatment plants in Sweden. Environmental Science & Technology, 2005, 39(10): 3421-3429.
    [202] Debska, J., Kot-Wasik, A., Namiesnik, J. Fate and analysis of pharmaceutical residues in the aquatic environment. Critical Reviews in Analytical Chemistry, 2004, 34(1): 51-67.
    [203] Golet, E. M., Strehler, A., Alder, A. C, et al. Determination of fluoroquinolone antibacterial agents in sewage sludge and sludge-treated soil using accelerated solvent extraction followed by solid-phase extraction. Analytical Chemistry, 2002, 74(21): 5455-5462.
    [204] Kummerer, K., Al-Ahmad, A., Mersch-Sundermann, V. Biodegradability of some antibiotics,elimination of the genotoxicity and affection of wastewater bacteria in a simple test. Chemosphere,2000, 40(7): 701-710.
    [205] Araki, T., Kitaoka, H. ESR detection of free radical and active oxygen species generated during photolysis of fluoroquinolones. Chemical & Pharmaceutical Bulletin, 1998,46(6): 1021-1026.
    [206] Park, H. R., Kim, T. H., Bark, K. M. Physicochemical properties of quinolone antibiotics in various environments. European Journal of Medicinal Chemistry, 2002, 37(6): 443-460.
    [207] Budai, M., Grof, P., Zimmer, A., et al. UV light induced photodegradation of liposome encapsulated fluoroquinolones: An MS study. Journal of Photochemistry and Photobiology A: Chemistry, 2008,198(2-3): 268-273.
    [208] Quivet, E., Faure, R., Georges, J., et al. Photochemical degradation of imazamox in aqueous solution:Influence of metal ions and anionic species on the ultraviolet photolysis. Journal of Agricultural and Food Chemistry, 2006, 54(10): 3641-3645.
    [209] Neamtu, M., Frimmel, F. H. Photodegradation of endocrine disrupting chemical nonylphenol by simulated solar UV-irradiation. Science of the Total Environment, 2006, 369(1-3): 295-306.
    
    [210] 毕刚,田世忠,冯子刚等.农药光解平均波长量子产率的测定.分析科学学报, 1995, 11(4):15-19.
    [211] Brezova, V., Pigosova, J., Havlinova, B., et al. EPR study of photochemical transformations of triarylmethane dyes. Dyes and Pigments, 2004, 61(2): 177-198.
    [212] Bader, H., Sturzenegger, V., Hoigne, J. Photometric method for the determination of low concentrations of hydrogen peroxide by the peroxidase catalyzed oxidation of N,N-diethyl-p-phenylenediamine (DPD). Water research, 1988,22(9): 1109-1115.
    [213] Liu, S. Z., Li, Q. X. Photolysis of spinosyns in seawater, stream water and various aqueous solutions.Chemosphere, 2004, 56(11): 1121-1127.
    [214] Doll, T. E., Frimmel, F. H. Fate of pharmaceuticals-photodegradation by simulated solar UV-light.Chemosphere, 2003, 52(10): 1757-1769.
    [215] Lau, T. K., Chu, W., Graham, N. The degradation of endocrine disruptor di-n-butyl phthalate by UV irradiation: A photolysis and product study. Chemosphere, 2005, 60(8): 1045-1053.
    [216] Liu, B., Wu, F., Deng, N. S. UV-light induced photodegradation of 17α-ethynylestradiol in aqueous solutions. Journal of Hazardous Materials, 2003, 98(1-3): 311-316.
    [217]杨洪生,杨曦,展漫军等.双酚A在Suwannee富里酸溶液中的光解.环境科学,2005,26(4):40-44.
    [218]Dodd,M.C.,Shah,A.D.,Von Gunten,U.,et al.Interactions of fluoroquinolone antibacterial agents with aqueous chlorine:Reaction kinetics,mechanisms,and transformation pathways.Environmental Science & Technology,2005,39(18):7065-7076.
    [219]Da Silva,J.P.,Ferreira,L.F.V.,Machado,I.F.,et al.Photolysis of 4-chloroanisole in the presence of oxygen - Formation of the 4-methoxyphenylperoxyl radical.Journal of Photochemistry and Photobiology A:Chemistry,2006,182(1):88-92.
    [220]Martino,M.,Liss,P.S.,Plane,J.M.C.The photolysis of dihalomethanes in surface seawater.Environmental Science & Technology,2005,39(18):7097-7101.
    [221]Fetsch,D.,Havel,J.Capillary zone electrophoresis for the separation and characterization of humic acids.Journal of Chromatography A,1998,802(1):189-202.
    [222]Rigol,A.,Vidal,M.,Rauret,G.Ultrafiltration-eapillary zone electrophoresis for the determination of humic acid fractions.Journal of Chromatography A,1998,807(2):275-284.
    [223]张正斌,刘莲生.海洋物理化学.北京:科学出版社,1989.
    [224]Samios,S.,Lekkas,T.,Nikolaou,A.,et al.Structural investigations of aquatic humic substances from different watersheds.Desalination,2007,210(1-3):125-137.
    [225]Dimou,A.D.,Sakkas,V.A.,Albanis,T.A.Trifluralin photolysis in natural waters and under the presence of isolated organic matter and nitrate ions:kinetics and photoproduct analysis.Journal of Photochemistry and Photobiology A:Chemistry,2004,163(3):473-480.
    [226]Dimou,A.D.,Sakkas,V.A.,Albanis,T.A.Metolachlor photodegradation study in aqueous media under natural and simulated solar irradiation.Journal of Agricultural and Food Chemistry,2005,53(3):694-701.
    [227]Summerfelt,S.T.Ozonation and UV irradiation - an introduction and examples of current applications.Aquacultural Engineering,2003,28(1-2):21-36.
    [228]Lorenzo,F.,Navaratnam,S.,Edge,R.,et al.Primary photophysical properties of moxifloxacin - A fluoroquinolone antibiotic.Photochemistry and Photobiology,2008,84(5):1118-1125.
    [229]Buxton,G.V.,Greenstock,C.L.,Helman,W.P.,et al.Critical review of rate constants for reactions of hydrated electrons,hydrogen atoms and hydroxyl radicals(·OH/·O~-) in aqueous solution.Journal of Physical Chemistry Reference Data,1988,17(2):513-886.
    [230]Miolo,G.,Viola,G.,Vedaldi,D.,et al.In vitro phototoxic properties of new 6-desfluoro and 6-fluoro-8-methylquinolones.Toxicology in Vitro,2002,16(6):683-693.
    [231]Babic,S.,Horvat,A.J.M.,Pavlovic,D.M.,et al.Determination of pK_a values of active pharmaceutical ingredients TrAC Trends in Analytical Chemistry,2007,26(11):1043-1061.
    [232]Naber,K.G.Antimicrobial treatment of bacterial prostatitis.European Urology Supplements,2003,2(2):23-26.
    [233]Brown,K.D.,Kulis,J.,Thomson,B.,et al.Occurrence of antibiotics in hospital,residential,and dairy,effluent,municipal wastewater,and the Rio Grande in New Mexico.Science of the Total Environment,2006,366(2-3):772-783.
    [234] Turiel, E., Bordin, G., Rodriguez, A. R. Study of the evolution and degradation products of ciprofloxacin and oxolinic acid in river water samples by HPLC-UV/MS/MS-MS. Journal of Environmental Monitoring, 2005, 7(3): 189-195.
    [235] Wang, Z., Chen, J. W., Huang, L. P., et al. Integrated fuzzy concentration addition-independent action (IFCA-IA) model outperforms two-stage prediction (TSP) for predicting mixture toxicity.Chemosphere, 2009, 74(5): 735-740.
    [236] Kummerer, K., Alexy, R., Huttig, J., et al. Standardized tests fail to assess the effects of antibiotics on environmental bacteria. Water Research, 2004, 38(4): 2111-2116.
    [237] Mella, M., Fasani, E., Albini, A. Photochemistry of l-cyclopropy1-6-fluoro-1,4-dihydro-4-oxo-7-(piperazin-1-yl)quinoline-3-carboxylic acid (= ciprofloxacin) in aqueous solutions. Helvetica Chimica Acta,2001, 84(9): 2508-2519.
    [238] Parshikov, I. A., Heinze, T. M., Moody, J. D., et al. The fungus Pestalotiopsis guepini as a model for biotransformation of ciprofloxacin and norfloxacin. Applied Microbiology and Biotechnology, 2001,56(3-4): 474-477.
    [239] Lu, G. H., Zhao, Y. H., Yang, S. G., et al. Quantitative structure-biodegradability relationships of substituted benzenes and their biodegradability in river water. Bulletin of Environmental Contamination and Toxicology, 2002, 69(1): 111-116.
    [240] Wu, F., Deng, N. S. Photochemistry of hydrolytic iron (III) species and photoinduced degradation of organic compounds. A minireview. Chemosphere, 2000, 41(8): 1137-1147.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700