用户名: 密码: 验证码:
早龄期混凝土桥梁时变耦合效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
混凝土桥梁收缩、徐变和温度效应等时变效应可导致结构开裂和影响结构长期性能,且此类作用具有随时间变化特性。国内外学者已对混凝土桥梁时变效应进行了大量研究,由于收缩和徐变等受到诸多因素影响,其机理理论尚未完全达成共识。同时混凝土桥梁时变效应之间相互影响存在一定的耦合关系。目前,对混凝土桥梁时变效应单独考虑的简化分析与桥梁工程实际不完全相符,并存在一定误差。因此,有必要对混凝土桥梁时变效应及其耦合作用展开研究。
     本文研究目的:混凝土收缩和徐变影响因素的敏感性;日气温变化环境下早龄期混凝土收缩应变时变行为;混凝土箱梁水化热温度场和应变随龄期演变特性;早龄期混凝土箱梁收缩、徐变与温度效应等耦合作用。
     通过文献回顾和国内外研究进展分析指引研究工作,本文研究思想和方法以及主要成果分别为:
     (1)研究混凝土收缩和徐变各项影响因素的作用机理及影响规律,基于主成分分析法进行混凝土收缩和徐变影响因素敏感性分析得出主要影响因素。主要结论:混凝土收缩主要影响因素包含养护湿度、养护结束龄期和环境湿度等。混凝土徐变主要影响因素包含水泥用量、集料含量、水灰比和构件有效厚度等。
     (2)通过独创性的连续变温下早龄期混凝土试件收缩应变随时间变化室内试验,建立混凝土试件应变随时间和温度变化数值模型,与恒温试验对比分析,探讨在日气温连续变化影响下早龄期混凝土收缩应变时变行为。主要结论:在日气温变化的升温和降温过程中,早龄期(3d内)混凝土均数次出现量级达100×10-6的剧烈收缩。随着混凝土龄期增长和水泥水化程度提高,相同环境温湿度条件下,混凝土收缩应变减小、膨胀应变增大。
     (3)基于预制梁场混凝土箱梁水化热温度应变现场试验,观测箱梁水化热温度及应变数据,分析早龄期混凝土箱梁水化热温度场及应变随龄期变化特性。主要结论:早龄期箱梁混凝土内部温度变化大体呈现出正余弦规律,且随龄期增长混凝土内部温度趋同于环境温度。120h龄期内跨中断面混凝土内部温度整体上高于环境温度。相对于梁端断面,跨中断面较少受到环境影响。早龄期混凝土箱梁跨中断面与梁端断面底板中心均呈现压应变,而且应变值随龄期逐渐增大。
     (4)经影响参数和计算精度等方面综合分析,选取适宜的混凝土桥梁收缩和徐变预测模型。基于应力与应变增量关系、混凝土收缩预测B3模型及微预应力—固化徐变理论等方法和理论,建立混凝土箱梁时变效应耦合作用本构关系有限元模型子程序,并利用试验数据进行验证标定。以此为核心建立混凝土箱梁收缩徐变与温度效应耦合作用有限元数值模型,分析早龄期混凝土箱梁收缩徐变和温度耦合效应;对比B3模型与现行公路桥规模型用于早龄期混凝土箱梁时变效应耦合分析的精确性;探讨各影响因素对早龄期混凝土箱梁应变作用规律。主要结论:在满足现行公路桥规要求基础上,混凝土桥梁收缩和徐变预测计算应首选B3(1995)模型和GL2000模型进一步精确分析。早龄期混凝土箱梁收缩、徐变和温度效应耦合作用应变计算值与试验数据较为一致,而温度弹性应变计算值相差较大。基于现行公路桥规模型的早龄期混凝土箱梁时变效应耦合应变大于试验数据和B3模型耦合效应,且后两者更为接近。
     本文研究将理论分析与桥梁工程实际问题相结合,研究结果有利于优化混凝土桥梁设计和减小设计与工程实际之间误差,有助于提高桥梁施工质量和降低桥梁运营期间养护成本,或成为他人相关研究新方向和新层面的基础,具有一定的理论研究和工程应用价值。
The time-dependent effects of concrete bridge, that include shrinkage, creep andtemperature effect, may lead to structural cracking and affect the structure oflong-term performance. Due to creep and shrinkage is influenced by many factors,there are not a complete consensus about the mechanism of creep and shrinkage. Andthere are some coupling effects in time-dependent effects. Now the simplifiedseparate analysis of time-dependent effects does not correspond exactly with thebridge project. Therefore, it is necessary to study the coupling time-dependent effectsof concrete bridge.
     The purpose of this paper: analyzing the sensitivity of the factors of concretecreep and shrinkage; time-dependent behavior of early-age concrete shrinkage straininfluenced by daily temperature changes; evolution characteristics of hydration heattemperature effect and strain of the concrete box girder; the coupling effects ofshrinkage, creep and temperature effect in early-age concrete box girder.
     The research was carried out under the guidance of the literature review. Theideas and methods of this study include:
     (1) Studying the mechanism of action and law of various influencing factors ofconcrete creep and shrinkage; the sensitivity of the factors of concrete creep andshrinkage are analyzed by principal component analysis.
     (2) Experiment test was carried out for the analysis of time-varying regularity ofearly age concrete strain under the influence of free air temperature changes; thestrain data and the weight of specimens were collected.
     (3) Analyzing the time-dependent characteristics of hydration heat temperatureeffect and strain of the concrete box girder based on field test in precast yard.
     (4) Selecting a suitable concrete bridge creep and shrinkage prediction model bycomprehensive analysis of impact parameter and calculation accuracy; establishingthe FEA model of constitutive relationship of coupling time-dependent effects inconcrete box girder; analyzing the coupling time-dependent effects of early-ageconcrete box girder based on the FEA model of constitutive relationship; comparative analysis of the accuracy of different models applied to coupling time-dependenteffects of early-age concrete box girder; exploring the law of influencing factorsacting on the strain of early-age concrete box girder.
     In this paper, the results, which are from comprehensive analysis of theoreticalanalysis and practical problems, may help to optimize the concrete bridge design,reduce the error between the design and engineering practice, help improve thequality of bridge construction and reduce bridge operation during maintenance costs.
引文
[1] Wikipedia. Bridge[EB/OL], http://en.wikipedia.org/wiki/Bridge,2012-02-05
    [2] Sidney Mindess, J. Francis Young, David Darwin. Concrete(second edition)[M].New Jersey: PearsonEducation, Inc.,2002:1
    [3] A.M.内维尔.李国泮,马贞勇译.混凝土的性能[M].北京:中国建筑工业出版社,1983
    [4] Wikimedia Commons. First concrete bridge [EB/OL], http://commons.wikimedia.org/wiki/File:First_concrete_bridge.JPG,2011-01-25
    [5] Wikimedia Commons. Monier bridge Chazelet [EB/OL],http://commons.wikimedia.org/wiki/File:Monier_bridge_Chazelet.jpg,2012-07-13
    [6]交通运输部综合规划司.2011年公路水路交通运输行业发展统计公报[EB/OL],http://www.moc.gov.cn/zhuzhan/zhengwugonggao/jiaotongbu/guihuatongji/201204/t20120425_1231779.html,2012-04-25
    [7] American Concrete Institute Committee209. Prediction of Creep,Shrinkage,and Temperature Effects inConcrete Structure[R]. Reapproved2008. Farmington Hills:ACI,2008
    [8] K ístek, V., Vráblík, L., Ba ant, Z.P., Li, G.-H.,and Yu, Q.(2008).“Misprediction of long-timedeflections of prestressed box girders: Causes, remedies and tendon lay-out e ect.” ibid., pp.1291–1295.
    [9] Julian Edgar. Bridges that collapse[EB/OL], http://blog.autospeed.com/2008/03/11/bridges-that-collapse/,2008-03-11
    [10] Exponent. Special Structures (Bridges, Tanks)[EB/OL], http://blog.autospeed. com/2008/03/11/bridges-that-collapse/
    [11] Lanigan, A G. TEMPERATURE STRESSES IN BOX-GIRDER BRIDGES [A]. Proceedings ofRoading Symposium [C]. New Zealand: Victoria University of Wellington,1971:685-687
    [12] Woolson, I.H.(1905) Some Remarkable Tests Indicating ‘Flow’ of Concrete Under Pressure.Engineering News,5-l (No.18), p.459.
    [13] Hatt W. K.“Notes on the effect of time element in loading reinforced concrete beams,” Proceedings,American Society for Testing and Materials,7,421-433,1907.
    [14]孙海林,叶列平,丁建彤,等.高强轻骨料混凝土收缩和徐变试验[J].清华大学学报(自然科学版),2007,47(6):765-767,780
    [15]程智清,刘宝举.高性能轻集料混凝土收缩性能研究[J].混凝土与水泥制品,2008,(4):10-13
    [16]李豪举,杨长辉,王冲.水泥细度对混凝土强度与干燥收缩的影响[J].混凝土,2011,(10):7-9.
    [17] Dale P. Bentz, Max A. Peltz. reducing thermal and autogenous shrinkage contributions to early-agecracking [J]. ACI Matetials journal,2008,105(4):414-420.
    [18] Keun-Hyeok Yang, Ju-Hyun Mun, Jae-Il Sim,et al. Effect of Water Content on the Properties ofLightweight Alkali-Activated Slag Concrete [J]. Journal Of Materials In Civil Engineering,2011,23(6):886-894.
    [19]陈波,张亚梅,郭丽萍.大掺量粉煤灰混凝土干燥收缩性能[J].东南大学学报(自然科学版),2007,37(2):334-338
    [20]高小建,杨英姿,阚雪峰.粉煤灰对混凝土内外层非均匀收缩的影响[J].应用基础与工程科学学报,2010,18(1):91-97
    [21]苗苗,米贵东,阎培渝.等强度条件下粉煤灰对补偿收缩混凝土变形性能的影响[J].硅酸盐通报,2012,31(3):501-505.
    [22] S. OYMAEL. Examination of creep and shrinkage behavior of concretes with oil shale ashsubstituted cements [J]. OIL SHALE,2009,26(1):19-27.
    [23]刘志勇.不同温湿度环境粉煤灰混凝土与基准混凝土收缩性能试验研究[J].土木工程学报,2009,42(5):69-73.
    [24]杨杨,吴炎平,李鹏,等.加载龄期和养护温度对高性能混凝土早期拉伸徐变的影响[J].混凝土与水泥制品,2010,(4):10-14
    [25]赵东和.减水剂和膨胀剂对混凝土早期收缩影响研究[J].混凝土,2012,(5):97-99.
    [26] N. Yazdani, M. Filsaime, S. Islam. Accelerated Curing of Silica-Fume Concrete [J]. Journal OfMaterials In Civil Engineering,2008,20(8):521-529.
    [27]慕儒,田稳苓,白彦岗.干燥失水对混凝土徐变的影响[J].混凝土,2011,(10):31-33.
    [28]邢万里,时旭东,倪健刚,等.基于试验的混凝土高温短期徐变计算模型[J].工程力学,2011,28(4):158-163
    [29]柯敏勇,刘海祥,陈松.桥用高强混凝土双轴徐变试验研究[J].建筑结构学报,2012,33(6):116-122.
    [30] T. Aly, J. G. Sanjayan. Effect of Pore-Size Distribution on Shrinkage of Concretes [J]. Journal OfMaterials In Civil Engineering,2010,22(5):525-532.
    [31] J. Zhang, H. Dongwei, S. Wei. Experimental study on the relationship between shrinkage andinterior humidity of concrete at early age [J]. Magazine of Concrete Research,2010,62(3):191–199.
    [32] Matthieu Vandamme, Franz-Josef Ulm. Nanogranular origin of concrete creep [J]. Proceedings ofthe National Academy of Sciences,2009,106(26):10552-10557.
    [33]高小建,巴恒静,祁景玉.混凝土水灰质量比与其早期收缩关系的研究[J].同济大学学报,2004,32(1):67-71.
    [34]张武满,孙伟.粗骨料对高性能混凝土早期自收缩的影响[J].硅酸盐学报,2009,37(4):631-636.
    [35]金南国,金贤玉,田野.受约束早龄期混凝土收缩开裂的理论预测和试验研究[J].浙江大学学报(工学版),2007,41(9):1499-1502,1507.
    [36]刘思国,丁一宁.纤维增强自密实混凝土早龄期非自由收缩研究[J].建筑材料学报,2008,11(1):8-13.
    [37] Drago Saje, Branko Bandelj, Jakob u ter i,et al. Shrinkage of Polypropylene Fiber-ReinforcedHigh-Performance Concrete [J]. JOURNAL OF MATERIALS IN CIVILENGINEERING,2011,23(7):941-952.
    [38] Tarek Aly, J. G. Sanjayan. Shrinkage-cracking behavior of OPC-fiber concrete at early-age [J].Materials and Structures,2010,(43):755–764.
    [39]詹树林,钱晓倩.起始养护时间对混凝土早期收缩的影响[J].建筑材料学报,2007,10(3):359-363.
    [40]钱晓倩,詹树林,周富荣,等.早期养护时间对混凝土早期收缩的影响[J].沈阳建筑大学学报(自然科学版),2007,23(4):610-614
    [41] Tarek Aly, J. G. Sanjayan. Mechanism of early age shrinkage of concretes [J]. Materials andStructures,2009,(42):461–468.
    [42]许利惟,郑建岚.高性能混凝土早龄期自干燥收缩测量方法的研究[J].福州大学学报(自然科学版),2007,35(5):725-730.
    [43]许利惟,郑建岚.高性能混凝土早龄期自干燥收缩与浆体相对密度、骨料平均浆体厚度的关系[J].混凝土,2008,(2):31-33,38.
    [44]许利惟,郑建岚.基于BP神经网络的高性能混凝土早龄期自干燥收缩预测[J].福建工程学院学报,2008,6(1):8-12.
    [45] Sean Monkman, Yixin Shao. Carbonation Curing of Slag-Cement Concrete for Binding CO2andImproving Performance[J]. JOURNAL OF MATERIALS IN CIVIL ENGINEERING,2010,22(4):296-304.
    [46] A. M. Soliman, M. L. Nehdi. Effect of drying conditions on autogenous shrinkage in ultra-highperformance concrete at early-age [J]. Materials and Structures,2011,(44):879–899.
    [47]杨文武,钱觉时,范英儒.混凝土早期收缩性能试验研究[J].深圳大学学报理工版,2009,26(1):81-85.
    [48]姜伟,赵桂祥,侯景鹏,等.自密实混凝土早龄期收缩试验研究[J].商品混凝土,2009,(1):34-37.
    [49]诸华丰,冷发光,田冠飞,等.早龄期混凝土收缩变形测量系统的研制[J].商品混凝土,2010,(3):42-47.
    [50]黄海东,向中富,郑皆连.混凝土结构早期非均匀收缩试验[J].中国公路学报,2010,23(3):64-69.
    [51] GergisW.William, SamirN.Shoukry, Mourad Y. Riad. Development of early age shrinkage stresses inreinforced concrete bridge decks [J]. Mech Time-Depend Mater,2008(12):343–356.
    [52] Mohammed Seddik Meddah, Arezki Tagnit-Hamou. Evaluation of Rate of Deformation for Early-AgeConcrete Shrinkage Analysis and Time Zero Determination [J]. JOURNAL OF MATERIALS INCIVIL ENGINEERING,2011,23(7):1076-1086.
    [53]冯德飞,卢文良.混凝土箱梁水化热温度试验研究[J].铁道工程学报,2006,(8):6267.
    [54]程俊瑞,卢文良,季文玉,等.预应力混凝土箱梁水化热温度及应变的试验研究[J].公路,2004,(2):2427.
    [55]向敏,廖礼坤,王新敏.混凝土箱形梁水化热温度场分析[J].石家庄铁道学院学报,2003,16(3):8286.
    [56]秦观,魏颂,王志国.混凝土箱梁蒸养温度场及温度应力有限元分析[J].中国港湾建设,2010,(1):1113.
    [57]张光辉,张晗,高纯.大体积混凝土水化热温度场仿真分析[J].武汉理工大学学报,2009,31(19):8587.
    [58]张沛,惠颖,田贵泉,等.混凝土箱梁浇筑温度场的实测分析及有限元模拟[J].混凝土,2007,(5):1921.
    [59]乔燕,孙传智,张卫华.预应力混凝土箱梁水化热温度测试和温度应力分析[J].中外公路,2009,29(5):142146.
    [60]王翠娟,贺拴海,张岗.混凝土箱梁层水化热场时程分析与评价模型[J].长安大学学报(自然科学版),2012,32(2):6569.
    [61]陈志坚,顾斌.大型混凝土箱梁水化热温度场的数值模拟[J].公路交通科技,2012,29(3):6469.
    [62]张岗,贺拴海,宋一凡.混凝土箱梁水化热温度损伤修正耦合方法[J].交通运输工程学报,2008,8(1):13-17.
    [63] Yun Lee, Jin-Keun Kim. Numerical analysis of the early age behavior of concrete structures with ahydration based microplane model [J]. Computers&Structures,2009,87(17-18):1085–1101.
    [64] M. Sofi,P. A. Mendis, S. Lie, et al. Early Age Concrete Thermal and Creep effects: Relevance toAnchorage Zones of Post-tensioned Members [J]. Electronic Journal of Structural Engineering,2008,(8):90–96.
    [65] Gyu-Yong Kim,Eui-Bae Lee, Jeong-Soo Nam, et al. Analysis of hydration heat and autogenousshrinkage of high-strength mass concrete [J]. Magazine of Concrete Research,2011,63(5):377–389.
    [66] El-Hadj Kadri,Roger Duval. Hydration heat kinetics of concrete with silica fume [J]. Constructionand Building Materials,2009,(23):3388–3392.
    [67] Hans Beushausen,Mark Alexander, Yunus Ballim. Early-age properties, strength development andheat of hydration of concrete containing various South African slags at different replacement ratios [J].Construction and Building Materials,2012,(29):533–540.
    [68] Bernardino Chiaia,Alessandro P. Fantilli, Giulio Ventura. A chemo-mechanical model of limehydration in concrete structures[J]. Construction and Building Materials,2012,(29):308–315.
    [69] Lianzhen Xiao, Zongjin Li. Early-age hydration of fresh concrete monitored by non-contactelectrical resistivity measurement [J]. Cement and Concrete Research,2008,(38):312–319.
    [70] K. Van Den Abeele,W. Desadeleer, G. De Schutter, et al. Active and passive monitoring of the earlyhydration process in concrete using linear and nonlinear acoustics [J]. Cement and Concrete Research,2009,(39):426–432.
    [71] Xiaotian Zou, Alice Chao, Ye Tian, et al. An experimental study on the concrete hydration processusing Fabry–Perot fiber optic temperature sensors[J]. Measurement,2012,(45):1077–1082.
    [72] W. L. Lai, T. Kind, H.Wiggenhauser. A Study of Concrete Hydration and Dielectric RelaxationMechanismUsing Ground Penetrating Radar and Short-Time Fourier Transform [J]. EURASIP Journalon Advances in Signal Processing,2010:1–14.
    [73]王润富,陈和群,李克敌.求解徐变应力问题的初应力法[J].水利学报,1980,(1):76–82
    [74]朱伯芳.混凝土结构徐变应力分析的隐式解法[J].水利学报,1983,(5):40–46.
    [75] M. Briffaut, F. Benboudjema, J.M. Torrenti,et al. Numerical analysis of the thermal active restrainedshrinkage ring test to study the early age behavior of massive concrete structures [J]. EngineeringStructures,2011,(33):1390–1401.
    [76] Zden k P.Ba ant, Anders Boe Hauggaard, Sandeep Baweja, et al.Microprestress-solidification theoryfor concrete creep. I: aging and drying effects [J].Journal of Engineering Mechanics,1997,123(11):1188-1194
    [77] Zden k P.Ba ant, Anders Boe Hauggaard, Sandeep Baweja.Microprestress-solidification theory forconcrete creep. II:algorithm and verification [J].Journal of Engineering Mechanics,1997,123(11):1195-1201
    [78] Zden k P.Ba ant, Gianluca Cusatis, Luigi Cedolin. Temperature Effect on Concrete Creep Modeledby Microprestress-Solidification Theory [J]. Journal Of Engineering Mechanics,2004,130(6):691699.
    [79] Francis T.K. Au, X.T. Si. Accurate time-dependent analysis of concrete bridges considering concretecreep, concrete shrinkage and cable relaxation [J]. Engineering Structures,2011,(33):118–126.
    [80] Mark A. Bradford. Generic modelling of composite steel-concrete slabs subjected to shrinkage, creepand thermal strains including partial interaction [J]. Engineering Structures,2010,(32):1459-1465.
    [81]刘宁,刘光廷.大体积混凝土结构随机温度徐变应力计算方法研究[J].力学学报,1997,29(2):189–202
    [82]韩重庆,冯健,吕志涛.大面积混凝土梁板结构温度应力分析的徐变应力折减系数法[J].工程力学,2003,20(1):7-14
    [83]李明,苗隆德,辛景峰,等.面墙式碾压混凝土重力坝温度徐变应力三维有限元计算[J].水资源与水工程学报,2009,20(1):129-132
    [84]刘杏红,周伟,常晓林,等.改进的非线性徐变模型及其在混凝土坝施工期温度应力仿真分析中的应用[J].岩土力学,2009,30(2):440-446
    [85] Q. Xu, C. Burgoyne. Thermal-creep analysis of concrete bridges [J]. Bridge Engineering,2005,158(BE3):107115.
    [86] Charles D. Newhouse, Carin L. Roberts-Wollmann, Thomas E. Cousins, et al. Modeling Early-AgeBridge Restraint Moments: Creep, Shrinkage, and Temperature Effects [J]. Journal of BridgeEngineering,2008,13(5):431438.
    [87]向东进.实用多元统计分析[M].武汉:中国地质大学出版社,2005:131-132.
    [88] JTG E41-2005,公路工程岩石试验规程[S].北京:人民交通出版社,2005
    [89] T.C. Powers.causes and control of volume change [J].Journal of Portland cement,1959,(1):29-39
    [90] ASTM C150-02, Standard Specification for Portland Cement[S]. United States: ASTM Internationa,2002
    [91] GB175-2007,通用硅酸盐水泥[S].北京:中国标准出版社,2007
    [92] Torben C.Hansen,Alan H.Mattock. Influence of size and shape of member on the shrinkage and creepof concrete[R] Journal of the American concrete institute, February1966
    [93]惠荣炎,黄国兴,易冰若.混凝土的徐变[M].北京:中国铁道出版社,1988
    [94] Hubert Rusch,Dieter Jungwirth,Hubert K Hilsdorf, Creep and Shrinkage:their effects on the behaviorof concrete structure[M]. New York,Springer-Verlag,1993
    [95] Jian-Ping Lam. Evaluation of concrete shrinkage and creep prediction models[D] San Jose Stateuniversity, May2002
    [96]余锦华,杨维权.多元统计分析与应用[M].中山:中山大学出版社,2005:197-198.
    [97]李波,韩森,徐鸥明,等.基于主成分分析法的沥青路面使用性能评价[J].长安大学学报:自然科学版,2009,29(3):15-18.
    [98]张红,林荫,刘平.基于主成分分析的房地产上市公司盈利能力分析与预测[J].清华大学学报:自然科学版,2010,50(3):470-473.
    [99] Pentala, V., Rautanen, T.“Microporosity, Creep and Shrinkage of High-Strength Concrete." ACI SP121-21,2nd International Symposium on High-Strength Concrete, edited by Weston T. Heston,(1990)409-432.
    [100] Burg, R.G., Ost, B.W.“Engineering Properties of Commercially Available High-Strength Concretes."Research and Development Bulletin RD104T, Portland Cement Association, Skokie, Illinois (1992).
    [101] de Larrard, F., Malier, Y.“Engineering Properties of very High Performance Concretes." HighPerformance Concrete: From Material to Structure, edited by Yves Malier, London (1992).
    [102] Hooton, R.D.“Influence of silica fume replacement of Cement on Physical Properties and Resistanceto Sulfate Attack, Freezing and Thawing, and Alkali-silica Reaktivity." ACI Materials Journal Vol.90,No.2,(1993)143-151.
    [103] Chern, J.C., Chang, C.Y.“Effects of Silica Fume on Creep and Shrinkage of Steel Fiber ReinforcedConcrete, High Performance Concrete." Proceedings of ACI International Conference, Singapore,edited by V.M. Malhorta, American Concrete Institute, SP149-32,(1994)561-574, Detroit, USA.
    [104] Ravindrarajah, R.S., Mercer, C.M., Toth, J.“Moisture-induced Volume Changes in High-StrengthConcrete, High Performance Concrete." Proceedings of ACI International Conference, Singapore,edited by V.M. Malhorta, American Concrete Institute, SP149-32,(1994)475-490, Detroit, USA.
    [105] Han, N., Walraven, J.C.“Creep and Shrinkage of High-Strength Concrete at Early and Normal Ages."Advances in Concrete Technology, Proceedings of Second CANMET/ACI International Symposium,Las Vegas, edited by V.M. Malhorta, American Concrete Institute, SP154,(1995)73-94, Detroit,USA.
    [106] Wesche, K.; Schrage, I.; vom Berg, W. Creep and Relaxation Tests on Very Old Concrete.[J]. DtschAusschuss Stahlbeton,1978, n295, p67-156,
    [107] Brooks, J.J., Wainwright, P.J.“Properties of ultrahigh strength concrete containing superplasticizer."Magazine of Concrete Research Vol.35, No.125,(1983)205-213.
    [108] Hammer, T.A.“The Maturation of Mechanical Properties of High Strength Concrete Exposed toDifferent Moisture Conditions." Proceedings of Symposium of Utilization of High-Strength Concrete,edited by I. Holland and E. Sellevold, Lillehammer,(1993)1084-1901.
    [109] Yue, L., Taerwe, L.R.“Empirical Investigation of Creep and Shrinkage of High Strength Concrete."Proceedings of Symposium of Utilization of High-Strength Concrete, edited by I. Holland and E.Sellevold, Lillehammer,(1993)1084-1091.
    [110] Schwesinger, P., and Ehlert, G.,"Creep of Concrete at Elevated Temperatures and BoundaryConditions of Moisture." Cement and Concrete Research Vol.17,(1987)263-272.
    [111]王菱,谢贤群,苏文,等.中国北方地区50年来最高和最低气温变化及其影响[J].自然资源学报,2004,19(3):337-343.
    [112]郭志梅,缪启龙,李雄.中国北方地区近50年来气温变化特征及其突变性[J].干旱区地理,2005,28(2):176-182.
    [113]王焕定、吴德伦.有限单元法及计算程序[M].北京:中国建筑工业出版社,1997:1-3.
    [114] Joseph F. Lamond, James H. Pielert. Significance of Tests and Properties of Concrete andConcrete-Making Materials[M].West Conshohocken: ASTM International,2006:12,226-229,425-426
    [115] P. Kumar Mehta, Paulo J. M. Monteiro. Concrete Microstructure, Properties, and Materials (thirdedition)[M].New York: McGraw-Hill Companies, Inc.,2006:114-116
    [116]黄杰,吴胜兴,沈德建.不同粗骨料混凝土早期热膨胀系数试验研究[J].结构工程师,2010,26(3):154-158
    [117]危鼎,吴胜兴,李雪淋.混凝土早龄期热膨胀系数试验研究[J].江西科学,2007,25(3):258-263,280
    [118] JTG E30-2005,公路工程水泥及水泥混凝土试验规[S].北京:人民交通出版社,2005
    [119] JTG D62-2004,公路钢筋混凝土及预应力混凝土桥涵设计规范[S].北京:人民交通出版社,2004
    [120] Zdenek P.Bazant, Sandeep Baweja. Creep and Shrinkage Prediction Model for Analysis and Designof Concrete Structure:Model B3[R]. Michigan:ACI Committee209,1995
    [121] CEB-FIP Model Code1990[S]. Switzerland: Thomas Telford,1993
    [122] M. Nadim Hassoun, Akthem Al-Manaseer. Structural concrete theory and design(fourth edition)[M].New Jersey: John Wiley&Sons,Inc.,2008:38-40
    [123] Gardner, N.J. Comparision of prediction provisions for drying shrinkage and creep ofnormal-strength concretes[J]. Canadian Journal of Civil Engineering,2004, V31:767-775
    [124] D. E. Branson, M.L.Christiason. Time-dependent concrete properties related to design-strength andelastic properties, creep, and shrinkage. in Designing for effects of creep, shrinkage, and temperaturein concrete structure. ACI SP-27,1971, pp.257-277
    [125] Gardner, N.J., and Zhao, J.-W.1993. Creep and shrinkage revisited. ACI Materials Journal,90(3):236–246.
    [126] Rajeev Goel, Ram Kumar, D.K.Paul. Comparative Study of Various Creep and Shrinkage PredictionModels for Concrete[J]. Journal of Materials in Civil Engineering,Vol.19,No.3,March1,2007:
    [127] Zden k P.Ba ant, Guang-Hua Li.Unbiased Statistical Comparison of Creep and Shrinkage PredictionModels [J].ACI Materials Journal,2008,105(6):610-621.
    [128]朱伯芳.大体积混凝土温度应力与温度控制[M].北京:中国电力出版社,1999:199-205.
    [129] Zden k P.Ba ant, Gianluca Cusatis, Luigi Cedolin.Temperature effect on concrete creep modeled bymicroprestress-solidification theory [J].Journal of Engineering Mechanics,2004,130(6):691-699
    [130]彭友松,朱晓文,强士中.混凝土箱梁温度应力三维分析[J].铁道学报,2009,31(3):116-121
    [131] Oh, B.H., Cha, S.W., Um, J.Y., Lim, D.H.“Effects of Reinforcement and Humidity on the Creep andShrinkage Behavior of High-Strength Concrete Members." Creep and Shrinkage of Concrete (RILEMSymposium), edited by Z.P. Bazant and I. Carol, Published by E&FN Spon,(1993)
    [132] York, G.P., Kennedy, T.W., Perry, E.S.“Experimental investigation of creep in concrete subjected tomultiaxial compressive stresses and elevated temperatures." Research Report2864-2to Oak RidgeNational Laboratory, Department of Civil Engineering, University of Texas, Austin(1970)
    [133] Arthanari, S., Yu, C.W.“Creep of concrete under uniaxial and biaxial stresses at elevatedtemperatures." Magazine of Concrete Research Vol.19, No.60,(1967) pp.149-155.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700