用户名: 密码: 验证码:
超长混凝土结构收缩裂缝控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,混凝土结构因荷载和温度引起的裂缝可利用较成熟的设计理论得到有效控制,而收缩引起的裂缝在工程实践中屡见不鲜,威胁到混凝土结构的耐久性,甚至适用性、安全性。尤其是超长混凝土结构壁厚较薄时,收缩更是混凝土开裂的主要诱因。
     本文针对超长混凝土结构收缩裂缝问题,对双掺粉煤灰、矿粉混凝土进行了收缩试验研究、干缩预测模型研究、试件及钢筋混凝土结构的收缩有限元模拟。具体研究工作如下:
     通过自然环境下不同配合比的混凝土自由收缩试验,分析粉煤灰、矿粉、膨胀剂和纤维对混凝土收缩性能的影响。试验结果表明:粉煤灰对混凝土收缩的抑制效果显著,矿粉抑制作用不明显,存在最佳掺量;单掺或者双掺膨胀剂和聚丙烯纤维均可有效抑制混凝土收缩,双掺时减缩效果最佳,单掺UEA膨胀剂的效果其次,单掺聚丙烯纤维的效果有限。
     采用既有混凝土干缩预测模型,计算不含膨胀剂或纤维的混凝土试件的干缩应变,计算值与实测值的比较表明,既有模型不能较好地反映粉煤灰和矿粉掺量对混凝土干缩的影响。在对既有模型分析、校正的基础上,根据早期试验结果提出了考虑粉煤灰和矿粉掺量影响的混凝土干缩模型,模型预测精度较高。
     基于非线性湿扩散理论,采用ANSYS软件,对不含膨胀剂或纤维的混凝土试件进行有限元模拟和计算参数反演。模拟结果表明:混凝土干燥时,试件表面湿度梯度大于内部,试件表面湿度小于内部,且各处湿度随时间逐渐减小;环境湿度对混凝土收缩的影响较显著,湿养护时间对短期收缩有影响,对长期收缩几乎无影响。参数反演结果表明:混凝土收缩对饱和状态下的湿扩散系数不敏感,CEB-FIP (1990)模式规范建议的湿扩散系数模型合理可行。
     利用试验有限元模拟反演得出的计算参数,对超长井口槽结构进行有限元模拟,探讨优化混凝土配合比及设置混凝土后浇带对结构湿度场和收缩裂缝的影响。分析结果表明,优化混凝土配合比可减缓混凝土内部湿度扩散,明显推迟裂缝出现时间及结构大面积开裂的时间,抗裂效果显著。后浇带的设置仅影响后浇带处局部区域的湿度场,略微推迟裂缝出现时间或开裂面积,抗裂效果不如优化混凝土配合比明显。
At present, the cracks in concrete structures due to load or temperature variationhave been efficiently controlled, attributed to well-established design theories.However, cracks due to conrete shrinkage always arise in many engineering structures,which threaten the durability of the structures even the serviceability and safety.Concrete shrinkage is the most important inducement to cracks for the super-longstructures with thin-wall.
     Focusing on the concrete cracking due to shrinkage in super-long structures, freeshrinkage tests of concrete blended with fly ash and slag are conducted, analysis ofdrying shrinkage prediction models and finite elment simulation for specimens andthe super-long reinforced concrete strucrue are performed in this reseach. The detailedwork is stated as follows:
     According to the shrinkage tests of concrete blended with fly ash and groundgranulated blast furnace slag in natural environments, the effects of fly ash contentand slag content on concrete shrinkage were investigated. It is shown that theshrinkage decreases as the fly ash content heightens whereas the influence of slagcontent on shrinkage is unobvious from the results. Incorporating the expansiveadditive or the polypropylene fiber can also decrease the shrinkage. The effect ofbinary mixture on shrinkage reducing is the most efficient. The expansive additiveused individually reduces shrinkage more than the polypropylene fiber individually,but reduces little than those used in combination.
     The national and overseas prediction models have been applied to calculate thedrying shrinkage for the specimens without the expansive additive or thepolypropylene fiber. It is shown that none of the shrinkage prediction modelsadequately reproduces the observed shrinkage behaviour of concrete made with flyash and slag from the comparison between the tests and the calculation. According tothe short-term experimental data, a new prediction model contaning the effect of flyash and slag is established by calibrating and modifying the existing shrinkage models.The predicted shrinkage strains from the proposed model agree well with themeasured.
     On the basis of the nonlinear moisture diffusion theory, the finite elementmodeling of shrinkage tests and inverse analysis of related calculation parameters for the concrete without the expansive additive or the fiber are conducted by ANSYS. It isshown that the humidity gradient of outer region is more than that of inner region inconcrete during drying from the simulation results. However the relative humidity ofouter region is less than that of inner and they gradually decreases with drying timeeverywhere. The environmental humidity significantly influences the shrinkageevolution while the period of moisture curing influences the short-term shrinkage only.It is shown that the drying shrinkage is insensitive to the maximum of the diffusioncoefficient and the suggestion on the diffusion coefficient in the CEB-FIP (1990)Model Code is practicable and reliable from the inverse analysis results.
     The finite element modeling of the super-long wellhead structure is performedused the identified parameters values. The influences of the optimization of mixproportion as well as the setting of post-casting strip on the moisture field andshrinkage-induced cracks in the wellhead structure are discussed. The results showthat the cracking time can be significantly delayed by the optimization of mixproportion due to the slower moisture diffusion, but post-casting strip can slightlydelayed the cracking time or reduce the cracking area for it influences the moisturefield around the strip only. The effect of cracking resistance by the post-casting strip issmaller than by the optimization of mix proportion.
引文
[1]张雄,张小伟,李旭峰,混凝土结构裂缝防治技术,北京:化学工业出版社,2007:1~3
    [2]朱伯芳,王同生,丁宝瑛等,水工混凝土结构的温度应力与温度控制,北京:水利电力出版社,1976
    [3]王铁梦,工程结构裂缝控制,北京:中国建筑工业出版社,1997
    [4]中华人民共和国国家标准,混凝土结构设计规范(GB50010-2010),北京:中国建筑工业出版社,2010
    [5]韩素芳,耿维恕,钢筋混凝土结构裂缝控制指南,北京:化学工业出版社,2006
    [6]过镇海,时旭东,钢筋混凝土原理和分析,北京:清华大学出版社,2003,55~55
    [7]周履,陈永春,收缩徐变,北京;中国铁道出版社,1994
    [8]袁勇,混凝土结构早期裂缝控制,北京;科学出版社,2004
    [9]蒋正武,孙振,王新友等,国外混凝土自收缩研究进展评述,混凝土,2001,(4):30~33
    [10]Kenji Sakata and Takumi Shimomura,Recent progress in research on andcode evaluation of concrete creep and shrinkage in Japan,Journal ofAdvanced Concrete Technology,2004,2(2):133~140
    [11]钱晓倩,詹树林,孟涛等,减缩剂、膨胀剂、减水剂与混凝土的抗裂性,混凝土与水泥制品,2005.2,(1):22~24
    [12]杨文武,钱觉时,范英儒,混凝土早期收缩性能试验研究,深圳大学学报理工版,2009.1,26(1):81~85
    [13]白康,余红发,郝娟,大掺量矿物掺合料混凝土的干燥收缩与数学模型,华中科技大学学报(城市科学版),2008.6,25(2):39~41
    [14]Persson B P, Bertil, Chemical shinkage and self-desiccation inPortland Cement based mortars,Concrete Science and Engineering,1999,l:228~237
    [15]G. Appa Rao, Long-term drying shrinkage of mortor-influence of silicafume and size of fine aggregate, Cement and Concrete Research,2001,(31):171~175
    [16]田倩,低水胶比大掺量矿物掺合料水泥基材料的收缩与机理研究,博士学位论文,东南大学,2006:5~6
    [17]Jamal A, Almudaiheem and WillHansen, Effeet of specimen size and shapeon drying shrinkage of concrete, ACI Materials Journal,1987,84(2):130~135
    [18]Z. P,Bazant, Prediction of concrete creep and shrinkage: past,presentand future, Nuelear Engineering and Design,2001,203:27~38
    [19]郑翥鹏,高强与高性能混凝土的抗裂影响因素及理论分析,硕士学位论文,福州大学,2003,8~10
    [20]梅明荣,任青文,混凝土结构的干燥收缩应力研究综述,水利水电科技发展,2002.6,22(3):59~62
    [21]K. Kovler, S, Zhutovsky, Overview and future trends of shrinkageresearch, Materials and Structures,2006,39:827~847
    [22]侯景鹏,袁勇等,混凝土早期收缩试验方法评价,混凝土与水泥制品,2003.10,(5):1~4
    [23]安明喆,朱金铨,覃维祖,高性能混凝土自收缩的抑制措施,混凝土,2001,(5):27~41
    [24]Li Jianyong, Yao Yan. A study on creep and drying shrinkage of highperformance concrete.Cement and Concrete Research, August2001,31(8):1203~1206
    [25]J. J. Brooks, M. A. Megat Johari, Effect of metakaolin of creep andshrinkage of concrete, Cement and Concrete Composites,2001,23:495~502
    [26]吴学礼,张树青,杨全兵等,粉煤灰混凝土的自收缩性能,粉煤灰,2003,(6):3~5
    [27]李迎春,游有鲲,钱春香,陈春,混凝土组成成分对收缩性能的影响,混凝土,2003,(2):40~43
    [28]梁文泉,王信刚,何真等,矿渣微粉掺量对混凝土收缩开裂的影响,武汉大学学报(工学版),2004.2,37(1):77~81
    [29]钱晓倩,詹树林,方明晖等,减水剂对混凝土早期收缩和总收缩的影响,混凝土,2004,(5):17~20
    [30]钱晓倩,詹树林,孟涛等,掺合料与减缩剂对混凝土早期收缩的影响,沈阳建筑大学学报(自然科学版),2005.11,21(6):692~696
    [31]翁家瑞,郑建岚,王雪芳,粉煤灰掺量对高性能混凝土收缩的影响,福州大学学报(自然科学版),2005.10,第33卷增刊:143~146
    [32]K.M. Lee, H.K. Lee, S.H. Lee, G.Y. Kim. Autogenous shrinkage ofconcrete containing granulated blast-furnace slag, Cement and ConcreteResearch, July2006,36(7):1279~1285
    [33]Saleh A. Al-Saleh, Rajeh Z. Al-Zaid, Effects of drying conditions,admixtures and specimen size on shrinkage strains, Cement and ConcreteResearch,2006,36:1985~1991
    [34]陈波,张亚梅,郭丽萍,大掺量粉煤灰混凝土干燥收缩性能,东南大学学报(自然科学版),2007.3,37(2):334~338
    [35]钱晓倩,詹树林,周富荣等,早期养护时间对混凝土早期收缩的影响,沈阳建筑大学学报(自然科学版),2007.7,23(4):610-614
    [36]金南国,金贤玉,田野,受约束早龄期混凝土收缩开裂的理论预测和试验研究,浙江大学学报(工学版),2007.9,41(9):1499~1502
    [37]张登祥,杨伟军,外加剂及聚丙烯纤维对混凝土早期裂缝影响的实验研究,长沙交通学院学报,2008.12,24(4):42-45
    [38]乔艳静,费治华,田倩等,矿渣、粉煤灰掺量对混凝土收缩、开裂性能的研究,长江科学院院报,2008.8,25(4):90~92
    [39]Alexandra Passuello, Giacomo Moriconi, Surendra P. Shah,Crackingbehavior of concrete with shrinkage reducing admixtures and PVA fibers,Cement&Concrete Composites,2009,31:699~704
    [40]Sontaya Tongaroonsri, Somnuk Tangtermsirikul, Effect of mineraladmixtures and curing periods on shrinkage and cracking age underrestrained condition, Construction and Building Materials, February2009,2(2):1050~1056
    [41]Tarek Aly,J. G. Sanjayan.,Mechanism of early age shrinkage ofconcretes,Materials and Structures,2009,42:461~468
    [42]刘建忠,孙伟,缪昌文等,矿物掺合料对低水胶比混凝土干缩和自收缩的影响,东南大学学报(自然科学版),2009.5,39(3):580~585
    [43]杨文武,钱觉时,范英儒,混凝土早期收缩性能试验研究,深圳大学学报理工版,2009年1月,26(1):81~85
    [44]程红强,高丹盈,钢纤维混凝土的收缩性能试验研究,混凝土,2009,(2):57~57
    [45]刘志勇,不同温湿度环境粉煤灰混凝土与基准混凝土收缩性能试验研究,土木工程学报,2009.5,42(5):69~73
    [46]张登祥,混凝土早期收缩开裂理论与控制技术及其在桥梁工程中的应用,长沙理工大学,博士学位论文,2010
    [47]高小建,杨英姿,阚雪峰.粉煤灰对混凝土内外层非均匀收缩的影响,应用基础与工程科学学报,2010.2,18(1):91~97
    [48]Kyung-Hwan Min, Hyung-Chul Jung, Jun-Mo Yang, Young-Soo Yoon,Shrinkage characteristics of high-strength concrete for largeunderground space structures,Tunnelling and Underground Space Technology,March2010,25(2):108~113
    [49]Erhan Güneyisi, Mehmet Geso lu, Erdo an zbay. Strength and dryingshrinkage properties of self-compacting concretes incorporatingmulti-system blended mineral admixtures.Construction and BuildingMaterials, October2010,24(10):1878~1887
    [50]J. Saliba, E. Rozi è re, F. Grondin, A. Loukili, Influence ofshrinkage-reducing admixtures on plastic and long-term shrinkage Cement&Concrete Composites,2011,33:209~217
    [51]林鸿斌,王冲,曾毅娟,钢纤维超高强混凝土的收缩变形及开裂研究,混凝土,2011,(5):80~83
    [52]T. G. Hughes and R.J. Harvey, Environmental influences on theshrinkage of concrete block masonry, Materials and Structure, March1997,30:225~232
    [53]B.I. G. Barrl, J.L. Vitek2and M.A. Beygi, Seasonal shrinkagevariation in bridge segments, Materials and Structures March1997,30:106~111
    [54]B. Barrl, S.B. Hoseinian, M.A. Beygi, Shrinkage of concrete storedin natural environments, Cement&Concrete Composites,2003,25:19~29
    [55]L. Vandewalle, Concrete creep and shrinkage at cyclic ambientconditions, Cement&Concrete Composites,2000,22:201~208
    [56]张小伟,肖瑞敏,张雄等,粉煤灰掺量对混凝土收缩的影响及作用机理分析,混凝土与水泥制品,2005.8,(4):14~17
    [57]王晓燕,邓志恒,施工过程混凝土收缩徐变的试验研究,广西大学学报(自然科学版),2005.9,30(3):193~196
    [58]张智博,张君,混凝土收缩与环境湿度的关系研究,建筑材料学报,2006.12,9(6):720~723
    [59]陈萌,刘立新,彭少民,商品混凝土收缩变形的试验,工业建筑,2007,37(6):70~72
    [60] MA Bao-guo, WEN Xiao-dong, WANG Ming-yuan, YAN Jia-jia, Gao Xiao-jian,Drying Shrinkage of Cement-Based Materials Under Conditions of ConstantTemperature and Varying Humidity, Journal of China University of Mining&Technology,2007.9,17(3):0428~0431
    [61]张运涛,非标准条件下混凝土收缩徐变试验研究,安徽建筑工业学院学报(自然科学版),2009.10,17(5):9~11
    [62]潘钻峰,吕志涛,孟少平,配筋对高强混凝土收缩徐变影响的试验研究,土木工程学报,2009.2,42(2):11~16
    [63]曹伟,慕儒,刘宝玉,环境温、湿度对混凝土收缩测试结果的影响,鲁东大学学报(自然科学版),2011,27(4):376~379
    [64]Kenji Sakata,A study on moisture diffusion in drying and dryingshrinkage of concrete,Cement and Concrete Research,1983,13:216~224
    [65]Dragomir Penev and Mitsunori Kawamura, Moisture diffusion insoil-cement mixture and compacted lean concrete, Cement and ConcreteResearch,1991,21:137~146
    [66]H. Akita, T. Fujiwara, Y. Ozaka, A practical procedure for theanalysis of moisture transfer within concrete, Magazine of ConcreteResearch,1997.6,49(179):129~137
    [67]Jin-Keun Kim, Chil-Sung Lee, Moisture diffusion of concreteconsidering self-desiccation at early ages, Cement and Concrete Research,1999,29:1921~1927
    [68]C. Andrade, J. Sarría, C. Alonso, Relative humidity in the interiorof concrete exposed to natural and artificial weathering, Cement andConcrete Research,1999,29:1249~1259
    [69]T. Ayano, F. H. Wittmann, Drying, moisture distribution, andshrinkage of cement-based materials, Materials and Structures,2002.4,35:134~140
    [70]黄达海,刘光廷,混凝土等温传湿过程的试验研究,水利学报,2002.6,(6):96~100
    [71]于韵,蒋正武,不同养护条件下混凝土早期内部相对湿度变化的研究(一),建材技术与应用,2003,(5):3~4
    [72]于韵,蒋正武,不同养护条件下混凝土早期内部相对湿度变化的研究(二),建材技术与应用,2003,(6):6~7
    [73]蒋正武,王培铭,等温干燥条件下混凝土内部相对湿度的分布,武汉理工大学学报,2003.7,25(7):19~21
    [74]Roger P. West, Niall Holmes, Predicting moisture movement during thedrying of concrete floors using finite elements, Construction andBuilding Materials,2005,19:674~681
    [75]侯景鹏,钢筋混凝土早龄期约束收缩性能研究,博士学位论文,同济大学,2006
    [76]Tetsuya Ishida, Koichi Maekawa, Toshiharu Kishi, Enhanced modelingof moisture equilibrium and transport in cementitious materials underarbitrary temperature and relative humidity history, Cement and ConcreteResearch,2007,37:565~578
    [77]晁鹏飞,郑建岚,王雪芳,高性能混凝土水分扩散数值解法,福州大学学报(自然科学版),2007.12,35(6):899~903
    [78]黄瑜,祁锟,张君,早龄期混凝土内部湿度发展特征,清华大学学报(自然科学版),2007,47(3):309~312
    [79]张君,侯东伟,基于内部湿度试验的早龄期混凝土水分扩散系数求解,清华大学学报(自然科学版),2008,48(12):2033~2035
    [80]M.I. Nizovtsev, S.V. Stankus, A.N. Sterlyagov, V.I. Terekhov, R.A.Khairulin, Determination of moisture diffusivity in porous materialsusing gamma-method, International Journal of Heat and Mass Transfer,2008,51:4161~4167
    [81]R. Abbasnia, M. Kanzadi, M. Shekarchi Zadeh, J. Ahmad,Prediction ofFree Shrinkage Strain Related to Internal Moisture Loss,InternationalJournal of Civil Engineerng, June2009,7(2):92~98
    [82]高小建,阐雪峰,杨英姿,单面干燥条件下混凝土的收缩变形分布特征,硅酸盐学报,2009.1,37(1):87~91
    [83]陈德鹏,钱春香,考虑Knudsen扩散影响的水泥基材料湿扩散系数,建筑材料学报,2009.12,12(6):635~638
    [84]彭智,金南国,金贤玉,混凝土水分扩散表面因子理论模型与验证,中国科技论文在线,2009,11:1~9
    [85]Jun Zhang,Kun Qi,and Yu Huang, Calculation of Moisture Distributionin Early-age Concrete, Journal of Engineering Mechanics, August2009,135(8):871~880
    [86]张鹏,赵铁军,基于反向分析计算水泥基体的湿扩散系数,水利学报,2010.1,41(1):55~60
    [87]王同生,混凝土结构的干缩应力,土木工程学报,1985.2,18(1):87~95
    [88]欧阳华江,邹瑞锋,混凝土构件长期干缩应力的计算,计算结构力学及其应用,1989.2,6(1):200~206
    [89]牛焱洲,涂传林,混凝土浇筑块的湿度场与干缩应力,永力麦电学报,1991,(2):87~95
    [90]袁迎曙,钢筋混凝土结构局部补强的收缩应力分析,土木工程学报,1996.2,29(1):33~40
    [91]M. Asad, M. H. Baluch, A. H. Al-Gadhib, Drying shrinkage stresses inconcrete patch repair system, Magazine of Concrete Research,1997,49(181):283~293
    [92]M.K. Rahman, M.H. Baluch, A.H. Al-Gadhib, Simulation of shrinkagedistress and creep relief in concrete repair, Composites: Part Bengineering,2000,31:541-553
    [93]W. Jasin Weiss, Wei Yang, P. Shah, Shrinkage cracking of restrainedconcrete slabs, Journal of Engineering Mechanics.1998,124(7):765~774
    [94] M. Aurich, A. Campos Filho, T. N. Bittencourt, S. P. Shan, Finiteelement modeling of concrete behavior at early age, IBRACON Structuresand Materials Journal, March2009,2(1):37~58
    [95]Y. Yuan, Z.L. Wan, Prediction of cracking within early-age concretedue to thermal drying and creep behavior, Cement and Concrete Research,2002,32:1053~1059
    [96]Zachary C. Grasley, David A. Lange, Matthew D. D’Ambrosia, Internalrelative humidity and drying stress gradients in concrete, Materials andStructures,2006,39:901~909
    [97]C. de Sa, F. Benboudjema, M. Thiery, J. Sicard, Analysis ofmicrocracking induced by differential drying shrinkage, Cement&ConcreteComposites,2008,30:947~956
    [98]梅明荣,葛世平,陈军等,混凝土结构收缩应力问题研究,河海大学学报,2002.1,30(1):73~78
    [99]How-Ji Chen, Hsien-Sheng Peng, Yi-Feng Chen, Numerical analysis ofshrinkage stress in a mass concrete, Journal of the Chinese Institute ofEngineers,2004,27(3):357~365
    [100]Han-Soo Kim, Suk-Hee Cho, Shrinkage stress analysis of concrete slabin multistorey building considering variation of restraint and stressrelaxation due to creep, The Structural Design of Tall and SpecialBuildings,2005,14(1):47~58
    [101]Han-Soo Kim, Hyung-Joon Ahn, Srinkage stress analysis of concreteslabs in a multi-storey building considering internal and externalrestrains, The Structural Design of Tall and Special Buildings,2009,18:525~537
    [102]王瑞骏,李九红,王党在等,堆石坝混凝土面板湿度场及干缩应力研,水力发电学报,2004.,12,23(6):50~54
    [103]王瑞骏,李章浩,陈尧隆,混凝土面板干缩应力计算的接触面模型研究,西北农林科技大学学报(自然科学版),2005.9,33(9):141~145
    [104]吕艳梅,刘立新,徐有邻,商品混凝土收缩应力试验研究,东南大学学报(自然科学版),2005.7,第35卷增刊(I):143~148
    [105]陈萌,张兴昌,商品混凝土干燥收缩应力的分析及计算,四川建筑科学研究,2008.8,34(4):189~192
    [106]Hyo-Gyoung Kwak, Soo-Jun Ha, Jin-Keun Kim, Non-structural crackingin RC walls Part I. Finite element formulation, Cement and ConcreteResearch,2006,36:749~760
    [107]Hyo-Gyoung Kwak, Soo-Jun Ha, Jin-Keun Kim, Non-structural crackingin RC walls: Part II. Quantitative prediction model, Cement and ConcreteResearch,2006,36:761~775
    [108]朱岳明,肖志乔,吴健等,水工薄壁结构混凝土中的干缩应力,红水河,2004,23(1):31~34
    [109]梁建文,刘有志,张国新等,水工薄壁混凝土结构湿度及干缩应力非线性有限元分析,2007,(8):38~41
    [110]马跃先,陈晓光,水工混凝土的湿度场及干缩应力研究,水力发电学报,2008.6,27(3):38~42
    [111]朱岳明,刘有志,曹为民等,混凝土湿度和干缩变形及应力特性的细观模型分析,水利学报,2006.10,37(10):1163~1168
    [112]刘有志,张国新,朱岳明,基于细观损伤模型的混凝土湿度及干缩特性研究,工程力学,2008.7,25(7):196~200
    [113]Mehran Khoshbakht, Mark W. Lin, Justin B. Bermanb, Analysis ofmoisture-induced stresses in an FRP composites reinforced masonrystructure, Finite Elements in Analysis and Design,2006,42:414~429
    [114]Mehran Khoshbakht, MarkW.Lin, A finite element model forhygro-thermo-mechanical analysis of masonry walls with FRP reinforcement,Finite Elements in Analysis and Design2010,46:783~791
    [115]Dong Chen, Sankaran Mahadevan, Cracking Analysis of Plain Concreteunder Coupled Heat Transfer and Moisture Transport Processes, Journal ofStructural Engineering–ASCE, March2007,133(3):400~410
    [116]黄海东,向中富,郑皆连,PC箱梁桥非均匀收缩变形分析,土木建筑与环境工程,2009.8,31(4):60~65
    [117]Andrés E. Idiart, Carlos M. Lo′pez, Ignacio Carol, Modeling of dryingshrinkage of concrete specimens at the meso-level, Materials andStructures,2011,44:415~435
    [118]周美茹,朱晓丽,矿渣微粉和粉煤灰复合配置混凝土的研究与应用,混凝土,2005.1,195:90-92
    [119]韩建国,徐嘉,阎培渝,水胶比和粉煤灰掺量对粉煤灰活性因子的影响[J],混凝土,2009.5,235:8~10
    [120]卫蕊艳,矿渣粉对混凝土力学性能及工作性能的影响,水泥工程,2005,(2):35~38.
    [121]Ba nt Z. P., Najjar L. J., Nonlinear water diffusion in nonsaturatedconcrete, Materials and Structures,1972,5(25):3~20
    [122]张佚伦,聚丙烯纤维混凝土早期收缩与抗裂性能试验研究,硕士学位论文,浙江大学,2003
    [123]Kejin Wang, Surendra P.Shah and Pariya Phuaksuk, Plastic shrinkageCracking in Concrete Materials-Influence of Fly Ash and Fibers, ACIMaterials Journal,2001,98(6):455~464
    [124]周履,陈永春,收缩徐变.北京:中国铁道出版社,1994
    [125]ACI Committee209, Prediction of Creep, Shrinkage and TemperatureEffects in Concrete Structures (ACI209R-92), Farmington Hills, Mich.,1992
    [126]Bazant Z. P., Baweja S., Creep and Shrinkage Prediction Model forAnalysis and Design of Concrete Structures-Model B3, Materials andStructures,1995,28:357~365
    [127]Gardner N. J., Lockman M. J., Design Provisions for Drying Shrinkageand Creep of Normal-Strength Concrete, ACI Materials Journal,2001,98(2):159~167
    [128]Kenji Sakata, Takumi Shimomura, Recent Progress in Research on andCode Evaluation of Concrete Creep and Shrinkage in Japan, Journal ofAdvanced Concrete Technology,2004,2(2):133~140
    [130]龚洛书、惠满印、杨蓓等,混凝土收缩与徐变实用数学表达式的试验研究,建筑科学,1987,(3):14~22
    [131]王铁梦,工程结构裂缝控制,北京:中国建筑工业出版社,1997:20~25
    [132]Bazant Z P, Panula L, Pratical prediction of time-dependentdeformations of concrete-Part1: Shrinkage, Materials and Structures,1978,11(5):307~316
    [133]Bazant Z P, Baweja S, Justification and refinements of model B3forconcrete creep and shrinkage1. Statistics and sensitivity, Materials andStructures,1995,28(7):415~430
    [134]Al-Manaseer Akthem, Lam Jian-Ping, Statistical evaluation ofshrinkage and creep models, ACI Materials Journal,2005,102(3):170~176
    [135]Goel Rajeev, Kumar Ram, Paul D K. Comparative study of various creepand shrinkage prediction models for concrete, Journal of Materials inCivil Engineering,2007,19(3):249~260
    [136]L. Granger,J.-M Torrenti,P.Acker, Thoughts about drying shrinkage:scale effects and modeling, Materials and Structures,1997,30:96~105
    [137]王建,戴会超,顾冲时,混凝土湿度运移数值计算综述,水力发电学报,2005,24(2):85~89
    [138]Penev D., Kawamura M, Moisture diffusion in soil-cement mixtures andcompacted lean concrete, Cement and Concrete Research,1991.21:137~146
    [139]Jean Michel Torrenti, Laurent Granger, Maurice Diruy, PierrickGenin, Modeling concrete shrinkage under variable ambient conditions,ACI Materials Journal,1999,96(1):35~39
    [140]朱伯芳,大体积混凝土温度应力与温度控制,北京:中国电力出版社,1999
    [141]王润富,陈国荣,温度场和温度应力,北京:科学出版社,2005
    [142]王勖成,有限单元法,北京:清华大学出版社,2003
    [143]Baroghel-Bouny V., Mainguy M., Lassabatere T., Coussy O.,Characterization and identification of equilibrium and transfer moistureproperties for ordinary and high-performance cementitious materials,Cement and Concrete Research,1999,29:1225~1238.
    [144]侯景鹏,袁勇,干燥收缩混凝土内部相对湿度变化实验研究,新型建筑材料,2009,5:1~4
    [145]李春明,优化方法,南京:东南大学出版社,2009
    [146]龚灵力,自密实混凝土性能及混凝土多场耦合时变性分析研究,博士学位论文,浙江大学,2010:185
    [147]Xu Pu, Zhu Yue-ming, Ben Neng-hui, Analysis of non-structural cracksat early ages by coupled heat and humidity transmission model in theconcrete, J. Xi’an Univ. of Arch.&Tech.(Natural Science Edition),2009.41(2):193~200
    [148]盛和太,喻海良,范训益,ANSYS有限元原理与工程应用实例大全,北京:清华大学出版社,2006
    [149]李围,ANSYS土木工程应用实例,北京:中国水利水电出版社,2007

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700