用户名: 密码: 验证码:
ISG柴电混合动力汽车多能源管理策略研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
与传统汽车相比,混合电动汽车具有较高的系统效率,更强的续航能力以及优良的燃油经济性,是新一代汽车动力系统的重点研究对象。本文研究的单轴并联式系统(ISG,Integrated Starter/Generator)是在发动机和飞轮之间增加薄型永磁同步电机;采用高功率镍氢蓄电池作为辅助能量源;通过高效智能的控制策略实现发动机自动起停、加速助力、制动回馈等多项功能。该系统结构紧凑、集成度高、适应性强,是目前最具有产业化前景的大功率城市公交车用混合动力类型。
     本文在研究ISG混合动力系统结构和性能的同时主要对混合动力汽车核心控制策略多能源管理策略进行了比较深入的探索,包括如下的研究重点:
     1)首先对国内外混合动力汽车的发展现状,特别是多能源管理策略所采取的控制方法进行调研,比较了各种方法的优缺点,吸收有益的经验为制订适合本系统的管理策略提供依据。
     2)分析了ISG混合动力系统的结构、运行模式和功能。采用分层控制的思想的设计ISG混合动力控制系统,开发出与国际标准兼容的整车CAN通讯协议,提出以MC68376为核心的硬件设计方案。
     3)采用汽车电子标准“v”开发流程,在Matlab/Simulink环境下建立ISG混合动力整车的前向式仿真平台和基本多能源控制策略;并采取多种道路工况对系统效率和蓄电池SOC平衡的影响进行关联分析,为制定合理的多能源管理策略提供了依据。
     4)采用多模变结构控制理论和优化模糊算法设计功能完善,具有较快计算速度和较高鲁棒性的多能源管理策略。包括设计具有无扰动切换的运行模式调度机、智能的自动起停策略和自适应起动发动机策略等辅助策略;以及采取整车需求扭矩、蓄电池SOC和发动机转速等三参数的主控扭矩分配策略;并通过仿真平台对多能源管理策略进行优化和验证。
     5)根据国标设计台架试验和道路试验来测试零部件以及ISG混合动力整车的实际性能。台架试验包括ISG电机特性试验、ISG混合动力总成外特性试验、混合动力功能试验等;道路试验包括动力性试验和经济性试验。试验表明,ISG电机最大扭矩为350N.m,基本满足设计要求;ISG总成最大外特性与原车装备的6缸机相当,而低转速阶段最大扭矩比4缸发动机提高27%。ISG样车0-50km/h的加速时间比原车缩短9.5%,0-80km/h的加速时间与原车相同,具有更好的起步加速特性。在满足蓄电池的SOC平衡的条件下道路试验表明ISG样车比原车油耗下降25%,节油效果处于国内领先水平。
The Hybrid Electric Vehicle (HEV) which combines the internalcombustion engine, electric motor and Nickel-metal hydride battery(NiMH)can achieve higher fuel economy and the same range compared with thetraditional internal combustion engine is the most promising next generationvehicle type.
     The energy management control strategy is this thesis is based on thecity bus assembled with Integrated Stater/Generator (ISG) parallel dieselhybrid power-train which inserts a thin permanent magnetic motor betweenthe diesel engine and the flywheel. This type of HEV is a compact, highlyintegrated hybrid assemble which can be adapted into with all kinds oftransmissions to realize the functions like auto-stop, motor assistance andregeneration.
     The energy management for HEV decides the energy distributionbetween the electric motor and the internal combustion engine is the keytechnology to achieve the fuel economy target. Because of the sophisticatedcharacteristics of the components, the energy management is a multi-purposeoptimal question. And as to the intelligent property issue, it also becomes theimportant item for the commercialization of the HEVs.
     1) Lastest development about HEVs are collected and classified toshow the trend of HEV development. And the strengths andweakness of various methods for the control strategies are compared.
     2) The construction, functions and configuration of the ISG dieselhybrid power-train are presented in this paper. The hierarchicalarchitecture of ISG hybrid control system is designed as well as theCAN protocol and the hardware for HCU (hybrid control unit) isalso developed.
     3) By adopting the standard ‘V’ Cycle process, a forward-lookingmodel is developed in the Matlab/Simulink environment. Themethod for functions like regeneration brake, SOC balance, andmotor assistance in the multi-energy management strategy arecompared by the simulation model and a complete rule-basedmulti-energy control strategy is built.
     4) The control stragegy is the key work in this thesis, including theauxiliary strategy and dominant strategy. The auxiliary strategy isused to realize the auto start-stop function and model switchingfunction. The dominant strategy is the torque distribution strategywhich is ultized by the fuzzy-optimal method to fulfill functions likeregeneration, SOC balance and motor assistance. The fuzzy-optimaltorque distribution deduces its control rules by the optimal algorithmand set various rule-base to implement different functions. Thistorque distribution method which can achieve a good trade-offbetween the conflicting dynamic and fuel-economy targets is themain innovation.
     5) The bench test and road test are conducted to validate theperformance of the ISG hybrid city bus after fine-tuning the controlstrategy using the calibration system. The ISG motor is able toproduce the maximal350N.m torque and the maximal torque of thewhole power-train is equal to the original6-cylinder engine with27%improvement in low speed range. The0-50km/h accelerationtime is9.5%less than the original bus. The fuel economy is testunder the4-speed cycle with the requirement that the SOCdifference is less than1%and the result shows that there is25%improvement compared to the original bus.
引文
[1]沈中元.中国汽车化进程和能源政策.中国能源,2004.第26卷(第6期).
    [2]张于心,申金生.我国清洁能源汽车发展战屡的探讨.北方交通大学学报,2001.第25卷(第2期).
    [3] CHAN, C.C. The State of the Art of Electric and Hybrid Vehicles.2002.
    [4] Chan, C.C. and Y.S. Wong. The state of the art of electric vehicles technology.2004.
    [5] Chan, C.C. and Y.S. Wong. Electric vehicles charge forward. Power and EnergyMagazine, IEEE,2004.2(6): p.24.
    [6] B Jeanneret, R.T., F Badin. F Harel, New Hybrid concept simulation tools evaluation onthe Toyota Prius Car. The16th International Electric Vehicle Symposium, Oct13-16,1999.
    [7] ZEALAND, T.N.. Toyota Hybrid System Operation,.
    [8] www.toyota.com. TOYOTA HYBRID SYSTEM.2003.
    [9] Ulrcih, L.. The New Green Machines--The next generation of eco-friendly hybrids isaround the corner-adn beading for mainstream. Wheels, July,2003.
    [10] Sheldon S. Williamson, A.E.. Comparative Assessment of Hybrid Electric and Fuel CellVehicles Based on Comprehensive Well-to-Wheels Efficiency Analysis. IEEETRANSACTIONS ON VEHICULAR TECHNOLOGY, MAY2005. VOL.54, NO.3.
    [11] Williamson, S.S. and A. Emadi. Comparative assessment of hybrid electric and fuel cellvehicles based on comprehensive well-to-wheels efficiency analysis. IEEE Transactionson Vehicular Technology,2005.54(3): p.856-862.
    [12]东风电动车股份有限公司.电动汽车原理. www.dfev.com.
    [13] Davis, R.I. and R.D. Lorenz. Engine torque ripple cancellation with an integrated starteralternator in a hybrid electric vehicle: Implementation and control. IEEE Transactionson Industry Applications,2003.39(6): p.1765.
    [14] Wehrey, J.F.N.N.J.P.J.S.M. Field Operations Program Toyota Prius Hybrid ElectricVehicle Performance Characterization Report.
    [15] S.Sasaki, Toyota’s Newly Developed Hybrid Powertrain.
    [16] Michael Duoba, H.N.a.T.L.. Characterization and Comparison of Two HEVs–HondaInsight and Toyota Prius.
    [17] Kazuaki Shingo, K.K., Toshiaki Katsu, Yuji Hata, Development of Electric Motors forthe Toyota Hybrid Vehicle “Prius”.
    [18] Duoba, M.. Operation Characteristics of the First Mass-Produced HEV–The ToyotaPrius. May26-27,1999.
    [19]钟虎,杨林,张毅等.混合动力无级变速运行模式研究.汽车工程,2005,8.27卷4期.
    [20] Eriksson, S.S., C. A four-quadrant HEV drive system. Vehicular Technology Conference,2002. Proceedings. VTC,2002.
    [21] Ping Zheng, P.T.. Anyuan Chen, Erik Nordlund, Measurements and Calculations ofInductances of a4QT Hybrid Electric Vehicle Prototype Machine. Proceedings of theIEEE Vehicular Power and Propulsion Symposium, VPP,2004.
    [22] Baumann, B.M., et al.. Mechatronic design and control of hybrid electric vehicles.Mechatronics, IEEE/ASME Transactions on,2000.5(1): p.58.
    [23] Wipke, K.B., M.R. Cuddy, and S.D. Burch. ADVISOR2.1: A user-friendly advancedpowertrain simulation using a combined backward/forward approach. IEEETransactions on Vehicular Technology,1999.48(6): p.1751.
    [24] Markel, T., et al.. ADVISOR: A systems analysis tool for advanced vehicle modeling.Journal of Power Sources,2002.110(2): p.255.
    [25] Advisor Documents.2002.
    [26]罗玉涛,黄向东等.联式混合动力驱动系统的模糊控制与仿真.华南理工大学学报(自然科学版),2003. Vol.31No.8.
    [27]殷承良,浦金欢,张建武.并联混合动力汽车的模糊转矩控制策略上海交通大学学报
    [28]陈全世,彭.涛等.并联混合动力电动汽车的模糊能量管理策略.中国机械工程,2003.2003Vol.14No.9.
    [29] Farrall, S.D. and R.P. Jones. Energy management in an automotive electric/heat enginehybrid powertrain using fuzzy decision making.1993.
    [30] Langari, R. and J.-S. Won. Intelligent Energy Management for Hybrid Vehicles viaDrive Cycle Pattern Analysis and Fuzzy Logic Torque Distribution.2003. Houston, TX,United States: Institute of Electrical and Electronics Engineers Inc.
    [31] Quigley, C.P., et al. Predicting journey parameters for the intelligent control of a hybridelectric vehicle.1996. Dearborn, MI, USA: IEEE, Piscataway, NJ, USA.
    [32] Salman, M., N.J. Schouten, and N.A. Kheir. Control strategies for parallel hybridvehicles.2000. Chicago, IL, USA: Institute of Electrical and Electronics Engineers Inc.,Piscataway, NJ, USA.
    [33] Syed, F.U., et al. Fuzzy control to improve high-voltage battery power and engine speedcontrol in a hybrid electric vehicle.2005. Detroit, MI, United States: Institute ofElectrical and Electronics Engineers Inc., Piscataway, NJ08855-1331, United States.
    [34] Wang, J.-S., C.S.G. Lee, and J. Yuh. Self-adaptive neuro-fuzzy systems with fastparameter learning for autonomous underwater vehicle control.2000. San Francisco,CA, USA: Institute of Electrical and Electronics Engineers Inc., Piscataway, NJ, USA.
    [35] Won, J.-S. and R. Langari. Fuzzy Torque Distribution Control for a Parallel HybridElectric Vehicle.2002. New York, NY, United States: American Society of MechanicalEngineers, New York, NY10016-5990, United States.
    [36] Tzeng, S.-C., K.D. Huang, and C.-C. Chen. Optimization of the dual energy-integrationmechanism in a parallel-type hybrid vehicle. Applied Energy,2005.80(3): p.225-245.
    [37] Schouten, N.J., M.A. Salman, and N.A. Kheir. Energy management strategies forparallel hybrid vehicles using fuzzy logic. Control Engineering Practice,2003.11(2): p.171-177.
    [38] Won, J.-S. and R. Langari. Fuzzy torque distribution control for a parallel hybrid vehicle.Expert Systems,2002.19(1): p.4-10.
    [39] Ippolito, L., V. Loia, and P. Siano. Extended fuzzy C-means and genetic algorithms tooptimize power flow management in hybrid electric vehicles. Fuzzy Optimization andDecision Making,2003.2(4): p.359.
    [40] Pusca, R., et al.. Fuzzy-logic-based control applied to a hybrid electric vehicle with fourseparate wheel drives. IEE Proceedings: Control Theory and Applications,2004.151(1):p.73.
    [41] Passino, K.M. and U. Ozguner. Intelligent control at the OSU control research lab. IEEEExpert,1996.11(4): p.82-83.
    [42] Schouten, N.J., M.A. Salman, and N.A. Kheir. Fuzzy logic control for parallel hybridvehicles. IEEE Transactions on Control Systems Technology,2002.10(3): p.460-468.
    [43] Neacsu, D.O. and K. Rajashekara. Comparative analysis of torque-controlled IM driveswith applications in electric and hybrid vehicles. IEEE Transactions on PowerElectronics,2001.16(2): p.240-247.
    [44] Miller, J.M., A.R. Gale, and V.A. Sankaran, Electric drive subsystem for a low-storagerequirement hybrid electric vehicle. IEEE Transactions on Vehicular Technology,1999.48(6): p.1788.
    [45] Hyeoun-Dong, L. and S. Seung-Ki. Fuzzy-logic-based torque control strategy forparallel-type hybrid electric vehicle. Industrial Electronics, IEEE Transactions on,1998.45(4): p.625.
    [46] Hyeoun-Dong, L., et al.. Torque control strategy for a parallel-hybrid vehicle usingfuzzy logic. Industry Applications Magazine, IEEE,2000.6(6): p.33.
    [47] Electric and Hybrid Vehicle Technology.1992. Detroit, MI, USA: Publ by SAE,Warrendale, PA, USA.
    [48] PU;, J.-H., C.-L. YIN;, and J.-W. ZHANG. FUZZY TORQUE CONTROL STRATEGYFOR PARALLEL HYBRID ELECTRIC VEHICLES. International Journal ofAutomotive Technology,2005.6: p.592-536.
    [49] Sepe Jr, R.B. and J.M. Miller. Real-time collaborative experimentation via the internet:Fuzzy efficiency optimization of a hybrid electric vehicle starter/alternator. InternationalJournal of Vehicle Autonomous Systems,2002.1(1): p.63-82.
    [50] Zadeh, A.G., A. Fahim, and M. El-Gindy. Neural network and fuzzy logic applications tovehicle systems: Literature survey. International Journal of Vehicle Design,1997.18(2):p.132-193.
    [51] Piccolo, A., A. Vaccaro, and D. Villacci. Fuzzy logic based optimal power flowmanagement in parallel hybrid electric vehicles. Iranian Journal of Electrical andComputer Engineering,2005.4(2): p.83.
    [52] Peng, D., C.-L. Yin, and J.-W. Zhang. Investigation into regenerative braking controlstrategy for hybrid electric vehicle. Journal of Shanghai Jiaotong University (Science),2005.10E(4): p.407-412.
    [53] YIN, C.-L., Pu Jin-huan, Zhang Jian-wu. The Fuzzy Torque Control Strategy for ParallelHybrid Electric Vehicles. Journal of Shanghai Jiaotong University (Science),2006.40: p.157-162.
    [54] Kheir, N.A., M.A. Salman, and N.J. Schouten. Emissions and fuel economy trade-off forhybrid vehicles using fuzzy logic. Mathematics and Computers in Simulation,2004.66(2-3): p.155.
    [55] Quigley, C.P., R.J. Ball, and R.P. Jones. Fuzzy modelling approach to the prediction ofjourney parameters for hybrid electric vehicle control. Proceedings of the Institution ofMechanical Engineers, Part D: Journal of Automobile Engineering,2000.214(8): p.875-885.
    [56] Jong-Seob, W. and R. Langari. Intelligent energy management agent for a parallelhybrid vehicle-part II: torque distribution, charge sustenance strategies, and performanceresults. Vehicular Technology, IEEE Transactions on,2005.54(3): p.935-953.
    [57] Langari, R. and W. Jong-Seob. Intelligent energy management agent for a parallelhybrid vehicle-part I: system architecture and design of the driving situationidentification process. Vehicular Technology, IEEE Transactions on,2005.54(3): p.925-934.
    [58] Berenji, H.R. and E.H. Ruspini. Experiments in multiobjective fuzzy control of hybridautomotive engines.1996.
    [59] Mohammadian, M. and M.T. Bathaee. Motion control for hybrid electric vehicle.2004.Xi'an, China: Xi'an Jiaotong University Press, Xian, Shaanxi,710049, China.
    [60] Mohammadian, M., S.M.T. Bathaee, and S.M.M. Ansarey M. Neuro-genetic energymanagement for hybrid fuel cell power train.2004. Singapore: Institute of Electrical andElectronics Engineers Inc., New York, NY10016-5997, United States.
    [61] Lin, C.-C., et al. Power management strategy for a parallel hybrid electric truck. IEEETransactions on Control Systems Technology,2003.11(6): p.839-849.
    [62] Lin, C.-C., et al. Integrated dynamic simulation model with supervisory control strategyfor a pem fuel cell hybrid vehicle.2004. Anaheim, CA, United States: American Societyof Mechanical Engineers, New York, NY10016-5990, United States.
    [63] Chan-Chiao, L., et al. System-Level Model and Stochastic Optimal Control for a PEMFuel Cell Hybrid Vehicle.2006, ASME. p.878-890.
    [64] Lin, C.-C., et al. Driving pattern recognition for control of hybrid electric trucks. VehicleSystem Dynamics,2004.42(1-2): p.41-58.
    [65] Lin, C.-C., et al. System-level model and stochastic optimal control for a PEM fuel cellhybrid vehicle. Journal of Dynamic Systems, Measurement and Control, Transactions ofthe ASME,2006.128(4): p.878-890.
    [66] Lin, C.-C., H. Peng, and J.W. Grizzle. A stochastic control strategy for hybrid electricvehicles.2004. Boston, MA, United States: Institute of Electrical and ElectronicsEngineers Inc., Piscataway, NJ08855-1331, United States.
    [67] Schell, A., et al. Modelling and control strategy development for fuel cell electricvehicles. Annual Reviews in Control,2005.29(1): p.159-168.
    [68] Johnson, V.H., K.B. Wipke, and D.J. Rausen. Hev Control Strategy for Real-TimeOptimization of Fuel Economy and Emissions. SAE,2000.
    [69] Won, J.-S. and R. Langari. Intelligent energy management agent for a parallel hybridvehicle-Part II: Torque distribution, charge sustenance strategies, and performanceresults. IEEE Transactions on Vehicular Technology,2005.54(3): p.935.
    [70] Won, J.-S. and R. Langari. Intelligent Energy Management Agent for a Parallel HybridVehicle.2003. Denver, CO, United States: Institute of Electrical and ElectronicsEngineers Inc.
    [71] Sepe, R.B., Jr., J.M. Miller, and A.R. Gale. Intelligent efficiency mapping of a hybridelectric vehicle starter/alternator using fuzzy logic.1999.
    [72] Langari, R. and J.-S. Won. Intelligent energy management agent for a parallel hybridvehicle-Part I: System architecture and design of the driving situation identificationprocess. IEEE Transactions on Vehicular Technology,2005.54(3): p.925.
    [73] Langari, R. and J.-S. Won. Integrated drive cycle analysis for fuzzy logic based energymanagement in hybrid vehicles.2003. St. Louis, MO, United States: Institute ofElectrical and Electronics Engineers Inc.
    [74] Jong-Seon, W. and R. Langari. Intelligent energy management agent for a parallelhybrid vehicle.2003.
    [75] Jones, R.P., A.S. Cherry, and S.D. Farrall. Application of intelligent control inautomotive vehicles.1994.
    [76] Langari, R. and W. Jong-Seob. Integrated drive cycle analysis for fuzzy logic basedenergy management in hybrid vehicles.2003.
    [77]张金柱.永磁同步电机在混合动力汽车上的应用.上海汽车,2005(第六期): p.32~34.
    [78]徐顺余,高海鸥,邱国茂等.混合动力汽车车用镍氢动力蓄电池.上海汽车,2006.第8卷(第8期).
    [79]邵海岳,钟志华,何莉萍等.电动汽车用NiMH蓄电池建模及基于状态空间的SOC预测方法.汽车工程,2004.第26卷(第5期).
    [80]胡明辉,秦大同,舒红等.混合动力汽车蓄电池管理系统SOC的评价.重庆大学学报:自然科学版,2003.第26卷(第4期).
    [81]范美强,廖维林,吴伯荣等.电动车用MH-Ni蓄电池温度特性研究.蓄电池工业,2004.第9卷(第6期): p.287~290.
    [82]邵桂欣,张承宇,李红林等.电动车用镍氢蓄电池特性和工矿试验分析.蓄电池工业,2006.第11卷(第1期): p.28~32.
    [83]陈实,郑秋闿,王芳等.快充对高功率镍氢蓄电池充电效率的影响研究.北京工商大学学报(自然科学版),2006.第24卷(第6期): p.5~8.
    [84]孙逢春,何洪文,陈勇等.镍氢蓄电池充放电特性研究.汽车技术,2001(第6期): p.6~8.
    [85]何小明,杨林,张毅等.电动汽车用镍氢蓄电池组热量仿真与控制.汽车技术,2004(第6期).
    [86]田锐,秦大同,胡明辉.蓄电池均衡控制策略研究重庆大学学报(自然科学版).
    [87]刘永木,李望生,李洪泽. SAE J1939标准下的汽车CAN通讯报文/帧格式.长春工业大学学报:自然科学版,2003.第24卷(第1期).
    [88]邬宽明. CAN总线原理和应用系统设计.北京航空航天大学出版社,1996.
    [89]唐航波,龚元明,谭文春等.柴油机高压共轨ECU硬件在环仿真系统硬件设计.车用发动机,2005(第1期).
    [90] Yu Shitao, Yang Shiwei, Yang Lin, et al. MODEL-BASED DEVELOPMENT OFREAL-TIME SOFTWARE SYSTEM FOR ELECTRONIC UNIT PUMP SYSTEM.Chinese Journal of Mechanical Engineering (English Edition),2007.20(1).
    [91] Success Story: PSAT Accurately Simulates Advanced Vehicles. The Argonne NationalLaboratory2004.
    [92] Valerie H. Johnson, K.B.W.a.D.J.R.. HEV Control Strategy for Real-Time Optimizationof Fuel Economy and Emissions.2002.
    [93]周保龙.内燃机学.机械工业出版社,2005.
    [94]杨世铭,陶文铨.传热学.高等教育出版社,2004.
    [95]顾传保,李心桂.对流换热.高等教育出版社.
    [96]余其铮,辐射换热原理.高等教育出版社,1990.
    [97] Butler, K.L., M. Ehsani, and P. Kamath. A Matlab-based modeling and simulationpackage for electric and hybrid electric vehicle design. Vehicular Technology, IEEETransactions on,1999.48(6): p.1770-1778.
    [98] Butler, K.L., K.M. Stevens, and M. Ehsani. Versatile computer simulation tool fordesign and analysis of electric and hybrid drive trains. SAE Special Publications,1997.1243: p.19-25.
    [99] Powell, B.K., K.E. Bailey, and S.R. Cikanek. Dynamic modeling and control of hybridelectric vehicle powertrain systems. IEEE Control Systems Magazine,1998.18(5): p.17.
    [100] Bailey, K.E. and B.K. Powell. A hybrid electric vehicle powertrain dynamic model.1995.
    [101]王保华,范文亭,罗永革.城市客车自动离合器接合规律仿真及应用.湖北汽车工业学院学报,2005.第19卷(第3期).
    [102]李骏.汽车离合器起步结合过程的仿真研究.华东交通大学学报,2003.第20卷(第5期).
    [103] Kessels., J.T.B.A., Energy Management for Automotive Energy Power Nets. PhD thesis,Department of Electrical Engineering, Technische Universiteit Eindhoven, TheNetherlands,2007.
    [104]轻型混合动力电动汽车能量消耗量试验方法.中华人民共和国国家标准GB/T19753-2005,2005-10-01.
    [105]混合动力电动汽车动力性能试验方法.中华人民共和国国家标准GB/T19752-2005,2005-10-01.
    [106]轻型混合动力电动汽车污染物排放测量方法.中华人民共和国国家标准GB/T19755-2005,2005-10-01.
    [107]王丰尧.滑模变结构控制,机械工业出版社,1995.
    [108]吴了泥.基于Stateflow技术多模态飞行控制律仿真.杭州电子科技大学学报,2005.第27卷(第4期): p.434~437.
    [109] Stateflow User's Guide.
    [110]王莎莎,孙继根.,李琳琳.故障决策树模型在诊断专家系统中的应用.计算机应用,2005.第25卷(第12期): p.293~294.
    [111]史慧,王伟,高戈.智能故障诊断专家系统开发平台.航天测控,2005.
    [112]刘文霞,孙凤英,纪峻岭.专家系统故障诊断法及其在汽车故障诊断中应用.交通科技与经济,2001(第3期).
    [113]诸静.模糊控制理论与系统研究.机械工业出版社,2005.
    [114]陈水利,李敬功,王向公.模糊集理论及其应用.科学技术出版社,2005.9.
    [115]李鸿吉.模糊数学基础及实用算法.科学出版社,2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700