用户名: 密码: 验证码:
高效晶硅太阳能光伏电池精密印刷系统的关键理论与技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光伏发电技术是解决全球能源危机的有效途径之一,而在众多太阳能光伏电池技术中,晶体硅太阳能光伏电池技术发展最为成熟,产业化好,是主流的发展方向。2008年金融危机之后,欧洲主权债务危机相继爆发,全球光伏产业受到了极大的影响。在这种背景下,整个光伏产业都在积极寻求一种有效降低生产成本而提高电池转换效率的方法,因此,晶硅光伏电池生产不断向薄片化、低破损率、高产量等方向发展,选择性发射极(Selective Emitter)和双次印刷(DoublePrinting)等晶硅光伏电池电极金属化新技术也相继出现,这对太阳能晶硅光伏电池电极金属化生产线上设备提出了更高的技术要求。
     在晶硅光伏电池电极金属化生产线上,全自动视觉丝网印刷系统是线上主要生产设备之一,也是执行选择性发射极和双次印刷工艺的主体,其生产效率和破损控制影响着整条生产线的产量,因此,本文将对高效晶硅太阳能光伏电池精密印刷系统的关键理论与技术进行深入地研究,特别是在基于视觉的精密定位方面做了系统的研究,主要内容如下:
     (1)针对丝网印刷的高速、高精度和少破损要求,开发出了新型精密视觉丝网印刷系统,并对整个系统进行模块化、柔性化设计;提出了一种多相机视觉精密印刷系统定位基准标定方法,快速建立了系统内各局部坐标系间的映射关系;在硅片视觉定位、检测方面,提出了基于正方形拟合的硅片视觉定位算法、基于平行线拟合的栅线检测算法以及多种逻辑组合的破损检测算法。
     (2)平面三自由度调整对位机构是精密视觉丝网印刷系统的关键机构,其定位精度直接影响丝网印刷质量,本文提出了一种适用于丝网印刷的新型平面三自由度并联对位平台(XY-Theta并联对位平台),并使用几何法和矢量解析法建立了该并联平台的两种运动学正解和逆解模型,然后,提出了一种有效的运动学精度分析方法,得到了分别由输入误差和结构参数误差引起的末端位置和姿态误差在并联平台工作空间内的分布情况,由此得到了相关的结论。
     (3)利用XY-Theta并联对位平台的结构特点,结合矢量法和解析法,提出了一种XY-Theta并联对位平台的误差建模方法,构造出末端位置和姿态误差与几何误差源之间的映射关系,得到了误差雅克比矩阵;并通过一种几何误差灵敏度分析方法,评估了各个几何误差源对末端位置误差和姿态误差的影响。
     (4)在XY-Theta并联对位平台运动学标定方面,提出了基于可移动单相机视觉测量的三角形面姿态插值标定方法和基于双相机全位姿视觉测量的分步运动学标定方法。三角形面姿态插值标定方法是一种有别于传统并联机构运动学标定的方法,避免了较为复杂的几何全参数辨识,降低了调试人员的技术要求,而且容易实现工业设备的自动标定,而分步运动学标定方法是一种分步递进的误差测量、参数辨识、误差补偿运动学标定方案,以实现更高精度的标定。
     最后,在总结全文的基础上,本文还对晶硅光伏电池的精密视觉印刷系统的研究重点和研究方向进行了展望。
The photovoltaic (PV) power generation technology is the new energy leader tosolve the global energy crisis. Various materials are applied to solar cells, but themost prevalent material for solar cells is bulk crystalline silicon in the PV market,and its product technology also is mature. After the2008global financial crisis, thesovereign debt crisis break out in European, the global PV industry has been greatlychallenged. Against this background the whole PV industry is seeking a way toreduce the cost of production and increase the efficiency of a solar cell. Therefore,the wafer tends to become thinner and thinner, ask for the lower breakage rate andthe higher throughput, and new technologies of selective emitter and double printingare applied to the metallization of crystalline silicon solar cells. These bring newchallenges to the equipments on the metallization production line.
     Fully automatic vision-based screen printing system is one of the key productionfacilities on the crystalline silicon solar cells production line, so are the mainactuators that implement the technologies of selective emitter and double printing.And its productivity and breakage affect the output of solar cells of the whole line.Therefore, key theories and technologies on the precision printing system of highefficient crystalline silicon solar cells is thoroughly investigated in this paper,especially in the field of precision positioning base on vision metrology. The maincontributors of the thesis are listed as follows:
     (1) Based on the requirement of high accuracy, high speed and low breakage rate,a novel precision vision-based screen printing system is proposed, which has amodular design and the highest flexibility. And then a positioning calibrationalgorithm applied to multi-cameras screen printing system is presented, which canquickly establish the mapping relationship of local coordinate systems. awafer-positioning method based on the square fitting and a finger-inspection methodbased on parallel lines fitting are proposed using vision metrology, and somebreakage inspection methods and its logical grouping are also introduced in thissection.
     (2) The three degree-of-freedom (3-DOF) planar alignment positioningmechanism is a key part of precision vision-based screen printing system, and itspositioning accuracy directly impacts the quality of printing. A novel3-DOF planar parallel alignment stage for screen printing, being named XY-Theta parallelalignment stage, is proposed in this paper. Its two direct and inverse kinematicmodels are obtained by a geometrical method and a vector combined with analyticmethod. An useful method is presented to analyze the kinematic accuracy ofXY-Theta parallel alignment stage, to obtain the maximum position and orientationerrors in the workspace subjected to input errors and structure parameter errors, andthen some conclusions are drawn.
     (3) Based on the characteristics of XY-Theta parallel alignment stage, animproved error modelling method is proposed using the vector method and theanalytical method. The mapping relationship between the errors of position andorientation and the errors of geometric parameters is derived, and the Jacobin errormatrix is also obtained. Then, the influences of all geometric error sources ofXY-Theta parallel alignment stage on the terminal pose errors are estimated via asensitivity analysis method.
     (4) For the calibration of XY-Theta parallel alignment stage, an orientationinterpolation method using a triangular area to position the alignment point based ona moving camera, and a step kinematic calibration method based on two cameras aredesigned. The orientation interpolation method differs from the traditional kinematiccalibration methods, and can calibrate the equipment itself automatically withoutcomplicated error modelling and identification for all geometric errors and the needfor any background in parallel robot calibration. By contrast, the step and gradualkinematic calibration including step measurement, step identification and stepcompensation can lead to a higher accuracy.
     Finally, concentration and academic future of the precision vision-based screenprinting system for crystalline silicon solar cells is speculated based on thesummarization of the whole paper.
引文
[1]戚汝庆.中国光伏产业创新系统研究[D].武汉:华中科技大学,2012.
    [2]张宁.中国光伏产业与发展战略研究[D].北京:中国政法大学,2010.
    [3]国家技术前瞻研究组.中国技术前瞻报告2004(能源、资源环境和先进制造)[R].北京:科学技术文献出版社,2004.
    [4] Martin A Green著,狄大卫等译.太阳能电池:工作原理、技术和系统应用[M].上海交通大学出版社,2010.
    [5]李晓刚,冯绍瑞.中国光伏产业发展的技术经济分析[J].工业技术经济,2007,7:120-123.
    [6]成志秀,王晓丽.太阳能光伏电池综述[J].信息记录材料,2007,8(2):41-47.
    [7]陈军.硅太阳能电池制备过程的全自动视觉检测设备关键技术研究[D].广州,华南理工大学,2008.
    [8]周传华,陈呖.太阳能电池的研究进展与应用[J].科技论坛,2008,8:47-48.
    [9]王瑶.单晶硅太阳能电池生产工艺的研究[D].长沙:湖南大学,2010.
    [10]胡培明.太阳能电池的发展与分析[D].上海:上海交通大学,2008.
    [11] Shum K L, Watanabe C. Towards a local learning(innovation) model of solarphotovoltaic deployment[J]. Energy Policy,2008,36(2):508-521.
    [12] Diehl W, Sittinger V, Szyszka B. Thin film solar cell technology inGermany[J]. Surface and Coatings Technology,2005,193(1-3):329-334.
    [13] DenisErath,Aleksander Filipovic,Marc Retzlaff,Anne Kathrin Goetz,FlorianClement, DanielBiro,RalfPreu. Advanced screen printing technique for highdefinition front side metallization of crystalline silicon solar cells. SolarEnergy Materials and Solar Cells,2010,94(1):57-61.
    [14]张世强,李万河,徐品烈.硅光伏电池的丝网印刷技术[J].电子工业专用设备,2007,5:55-59(68).
    [15] Ju M, Lee Y, Lee J, et al. Double screen printed metallization of crystallinesilicon solar cells as low as30μm metal line width for mass production[J].Solar Energy Material and Solar Cell,2012(May),100:204-208.
    [16] Pirozzi L, Arobito G, Artuso F, et al. Selective emitters in buried contactsilicon solar cells: some low-cost solutions[J]. Solar Energy Material andSolar Cell,2001,65(1-4):287-295.
    [17]贾静茹,杨丽珍,马昆.使用丝网印刷技术[M].北京:化学工业出版社,2001:30-44.
    [18] Owczarek J A, Howland F L. A study of the off-contact screen printingprocess-Part I: model of printing process and some results derived fromexperiments[J]. IEEE Transactions on Components, Hybrids, andManufacturing Technoloy,1990,13(2):358-367.
    [19]姚国晓,杰夫考特尔.金属模板印刷在光伏电池中的应用[J].上海电力,2008,3:276-281.
    [20] Ralph E L. Recent advancements in low cost solar cell processing[J].Proceedings of11thIEEE Photovoltaic Specialists Conference, Scottsdale,1975:315-316.
    [21]鲜飞.表面安装技术的新发展[J].印制电路信息,2005,1:21-23.
    [22]鲜飞. SMT设备的最新发展趋势[J].印制电路信息,2007,11:58-62.
    [23]张世强,李万河,徐品烈.硅光伏电池的丝网印刷技术[J].电子工业专用设备,2007,5:55-59(68).
    [24]孟晓华,葛劢冲.精密丝网印刷技术与设备[J].电子工业专用设备,2008,9:53-54.
    [25]鲜飞.如何获得优质的焊膏印刷[J].电子工业专用设备,2006,35(8):30-36.
    [26]顾霭云,曹白杨.表面组装技术的应用与发展(上)[J].华北航天工业学院学报,2003,13(3):1-5
    [27] Hilali M M, Gee J M., Hacke P. Bow in screen-printed back-contact industrialsilicon solar cells[J]. Solar Energy Materials and Solar Cells,2007,91(13):1228-1233.
    [28] Schneider A, Gerhards C, Huster F, Neu W, Spiegel M, Fath P, Bucher E,Young R J S, Prince A G, Raby J A, Carroll A F. Al BSF for thinscreen-printed multicrystalline Si solar cells[C]. Proceedings of17thEuropeanPhotovoltaic Solar Energy Conference, Munich, Germany,2001:1768–1771.
    [29] Schneider A, Gerhards C, Fath P, Bucher E. Bow reducing factors for thinscreen-printed mc-Si solar cells with AI BSF[C]. Proceedings of29thIEEEPhotovoltaic Specialists Conference,2002:336-339.
    [30] Huster F. Aluminum-back surface field: bow investigation and elimination[C].Proceedings of20thEuropean Photovoltaic Solar Energy Conference andExhibition, Barcelona, Spain,2005:635-638.
    [31] Shenglin Lu, Xianmin Zhang, Yongcong Kuang. An Integrated InspectionMethod based on Machine Vision for Solder Paste Depositing[C]. Proceedingsof IEEE International Conference on Control and Automation, Guangzhou,China,2007:137-141
    [32] Andrea Baccini,San Biagio di Callalta. Device to check and correct theposition of plates for electronics and related method[P]. United StatesApplication Number: US2009/0260231A1, Publication Date: Oct.22,2009.
    [33]赵玮,于靖军,毕树生,等.串并联微操作人系统的研究[J].北京航空航天大学学报,2001,27(6):623-627.
    [34] Yu A, Bonev I A, Zsombor-Murray P. New XY-Theta positioning table withpartially decoupled parallel kinematics[C]. Proceedings of IEEE InternationalSymposium on Industrial Electronics, Montreal, Quebec, Canada,2006:3108-3112.
    [35] Choi K B. Kinematic analysis and optimal design of3-PPR planar parallelmanipulator[J]. KSME international journal,2003,17(4):528-537.
    [36] Staicu S. Inverse dynamics of the3-PRR planar parallel robot[J]. Roboticsand Autonomous Sytems,2009,57(5):556-563.
    [37] Ronchi S, Company O, Pierrot F, Fournier A. PRP planar parallel mechanismin configurations improving displacement resolution[C]. Proceedings of the1stInternational Conference on Positioning Technology, Hamamatsu, Japan,2004:279-284.
    [38] Seo T W, In W, Kim J. A new planar3-DOF parallel mechanism withcontinuous360-degree rotational capability[J]. Journal of Mechanical Scienceand Technology,2009,23(11):3088-3094.
    [39] Wang J, Masory O. On the accuracy of stewart platform-Part I: the effect ofmanufacturing tolerances[C]. Proceedings of IEEE International Conferenceon Robotics and Automation, Atlanta, GA, USA,1993:114-120.
    [40] Wang S M, Ehmann K F. Error model and accuracy analysis of a six-DOFstewart platform[J]. Journal of Manufacturing Science and Engineering,2002,124:286-295.
    [41]汪劲松,白杰文,高猛,等.Stewart平台铰链间隙的精度分析[J].清华大学学报(自然科学版),2002,42(6):758-761.
    [42]洪林.并联机器人精度分析与综合研究[D].天津:天津大学,2004.
    [43] Ropponen T, Arai T. Accuracy analysis of a modified stewart platformmanipulator[C]. Proceedings of IEEE International Conference on Roboticsand Automation,1995:521-525.
    [44]李铁民,郑浩,汪劲松,段广洪.并联机床不同位形下的运动精度评价指标[J].机械工程学报,2002,38(9):101-195.
    [45] Bi S S, Zong G H, Liu R, Wang S J. Accuracy analysis of the serial-parallelmicromotion manipulator[C]. Proceedings of IEEE International Conferenceon System, Man and Cybernetics,1997:2258-2263.
    [46]祃琳,黄田.面向制造的并联机床精度设计[J].中国机械工程,1999,10(10):1114-1117.
    [47]黄田,李亚,李思维等.一种三自由度并联机构几何误差建模、灵敏度分析及装配工艺设计[J].中国科学(E辑).2002,32(5):628-635.
    [48]徐卫良,张启先.空间开链和闭链连杆机构运动误差研究的微小位移合成法[J].北京航空学院学报,1987,1:69-81.
    [49] Okafor A C, Ertekin Y M. Derivation of machine tool error models and errorcompensation procedure for three axes vertical machining center using rigidbody kinematics[J]. International Journal of Machine Tools and Manufacture,2000,40:1199-1213.
    [50]刘得军,车仁生,叶东,等.三自由度并联机构坐标测量机误差模型建模与仿真[J].中国机械工程.2001,12(7):752-755.
    [51]杨玉虎,洪振宇,张策.机构位置误筹分析的传递矩阵法[J].机械工程学报,2005,41(2):20-23.
    [52] Wittwer J W, Chase K W, Howell L L. The direct linearization methodapplied to position error in kinematic linkages[J]. Mechanism and MachineTheory,2004,39:681-693.
    [53] Kim H S, Choi Y J. The kinematic error bound analysis of the stewartplatform[J]. Journal of Robotic System.2000,17(1):63-73.
    [54]刘宏,邝泳聪等.锡膏印刷机纠偏平台的运动学与误差分析[J]..机械设计,2010,5.
    [55]欧阳高飞,邝泳聪,梁经伦等.一种三自由度并联纠偏平台的误差分析[J]..机械设计与制造,2011,8.
    [56]申键.2-DOF高速高精度平面并联机器人研究[D].天津:天津大学,2008.
    [57] Zhuang H, Liu L. Self-calibration of a Class of Parallel Manipulators[C].Proceedings of IEEE International Conference on Robotics and Automation,Minneapolis, USA,1996:994-999.
    [58] Nahvi A, Hollerbach J M, Hayward V. Calibration of a parallel robot usingmutiple kinematics cloased loops[C]. Proceedings of IEEE InternationalConference on Robotics and Automation, San Diego, California, USA,1994:407-412.
    [59] Khalil W,Besnard S.Self calibration of Stewart—Gough parallel robotswithout extra sensors[J]. Transactions on Robotics and Automation,1999,15(6):1758-1763.
    [60] Shamma J S, Whiteny D E. A method for inverse robot calibration[J]. Journalof Dynamic System, Measurement and Control,1987,109:36-43.
    [61] Masory O, Wang J, Zhuang H. On the accuracy of a Stewart platform-part IIkinematic calibration and compensation[C]. Proceedings of IEEEInternational Conference on robotics and automation, Atlanta, USA,1993:725-731.
    [62] Besnard S, Khalil W. Identifiableparameters for parallel robots kinematiccalibration[C]. Proceedings of IEEE International Conference on robotics andautomation,Seoul,Korea,2001:2859-2866.
    [63] Zhuang H, Masory O, Yan J. Kinematic calibration of a Stewart platformusing pose measurements obtained by a single theodolite[C]. Proceedings ofIEEE International Conference on intelligent robots and systems, Pittsburgh,USA,1995:329~334.
    [64] Zhuang H,Yan J, Masory O. Calibration of Stewart Platform and OtherParalllel Manipulators by Minimizing Inverse Kinematic residual[J]. Journalof Robotic System,1998,15(7):395-405.
    [65] Takeda Y, Shen G, Funabashi H. A DBB-Based Kinematic CalibrationMethod for In-Parallel Actuated Mechanisms Using a Fourier Series[J].Journal of Mechanical Design,2004,126(9):856~865.
    [66] Besnard S, Khalil W. Calibration of parallel robots using two inclinometers[J].Proceedings of IEEE International Conference on Robotics and Automation,Detroit, Michigan, USA,1999:1758-1763.
    [67] Joubair A, Slamani M, Bonev I A. A novel XY-Theta precision table and ageometric procedure for its kinematic calibration[J]. Robotics andComputer-Integrated Manufacturing,2012,28(1):57-65.
    [68] Chang P, Li T M, Grang L. Minimal linear combinations of the errorparameters for kinematic calibration of parallel kinematic machines[C].Proceedings of5th Chemmitz Parallel Kinematics Seminar, Chemnitz,Germany,2006:565-583.
    [69] Huang T, Tang G B, Li S W,et al. Kinematic calibration of a class of parallelkinematic machine(PKM) with fewer than six degrees of freedom[J]. Sciencein China Series E-Technological Sciences,2003,46(5):55-526.
    [70] Omodel A, Legnani G, Adamin R. Three methodologies for the calibration ofindustrial manipulators:Experimental results on a SCARA robot[J]. JournaI ofRobot Systems,2000,17(6):291-307.
    [71] Bay J S. Autonomous parameter identification by optimal learning control[J].IEEE Control System Magazine,1993,13(3):56-61.
    [72] Iurascu C C, Park F C. Geometric Algorithms for Kinematic Calibration ofRobots Containing Closed Loops[J]. Journal of Mechanical Design,2003,125:23-32.
    [73] Ding Q Y, Ji J H, Sun L N. Calibration of2-DOF Planar Parallel Robot:HomePosition Identification and Experimental Verification[C]. Proceedings ofIEEE International Conference on Mechatronics and Automation, NiagaraUSA,2005:5100-515.
    [74]高锰,李铁民,叶佩青,段广洪.面向精度评价的并联机床参数辨识技术[J].机械工程学报,2005,41(5):79-83.
    [75] Richard Szeliski. Computer Vision: Algorithms and Applications[M].Springer London Ltd,2010.
    [76]贾云德.机器视觉[M].北京:科学出版社,2000.
    [77] Weng J, Cohen P. Camera calibration with distortion models and accuracyevaluation[J]. IEEE Transactions on Pattern Analysis and MachineIntelligence,1992,14(10):965-982.
    [78] Wei G Q, Ma S D. A complete two-plane camera calibration method andexperimental comparisions[J]. Proceedings of4thInternational Conference onComputer vison, Berlin, Genmany,1993,10(8):439-446.
    [79] Zhang Zhengyou. A flexible new technique for camera calibraiton[J]. IEEETransactions on Pattern Analysis and Machine Intelligence,2000,22(11):1330-1334.
    [80] Herkkil J. Geometric camera calibration using circular control points[J]. IEEETransactions on Pattern Analysis and Machine Intelligence,2000,22(10):1066-1077.
    [81]朱铮涛,黎绍发.镜头畸变及其校正技术[J].光学技术,2005(1):136-141.
    [82] Sawhne H S, Kumar R. True multi-image alignment and its application tomosaicing and lens distortion correction[J]. IEEE Transactions on PatternAnalysis and Machine Intelligence,1999,21(3):235-243.
    [83] Prescott B, Mclean G F. Line-based correction of radial lens distortion[J].Graphical Models and Image Processing,1997(1):39-47.
    [84] Park S-W, Hong K-S. Practical ways to calculate camera lens distortion forreal-time camera calibration[J]. Pattern Recognition,2001(34):1199-1206.
    [85]王凯. CCD相机的平面标定与应用[D].长春:吉林大学,2009.
    [86] Abdel-Aziz Y I, Karara H M. Direct linear transformation from comparatorcoordinates into object space coordinates in close-range phtogrammetry[C].Proceedings of ASP Symposium on Photogrammetry, Falls Church,1971:1-19.
    [87] Ganapathy S. Decomposition of transformation matrices for robot vision[C].Preceedings of IEEE International Conference on Robotics and Automation.1984:130-139.
    [88] Faig W. Calibration of close-range photogrammetry systems: Mathematicalformulation[J]. Photogrammetric Engineering and Remote Sensing,1975,41(12):1479-1486.
    [89] Sobel I. On calibrating computer controlled cameras for perceiving3-Dscenes[J]. Artificial Intelligence,1974,5(2):185-188.
    [90]袁野.摄像机标定方法及边缘检测和轮廓跟踪算法研究[D].大连:大连理工,2002.
    [91] Tsai R Y. A versatile camera calibration technique for high-accuracy3Dmachine vision metrology using off-the-shelf TV camera and lenses[J]. IEEEJournal of Robotics and Automation,1987,3(4):323-344.
    [92] Tsai R Y. An efficient and accurate camera calibration technique for3Dmachine vison[C]. Proceedings of IEEE Conferences on Computer Vision andPattern Recognition,1986:364-374.
    [93] Weng J, Cohen P, Herniou M. Camera calibrationwith distortionmodels andaccuracy evaluation[J]. IEEE Transactions on Pattern Analysis and MachineIntelligence,1992,14(10):965-980.
    [94] Martins H A, Birk J R, Kelley R B. Camera models based no data from twocalibration planes[J]. Computer Graphies and Imaging Proeessing,1981,17(2):173-180.
    [95] Wei G, Ma S. Two-plane calibration: a unified model[C]. Proceedings ofIEEE Computer Society Conference on Computer Vision and PatternRecognition, Maui, Hawaii, USA,1991:133-138.
    [96] Wei G, Ma S. Complete two-plane camera calibration and experimentalcomparisons[C]. Proceedings of4thInternational Conference on ComputerVision, Berlin, Germany,1993:439-446.
    [97] Wei G, Ma S. Implicit and explicit camera calibration: theory andexperiments[J]. IEEE Transactions on Pattern Analysis and MachineIntelligence,1994,16(5):469-480.
    [98]邱茂林,马颂德,李毅.计算机视觉中摄像机定标综述[J].自动化学报,2000,26(1):43-55.
    [99] Andrea Baccini, Treviso, et al. Next generation screen printing system[P].United States Application Number: US2009/0305441A1. Publication Date:Dec.10,2009.
    [100] Pascal B, Roger M. Accuracy in iamge measure[C]. SPIE ConferenceVideometrics III, Boston, Ma, USA,1994(2350):218-228.
    [101] Wilburn B, Smulski M, Lee H, Horowitz M. The light field video camera[C].Proceedings of SPIE-the International Society for Optical Engineering, SanJose, CA, United stages,2002:29-36.
    [102] Yang J C, Everett M, Buehler C, McMillan L. A real-time distributed lightfield camera[C]. Proceeding of13th Eurographics Workshop on Rendering,Pisa, Italy,2002:77-85.
    [103] Zhang C and Chen T. A self-reconfigurable camera array[C]. ACMSIGGRAPH2004Sketches, Los Angeles, CA, United states,2004:243-254.
    [104]王建民,浦昭邦,鲁振智等.一种新的二维图像测量系统的标定方法[J].计量学报,2000,21(4):241-247.
    [105]张舞杰,杨义禄,李迪等.自动影像测量系统关键算法[J].光学精密工程,2007,15(2):294-302.
    [106]牟德军.三自由度并联角台机构运动性能的理论分析及仿真[D].秦皇岛:燕山大学,2004.
    [107]孙桓,陈作模,葛文杰.机械原理[M].北京:高等教育出版社,2006:13-18
    [108]黄真,赵永生,赵铁石.高等空间机构学[M].北京:高等教育出版社,2006:141-142
    [109]黄真.并联机器人机构学理论及控制[M].北京:机械工业出版社,1997:36-55.
    [110]朱思俊.少自由度并联机构运动学及五自由度并联机构的相关理论[D].秦皇岛:燕山大学,2007.
    [111] Husain M, Waldron K J. Direct position kinematics of the3-1-1-1Stewartplatform[J]. ASME Journal of Mechanical Design,1994,116(4):1102-1108.
    [112] Duffy. Analysis of mechanism and robot manipulators[M]. New York: JohnWiley&Sons,1980.
    [113] Innocenti C, Parenti-Castelli V. Direct position analysis of the Stewartplatform mechanism[J]. Mechanism and Machine Theory,1990,25(6):611-621.
    [114] Merlet J-P. Direct kinematics of planar parallel manipulators[C]. Proceedingof the IEEE International Conference on Robotics and Automation,Minneapolis, Minnesota, USA: ICRA, April,1994:3744-3749.
    [115]理查德摩雷,李泽湘等(著),徐卫良,钱瑞明(译).机器人操作的数学导论
    [M].机械工业出版社,1998:130-135.
    [116] Merlet J P, Gosselin C M, Mouly N. Workspaces of planar parallelmanipulators[J]. Mechanism and Machine Theory,1998,33(12):7-20.
    [117] Cervantes-Sanchez J J, Hernandez-Rodriguez J C. On the5R spherical,symmetric manipulator: workspace and singularity characterization[J].Mechanisam and Machine Theory,2004,39(4):409-429.
    [118] Gosselin C, Angeles J. Singularity analysis of closed-loop kinematic chains[J].IEEE Transactions on Robotics and Automation,1990,6(3):281-290.
    [119] Gosselin C, Angeles J. A global performance index for the kinematicoptimization of robotic manipulators[J]. Journal of Mechanical Design,1991,113(3):220-226.
    [120] Gosselin C. The optimum design of robotic manipulators using dexerityindices[J]. Robotics and Autonomous Systems,1992,9(4):213-226.
    [121] Yoshikawa T. Manipulability of robotic mechanism[J]. International Journalof Robotics Reseach,1985,4(2):3-9.
    [122] Joshi S A, Tsai L-W. Jacobian Analysis of Limited-DOF ParallelManipulaotors[J]. Journal of Mechanical Design,2002,124(2):254-258.
    [123] Merlet J P. Jacobian, manipulability, condition number, and accuracy ofparallel robots[J]. Journal of Mechanical Design,2006,128(January):199-205.
    [124] Yu A, Bonev I A, Zsombor-Murray P. Geometric approach to the accuracyanalysis of a class3-DOF planar parallel robots[J]. Mechanism and MachineTheory,2008,43(3):364-375.
    [125] Briot S, Bonev I A. Accuracy analysis of3-DOF planar parallel robots[J].Mechanism and Machine Theory,2008,43(4):445-458.
    [126] Liang J L, Chen J Zh, Zhang Q H, Kuang Y C, Zhang X M. A novel XY-Thetaalignment stage for screen printing and its accuracy analysis[C]. Proceedingof2012IEEE International Conference on Mechatronics and Automation,Chendu, China, August,2012:1352-1357.
    [127]贺振兴,邝泳聪,梁经伦,张宪民.锡膏印刷机印刷系统的误差分析与补偿[J].机械设计与制造,2012,2:133-135.
    [128] Huang T, Whitehouse D J, Chetwynd D G. A unified error model fortolerance design, assembly and error compensation of3-DOF parallelkinematic machines with parallelogram struts[J]. CIRPAnnals-Manufacturing Technology,2002,51(1):297-301.
    [129] Zhuang H, Roth Z S. Camera-Aided Robot Calibration[M]. CRC Press,1996,ISBN0-8493-9407-4.
    [130] Meng Y, Zhuang Hanqi. Autonomous robot calibration using visiontechnology[J]. Robotics and Computer-Intergrated Manufacturing,2007,23(4):436-446.
    [131] Zou H, Notash L. Discussion on the camera-aided calibration of parallelmanipulators[C]. Proceedings of2001CCToMM Symp. Mechanisms,Machines, and Mechatronics, Saint-Hubert,2001.
    [132] Renaud P, Andreff N, Lavest J-M, Dhome M. Simplifying the kinematiccalibration of parallel mechanisms using vision-based metrology[J]. IEEE T.Robot.,2006,22(1):12-22.
    [133] Daney D, Aandreff N, Chabert G, et al. Interval method for calibration ofparallel robots: vision-based experiments[J]. Mechanism and Machine Theory,2006,41(8):929-944.
    [134]张宪民,邝泳聪,卢盛林,等.用于锡膏印刷的L型双镜头图像采集装置[P].中国专利:ZL20060123893.4,2007-05-30.
    [135] Chang P, Wang J S, Li T M, et al. Step kinematic calibration of a3-DOFplanar parallel kinematic machine tool[J]. Science in China Series E:Technological Sciences,2008,51(12):2155-2167.
    [136]肖明耀.误差理论与应用[M].北京:计量出版社,1985:28-75.
    [137] International Organization for Standardization. ISO9283Manipulatingindustrial robots—performance criteria and related test methods[S].Switzerland: International Organization for Standardization,1998.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700