用户名: 密码: 验证码:
熔丝沉积成形若干关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
熔丝沉积成形(Fused Deposition Modeling,FDM)技术具有设备、材料和运行成本低,操作简单,适合办公室环境,制件强度好等一系列优点,非常适合产品设计阶段的外观验证、装配及功能测试,一直备受中小企业及教育机构的青睐。扫描填充的速度低和出丝的精度差是FDM与其他激光快速成形工艺最大的不同,FDM对工艺支撑及路径的好坏体现得更加敏感。这使得工艺支撑及路径的优化工作变得尤为重要。
     本文是在作者参与研发HRPF熔丝沉积成形设备的基础上成文的,针对研发过程中出现的关键性技术难题,从设备稳定性、成形效率和精度等角度入手,重点研究了挤出机构、工艺支撑生成、扫描填充路径生成、扫描填充路径优化、控制系统及工艺过程控制等五个方面的关键问题。
     材料挤出机构是FDM的核心使能技术。作者首先对挤出机构进行设计攻关,解决了出现的丝材失稳、摩擦轮打滑、加热方式、送丝入口溢流、起停响应滞后(包括流涎)、挤出头堵塞等关键问题,实现了挤出机构稳定可靠工作,为后续工艺试验及设备商品化创造了条件。
     研究熔丝沉积成形设备所需要的工艺支撑结构,提出斜壁结构工艺支撑的概念及自动生成算法。基于STL文件数据,实现斜壁结构支撑的自动添加。这种支撑结构由于充分利用了支撑自身的自支撑能力,极大的减少了支撑的体积,从而节省了支撑材料,同时也提高了制件的成形效率。
     在熔丝沉积成形工艺的路径规划方面,提出一种并行栅格扫描填充路径及其规划算法。这种路径使得层面的成形过程趋于近似并行,从而均匀了温度场,减少了制件的翘曲变形量。同时这种路径还减少了路径中小线段的数目,最大限度的降低了高速运行时机械振动对设备产生的影响。
     以提高制件表面成形质量为目的,研究熔丝沉积成形工艺的路径优化算法,提出基于潜在起点和添加节点的路径排序优化算法、基于两种不同合并原则的路径合并优化算法和针对栅格及轮廓偏置混合路径的起终点内置优化算法。
     研究熔丝沉积成形设备所需要的控制系统,实现基于PC+PLC模式的快速成形控制方案,完成了加工所需海量数据的PLC自由口通讯动态传输、三轴实时连续加工轨迹运动控制、送丝电机的开关量控制和温度的模拟量控制。
     针对挤出机构起停响应滞后的问题,提出一种新的控制策略——迂回起停控制策略,将原来不可控的“点”问题平均的分摊到一条“线段”上,与路径起终点内置优化算法和空行程快速抬刀运动方法配合起来使用,基本上消除了由于挤出头起停响应滞后性而引起的制件外观填充缺陷。
     通过本论文的系统研究,解决了熔丝沉积成形设备研发过程中所碰到的挤出机构不能稳定可靠工作、工艺支撑及扫描填充路径生成和优化、工艺过程控制等关键问题,为该熔丝沉积成形技术深入发展奠定了一定的理论和实践基础。
Fused Deposition Modeling(FDM) with a number of advantages of its relatively inexpensive equipment and materials, low running costs, operation-friendly, pollution-free, suitable for the office environment, encompasses a wide range of applications including 3D printing of design and concept models, assembly and functional testing for small and medium enterprises and educational institutions. Low-speed scanning and filling and bad-accuracy filament are the biggest differences of FDM to other laser-enabling rapid prototyping processes. FDM is more sensitive to the quality of the support and toolpath. This makes the optimization of support and toolpath especially important.
     This article is involved in research and development in HRPF fused deposition modeling equipment. The key technical problems are including the extrusion head, control systems and some software key algorithms such as support generation, toolpath planning and optimization.
     First of all, as the core enabling technology of the system, the extrusion head is discussed and practical solutions are proposed to address some key problems including the filament instability, the spinning of the friction wheels, the overflow of the delivering material entrance, on-off response lag (including salivation), temperature controling and the plugging of the nozzle. The reliable and stable work of the extrusion device creates the conditions for the follow-up process test.
     Support structure for fused deposition three-dimensional printing equipment is discussed and a novel support structure of sloping wall structure with its automatic generation algorithm is proposed based on STL file data. This new structure reducing the volume of the support helps saving a lot of materials and improving the modeling efficiency.
     Many types of tool paths for fused deposition three-dimensional printing device are analysed. A novel tool path - parallel raster - with its planning algorithm is proposed. This tool path makes the forming process tended to parallel approximation, a uniform temperature field in order to reduce the amount of warpage. At the same time, this path also reduces the number of the path of small-sized segments, and then improves the vibration characteristics of the equipment while in high-speed running.
     To improve the forming quality of parts surface, serval path optimization methods are proposed and realised for the fused deposition three-dimensional printing. They are path sequencing optimization algorithm based on potential starting point and adding node method, combined optimization algorithm based on two different merger principles, and end node ensconcing optimization algorithm for the path hybridized by raster and courtour offset paths.
     A control system based on model of personal general PC + PLC is designed and carried out for Fused deposition three-dimensional printing device, in which massive data rapid prototyping is required to be processed by dynamic transmission through PLC Freeport communications, and a real-time three-axis motion control must be achieved too.
     For the on-off response lagging phnomenon, a new control strategy -detouring on-off control strategy is forwarded, which transforms the non-controllable filling bug in "point" to in a "line" segment on average. Cooperated with end node ensconcing optimization algorithm and high-speed jumping, it helps reducing the filling defects of parts.
     In conclusion, the problems such as on-off response lagging, distortion, support and toolpath generation and unreliability of extrution head, have been solved in the fused deposition modeling processing, which has laid a certain amount of theoretical and practical basis for its further development.
引文
[1]黄树槐,肖跃加.快速成形技术的展望[J].中国机械工程,2000,11(1):195-200
    [2]颜永年,林峰,张人佶,et aL.快速制造技术的最新进展及其发展趋势[J].电加工与模具,2006,(B05):12-16,21
    [3]Sercombe T.B.,Schaffer G.B.Rapid manufacturing of aluminum components[J].Science,2003,301(5637):1225-1227
    [4]Wanke M.C.,Lehmann O.,Muller K.,et al.Laser rapid prototyping of photonic band-gap microstructures[J].Science,1997,275(5304):1284-1286
    [5]Bak David.Rapid prototyping or rapid production? 3D printing processes move industry towards the latter[J].Assembly Automation,2003,23(4):340-345
    [6]Chiu W.K.,Yu K.M.Direct digital manufacturing of three-dimensional functionally graded material objects[J].CAD Computer Aided Design,2008,40(12):1080-1093
    [7]De Gans Berend-Jan,Duineveld Paul C.,Schubert Ulrich S.Inkjet printing of polymers:State of the art and future developments[J].Advanced Materials,2004,16(3):203-213
    [8]Dimitrov D.,Schreve K.,De Beer N.Advances in three dimensional priming-State of the art and future perspectives[J].Rapid Prototyping Journal,2006,12(3):136-147
    [9]Wang Jiwen,Shaw Leon L.Fabrication of functionally graded materials via Inkjet color printing[J].Journal of the American Ceramic Society,2006,89(10):3285-3289
    [10]Yin Xiaowei,Travitzky Nahum,Melcher Reinhold,et al.Three-dimensional printing of TiAl3/Al2O3 composites[J].International Journal of Materials Research,2006,97(5):492-498
    [11]郭开波,三维打印设备及数据处理软件若干关键技术研究[R].华中科技大学:2008
    [12]江开勇,刘斌,李洪友.快速成形技术的研究现状及发展趋势[J].华侨大学学 报:自然科学版,2006,27(1):1-6
    [13]刘厚才,莫健华,刘海涛.三维打印快速成形技术及其应用[J].机械科学与技术(西安),2008,27(9):1184-1186,1190
    [14]Wohlers Terry,Wohlers Report 2008:Executive Summary[R].2008
    [15]De Gans BJ,Duineveld PC,Schubert US.Inkjet printing of polymers:state of the art and future developments[J].Advanced Materials,2004,16(3):203-213
    [16]Sachs EM,Haggerty JS,Cima MJ,et al.Three-dimensional printing techniques[P].USA,5340656,1994
    [17]Gothait H.Apparatus and method for three dimensional model printing[P].USA,6259962,2001
    [18]Napadensky E,Gothait H.Three dimensional printing method and model obtained[P].EP,1274551,2006
    [19]Kritchman EM,Chechik D,Rodin-Entin T,et al.System and method for accurate printing of three dimensional models utilizing adjustment parameters[P].USA,7209797,2007
    [20]Kritchman EM,Chechik D,Rodin-Entin T,et al.Device,system and method for accurate printing of three dimensional objects[P].USA,7369915,2008
    [21]Kritchman EM,Gothait H,Napadensky E,et al.System,apparatus and method for printing of three-dimensional objects[P].EP 1637307,2006
    [22]Objet Geometries Ltd.Eden250~(TM) 3D Printing System[EB/OL].www.objet.com/Misc/Pages/ProductsEdenFamily/Eden250/tabid/99/Default.aspx(2009-4-28)
    [23]3D Systems Inc.InVision(?) LD 3-D Printer[EB/OL].http://www.3dsystems.com/products/multijet/invisionLD/index.asp(2009-4-28)
    [24]Choi SH,Samavedam S.Modelling and optimisation of rapid prototyping[J].Computers in industry,2002,47(1):39-53
    [25]Hackney PM,Sarwar M.Operating characteristics of the Z-corps three-dimensional printing process[C].In:TAYLOR & FRANCIS LTD,2001.pp 205-210
    [26]Z Corporation.Z Corp.'s Spectrum Z510 Full-Color 3D Printer Wins Industry Awards[EB/OL].www.zcorp.com.cn/Press-Room/Z-Corp.s-Spectrum-Z510-Full- Col/news.html(2009-4-28)
    [27]伍咏晖,李爱平,张曙.三维打印成形技术的新进展[J].机械制造,2005,43(12):62-64
    [28]Wu BM,Borland SW,Giordano RA,et al.Solid free-form fabrication of drug delivery devices[J].Journal of Controlled Release,1996,40(1-2):77-87
    [29]Yu DG,Branford-White C,Ma ZH,et al.Novel drug delivery devices for providing linear release profiles fabricated by 3DP[J].International Journal of Pharmaceutics,2008,
    [30]Yu DG,Yang XL,Huang WD,et al.Tablets with material gradients fabricated by three-dimensional printing[J].Journal of Pharmaceutical Sciences,2007,96(9):
    [31]Hutmacher DW.Scaffold design and fabrication technologies for engineering tissues--state of the art and future perspectives[J].Journal of Biomaterials Science,Polymer Edition,2001,12(1):107-124
    [32]Sherwood JK,Riley SL,Palazzolo R,et al.A three-dimensional osteochondral composite scaffold for articular cartilage repair[J].Biomaterials,2002,23(24):4739-4751
    [33]上海富奇凡机电科技有限公司.产品目录[EB/OL].www.fochif.com (2009-4-28)
    [34]Zein I,Hutmacher DW,Tan KC,et al.Fused deposition modeling of novel scaffold architectures for tissue engineering applications[J].Biomaterials,2002,23(4):1169-1185
    [35]Stratasys Inc..3D printers[EB/OL],www.dimensionprinting.com(2009-4-28)
    [36]上海敦利盈电机科技有限公司.快速成型机[EB/OL].www.3dprinter.com.cn (2009-4-28)
    [37]Masood SH.Intelligent rapid prototyping with fused deposition modelling[J].Rapid Prototyping Journal,1996,2 24-33
    [38]北京殷华激光快速成形与模具技术有限公司.快速成型机[EB/OL].www.rpyinhua.com(2009-4-28)
    [39]闫东升.熔融挤压快速成形机喷头的研究[D].[硕士学位论文].北京:北京化工大学,2003
    [40]William J.Swanson,Patrick W.Turley,Paul J.Leavitt,et al.High temperature modeling apparatus[P].USA,6722872,2001
    [41]William J.Swanson,Hopkins Paul E.Thin-wall tube liquifier[P].USA,6004124,1998
    [42]John Samuel Batchelder,Zinniel Robert L.Apparatus and method for thermoplastic extrusion[P].USA,6578596,2001
    [43]John Sam Batchelder,Jim Comb,Dahlin Thomas J.High performance rapid prototyping system[P].USA,5968561,1998
    [44]Jeffery J.Hanson,Michael David Bosveld,Batchelder John Samuel.Extrusion apparatus for three-dimensional modeling[P].USA,6749414,2001
    [45]Comb JW.Liquifier pump control in an extrusion apparatus[P].USA,6,814,907,2004
    [46]颜永年,郭戈,唐果林,et al.小惯量动态螺旋挤压喷头[P].中国,03136073,2003
    [47]刘光富.螺旋挤压台式快速成形机[P].中国,200410053509,2004
    [48]Chalasani Kumar,Jones Larry,Larry Roscoe.Support Generation for Fused Deposition Modeling[C].In:Solid Freeform Fabrication Symposium 1995,in Marcus,H.L.University of Texas,Austin:1995.pp 229-241.
    [49]刘斌,王福祯,等.熔融堆积成型系统中结构自动生成算法的研究[J].机电工程技术,2001,30(3):23-25
    [50]龚志海.熔丝沉积成型工艺支撑自动生成技术研究[D].[硕士学位论文].武汉:华中科技大学,2006
    [51]Mughal MP,Mufti RA,Fawad H.The mechanical effects of deposition patterns in welding-based layered manufacturing[J].Proceedings of the Institution of Mechanical Engineers,Part B:Journal of Engineering Manufacture,2007,221(10):1499-1509
    [52]Mughal MP,Fawad H,Mufti RA.Three-Dimensional Finite-Element Modelling of Deformation in Weld-Based Rapid Prototyping[J].Proceedings of the Institution of Mechanical Engineers,Part C:Journal of Mechanical Engineering Science,2006,220(6):875-885
    [53]Zhang Y,Chou YK.Three-dimensional finite element analysis simulations of the fused deposition modelling process[J].Proceedings of the Institution of Mechanical Engineers,Part B:Journal of Engineering Manufacture,2006,220(10):1663-1671
    [54]Yang J.,Bin H.,Zhang X.,et al.Fractal scanning path generation and control system for selective laser sintering(SLS)[J].International Journal of Machine Tools & Manufacture,2003,43(3):293-300
    [55]阳佳,宾鸿赞.任意边界薄层fass分形曲线的裁剪[J].华中科技大学学报:自然科学版,2001,29(7):41-43
    [56]Soo SC,Yu KM.Tool-Path Generation for Fractal Curve Making[J].The International Journal of Advanced Manufacturing Technology,2002,19(1):32-48
    [57]杨永强,吴伟辉,来克娴,et al.金属零件选区激光熔化直接快速成形工艺及最新进展[J].航空制造技术,2006,(002):73-76
    [58]Kruth JP,Froyen L,Van Vaerenbergh J,et al.Selective laser melting of iron-based powder[J].Journal of Materials Processing Tech.,2004,149(1-3):616-622
    [59]刘斌,阮锋,黄树槐,et al.分层实体制造技术中激光切割路径的优化[J].华南理工大学学报:自然科学版,2001,29(1):31-33
    [60]俞红,韩明,张李超,et al.基于层面信息的路径优化[J].华中科技大学学报:自然科学版,2002,30(2):35-36,39
    [61]余国兴,丁玉成,李涤尘.平面多轮廓加工路径优化模型及其近似算法[J].西安交通大学学报,2004,38(1):39-42
    [62]杨伟东,檀润华,颜永年,et al.遗传算法在快速成形轮廓路径规划中的应用[J].计算机辅助设计与图形学学报,2005,17(10):2179-2183
    [63]Wah P.K.,Murty K.G.,Joneja A.,et al.Tool path optimization in layered manufacturing[J].IIE Transactions,2001,34(4):335-347
    [64]Comb JW.Melt flow compensation in an extrusion apparatus[P].USA,6547995,2001
    [65]Comb JW,Leavitt PJ,Rapoport E.Velocity profiling in an extrusion apparatus[P].USA,6,054,077,2000
    [66]Crump S.Scott.Apparatus and method for creating three-dimensional objects[P]. USA,5121329,1992
    [67]Jim Comb,Steven E.Dockter,Berens Paul A.Rapid prototyping apparatus[P].USA,5939008,1998
    [68]John Samuel Batchelder,Jackson Robert R.Method and apparatus for solid prototyping[P].USA,5764521,1995
    [69]Swanson WJ,Turley PW,Leavitt PJ,et al.High-temperature modeling method[P].USA,7,297,304,2007
    [70]William J.Swanson,Minea A.Popa,Patrick W.Turley,et al.Method and apparatus for three-dimensional modeling[P].USA,6685866,2001
    [71]朱利松,叶春生,黄树槐.FDM快速成形系统的控制系统研究[J].机床与液压,2005,(1):28-29
    [72]吴良伟.CAD模型驱动高聚物熔融挤压快速成形技术研究[D].[博士学位论文].北京:清华大学,1998
    [73]吴任东.高速熔融挤压成形工艺及设备研究[D].[博士学位论文].北京:清华大学,2000
    [74]刘大中.PTC热敏电阻加热元件及其应用[J].家用电器科技,2002,(1):25-26
    [75]冯景星.自动控温和加热的新型元件[J].功能材料,1997,28(3):290-293
    [76]苏洪钎,方铎荣.自动限温加热带电-热性能的研究[J].中国科学技术大学学报,1990,20(003):274-278
    [77]席军,刘廷华.PTC热敏电阻的开发应用现状[J].塑料,2005,34(4):79-84
    [78]朱盈权.PTC热敏电阻的现状与发展趋势[J].电子元件与材料,2002,21(6):26-28
    [79]何曼君.高分子物理[M].复旦大学出版社,1990
    [80]金日光,黄惠金.关于高分子材料在应力松弛过程中应力-时间关系的研究[J].北京化工大学学报:自然科学版,1996,23(3):31-38
    [81]金日光,刘薇.高分子材料应力-时间等效性的考察[J].北京化工学院学报,1994,21(1):35-40
    [82]陈之佳,王丛军,张李超.基于直线扫描的FDM支撑自动生成算法[J].华中 科技大学学报:自然科学版,2004,32(6):60-62
    [83]卞宏友,刘伟军,王天然.基于STL模型支撑生成算法的研究[J].机械设计与制造,2005,(7):49-52
    [84]洪军,王崴,张宇红,et al.光固化快速成形自动支撑技术研究[J].机械工程学报,2004,40(11):134-138
    [85]王军杰.光固化法快速成型中零件支撑及制作方向研究[D].[博士学位论文].西安:西安交通大学机械工程学院,1997
    [86]郭开波.快速成形软件与工艺若干关键技术研究[D].[博士学位论文].武汉:华中科技大学,2006
    [87]王广春,赵国群.快速成型与快速模具制造技术及其应用[M].北京:机械工业出版社,2003
    [88]方向,彭群生,郑家骧.2.5轴复杂型腔的刀位轨迹生成算法[J].工程图学学报,2000,(1):19-27
    [89]Park SC,Choi BK.Tool-path planning for direction-parallel area milling[J].Computer Aided Design,2000,32(1):17-25
    [90]赵毅,李占利,卢秉恒.激光快速成型中激光扫描路径的快速生成算法[J].计算机辅助设计与图形学学报,1998,10(3):260-265
    [91]史玉升,钟庆,等.选择性激光烧结新型扫描方式的研究及实现[J].机械工程学报,2002,38(2):35-39
    [92]黄小毛,叶春生,莫健华,et al.考虑潜在起点的RP路径排序问题研究[J].中国机械工程,2008,19(3):317-320
    [93]刘斌,张征,等.快速成型系统中offset型填充算法[J].华南理工大学学报:自然科学版,2001,29(3):64-66
    [94]Park SC,Choi BK.Uncut free pocketing tool-paths generation using pair-wise offset algorithm[J].Computer-Aided Design,2001,33(10):739-746
    [95]Park SC,Chung YC.Offset tool-path linking for pocket machining[J].Computer-Aided Design,2002,34(4):299-308
    [96]Park SC,Chung YC.Tool-path generation from measured data[J].Computer-Aided Design,2003,35(5):467-475
    [97]Jeong J,Kim K.Generation of tool paths for machining free-form pockets with islands using distance maps[J].The International Journal of Advanced Manufacturing Technology,1999,15(5):311-316
    [98]陈剑虹,马鹏举,田杰谟,et al.基于Voronoi图的快速成型扫描路径生成算法研究[J].机械科学与技术(西安),2003,22(5):728-731
    [99]Jeong J,Kim K.Tool path generation for machining free-form pockets using Voronoi diagrams[J].The International Journal of Advanced Manufacturing Technology,1998,14(12):876-881
    [100]Jeong J,Kim K.Generating tool paths for free-form pocket machining using z-buffer-based Voronoi diagrams[J].The International Journal of Advanced Manufacturing Technology,1999,15(3):182-187
    [101]周培德.计算几何:算法分析与设计[M].北京:清华大学出版社,2000
    [102]钱波,张李超,黄树槐.基于平面多边形Voronoi图的算法与快速成形应用[J].华中科技大学学报:自然科学版,2008,36(1):125-128
    [103]卞宏友,刘伟军,王天然,et al.基于层面轮廓凸分解的光固化选区环形扫描路径的生成算法[J].高技术通讯,2005,15(7):35-39
    [104]何勇,唐国春.排序的贪婪算法的参数上界[J].运筹学学报,1999,3(1):56-64
    [105]蔡道生.选择性激光烧结工艺软件关键技术研究[D].[博士学位论文].武汉:华中科技大学,2004
    [106]西门子(中国)有限公司自动化与驱动集团.深入浅出西门子S7-200PLC[M].北京:北京航空航天大学出版社,2003

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700