用户名: 密码: 验证码:
FDM快速成型中工艺支撑的智能化设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
快速成形技术是20世纪80年代中后期发展起来的、观念全新的现代制造技术,它能以最快的速度将设计思想物化为具有一定结构和功能的三维实体,低成本制作产品原型甚至零件,非常适合当代市场竞争的需要。而对于其中的光固化(SLA)和熔融沉积(FDM)快速成形工艺,支撑结构的产生是一项必不可少的工艺规程,支撑结构在固定零件、保持零件形状、减少翘曲变形方面有着重要作用。为了开发出拥有自主知识产权的熔融沉积快速成形系统,本论文展开了支撑智能化设计研究工作。
     首先,支撑数量的多少直接影响到零件与支撑相接触面的表面质量、增加加工废料和去除的难度,针对此问题本文进行了分层方向优化,减少了支撑生成数量;基于STL模型分层后的层片文件,论文采用了先填充后比较的支撑设计方法将复杂的轮廓环布尔运算转化为二维线段的逻辑比较运算,提高了支撑生成效率;为优化扫描路径、缩短零件制造周期,对生成的支撑线段进行了分区域规划和标准CLI格式输出;最后以Visual C++为编程语言、OpenGL为图形工具,开发了一个支撑自动生成的可视化软件,并将该软件模拟产生的CLI格式零件在快速成型机上进行了生产实验,实验结果表明:文中支撑结构自动生成方案正确、可靠、实用,具备投入实际生产的经济价值。同时在本文的工作中,还在以下方面加入了新的设计方法和思想:
     首先,将分层方向优化物化为三个直接的数学模型指标,通过零件的可视化将经验优选与目标定量计算相结合。对于特定的成型物件,根据制作者对各指标的侧重程度(即既权重系数)就可以选择相应的最佳制作方向,简便实用。
     其次,将各层面轮廓填充转化为二维线段后,在进行上下层面二维线段的求差、并运算时不是直接进行各端点坐标浮点数的逻辑判断比较,而是对各点进行合并排序并附加状态标志,然后根据一条线段中首末两点的状态位就可直接实现该线段的去除或保留,大大简化了逻辑判断的复杂程度。
     最后,基于层片扫描线比较产生的各层支撑线均为同一方向,为实现上下两层支撑线的十字交叉填充、增加支撑强度,本文提出了层片分别沿水平和垂直方向填充、进行两次支撑运算,然后奇数层输出相应的水平支撑线、偶数层输出相应的垂直支撑线,即实现了隔层交叉填充。
Rapid prototyping and manufacturing (RP&M), a totally new fabricating technology developed in the end of 1980s, can transform design thoughts into 3D parts with certain structure and function in rapid speed and at cheap cost, so it satisfies modern competition greatly. But for the SLA and FDM process of RP, support which plays a important role in fixing part and keeping shape、decrease deformation of the part is a indispensable structure. In order to explore self-owning RP system, research on support design was done in the thesis.
     Above all, the quantity of support affected the surface finish of part and increased the difficulties to wipe off extra material, according to that, optimization for the fabrication orientation was done firstly; secondly, to get the support lines, the way that filling slices of parts to produce scan lines and then comparing and evaluating them was used, which transformed complicated Boolean count into simple compare of lines, had improved efficiency of support production dramatically; thirdly, zoning was done to the support lines to optimize their scan path and shorten manufacturing circle, then perfect scan path data was exported in CLI; at last, with the help of C++ and OpenGL, all the arithmetic was realized and a view software to produce support automatically was worked out, the CLI files produced by the software were used to make experiment in RP machine, and experiment results showed that: method to produce support in this passage was right、reliable and practical, had economic value to be used in factory. Moreover, within all the work in the thesis, the following designing methods were new and original.
     First, three mathematic models were proposed when dealing with the optimization of fabricating orientation, through the view of the STL parts, experience and rational evaluation were combined to choose the best slicing direction. For a certain part, if the producer had given coefficients, the perfect orientation could be decided easily.
     Second, after the slices were filled to transformed into lines, a new compare way that adding signs to points to decide the keeping or wiping of lines was used to take place of direct compare of lines 'points, which decreased the difficulties of logic compare greatly.
     Third, the support lines of different slices got by the scan lines' compare were in same direction, but to increase support strength, crossing support lines every two slices were needed. To solve the problem, way of filling slices in horizontal and vertical direction separately, and then calculating support lines twice according to scan lines of different direction was taken, in this way, the crossing support was realized.
引文
[1]颜永年,张人佶.快速成形技术国内外发展趋势[J].电加工与模具,2001(1):5-9.
    [2]宋天虎.我国快速成形制造技术的发展与展望[J].学会月刊,2001(6):3-4.
    [3]黄树槐,肖跃加,莫健华等.快速成形技术的展望[J].中国机械工程,2000,11(1):2-5.
    [4]颜永年.张伟,卢清萍等.基于离散/堆积成型概念的RPM原理和发展[J].中国机械工程,1994,5(4):41-48.
    [5]王运赣.快速成型技术[M].华中理工大学出版社,1999:1-8.
    [6]Terry T.Wohlers.Worldwide Development & Trends in Rapid Prototyping and Manufacturing [C].Proceedings of the First International Conference on Rapid Prototyping and Manufacturing,Beijing,China,1998.
    [7]Qingbin Liu,Ming C.Leu,Stephen M.Schmitt.Rapid prototyping in dentistry:technology and application[J].Int J Adv Manuf Technol(2005),DOI 10.1007/s00170-005-2523-2.
    [8]D.M.C.Santos,A.E.M.Pertence,P.R.Cetlin.The development of 3D models through rapid prototyping concepts[J].Journal of Materials Processing Technology 168(2005):270-272.
    [9]张勇,张芳,卢秉恒.玻璃模快速制造工艺[J].模具工业,2005(11):50-54.
    [10]吴永辉,李涤尘,卢秉恒.基于快速成形的生物制造工程研究[J].机械工程学报,2000,36(9):61-64.
    [11]Charles F.Kirschman,Jr.Automated support structure design for stereolithographic parts[D].South Carolina,USA:The Graduate School of Clemson University,1991:443-448.
    [12]C.F.Kirschman,C.C.Jara-Almonte,A.Bagchi etc.The Clemson Intelligent Design Environment for Stereolithography[C].Proceedings of the Second Rapid Prototyping Technology Conference,Dayton OH,1991:453-460.
    [13]刘斌,阮锋,王福祯,史步海.熔融堆积成型系统中支撑结构自动生成算法的研究[J].机电工程技术,2001(3):34-37.
    [14]李增民,李立新,谭建波.快速原型制造技术的发展及应用前景[J].河北科技大学学报2003,65(1):43-47.
    [15]郭磊,薛艳敏,王伟.FDM快速成型技术对产品模型表面质量的影响[J].机电产品开发与创新,2005(9):12-16.
    [16]杨峰,沈晓红.FDM快速成型技术及与反求工程的结合应用[J].北京工商大学学报(自然科学版)2006,124(11):14-17.
    [17]李伟,叶春生,黄树槐.熔丝挤出快速成型系统的填充路径优化[J].新技术新工艺,2005(1):97-99.
    [18]刘光富,李爱平.熔融沉积快速成形机的螺旋挤压机构设计[J].机械设计,2003(9):23-25.
    [19]徐健,吴任东,卢清萍,颜永年.熔融挤压成型工艺制造复杂头盔[J].中国机械工程,2000,11(10):1131-1132
    [20]卢秉恒,唐一平,李涤尘.激光快速成型制造技术的发展与应用[C].全国高校机床学研究会第七学术会论文集.成都.机床与现代制造技术,1996:31-37.
    [21]赵万华,李涤尘,洪军等.光固化快速成型技术中的精度研究[J],中国机程,1999,8(5):35-37.
    [22]CEMT:Soup600 user's guide.1995:24-45.
    [23]TerryW holer:R P工业现状一1997全球进展报告,全美工程师协会RP分会,1997.10:1-46.
    [24]http://www.union-tek.com/chanpin/magicLrp.asp
    [25]卢秉恒:三维快速打印机的开发与研究,国家高新技术发展计划申请报告,1999.
    [26]王军杰.光固化法快速成型中零件支撑及制作方向的研究.博士论文[D].西安交通大学图书馆,1997
    [27]赵吉宾,何利英,刘伟军等.快速成型制造中零件制作方向的优化方法[J].计算机辅助设计与图形学学报,2006,18(13):456-461.
    [28]董涛,章维一,王春晖,王伟.快速成型制造中的零件分层方向优化新技术[J].计算机工程与应用,2003(1):45-48.
    [29]杨睿,贾振元,刘碧静等.理想材料零件RP制造中的生长方向研究[J].中国机械工程,2003,14(19):1701-1703
    [30]王崴,洪军.非线性规划在激光快速成型制作方向优化中的应用[J].机械设计与制造,2003(4):85-87.
    [31]张立强,罗逸苇,王斌修.基于遗传算法的RP分层方向优化设计[J].电加工与模具,2003(6):35-37.
    [32]张卫国,李占利.分层方向的多目标优化模型[J].长安大学学报(自然科学版),2003,23(5):104-106.
    [33]张立强,向道辉,陈明等.基于遗传算法的快速成型分层方向优化设计[J].南京航空航天大学学报,2005,37(1):134-136.
    [34]纪峰,陈荔,李占利.基于STL文件的模型及应用[J].长安大学学报(自然科学版).2006,26(1):104-107
    [35]崔洪斌,王宏伟.激光快速成型技术中STL文件的数据处理[J].组合机床与自动化加工技术,2004(2):56-59.
    [36]赵吉宾,刘伟军,王越超.基于STL文件的实体分割算法研究[J].机械科学与技术,2005,24(2):131-134
    [37]吴斌等.OpenGL编程实例技巧[M].北京:人民邮电出版社,1999:45-50
    [38]和平鸽工作室编著.OpenGL高级编程与可视化系统开发[M].北京:中国水利水电出版社,2003:78-83
    [39]奚小萍,候华,程军.基于OpenGL的STL实体模型的装配[J].电脑开发与应用,2005,18(1):11-13.
    [40]Donald Hearn.计算机图形学(第三版)英文版[M].北京:电子工业出版社,2004:19-30
    [41]Mason Woo等著,吴斌等译.OpenGL编程权威指南(第三版)[M].北京:中国电力出版社,2001:8-17
    [42]Jara-Almonte,C.C.Bagchi,A.Dooley,R L,Ogale,A.A:A Design Environment for Rapid Prototyping[C],2nd,Int Confon Rapid prototyping,Dayton,1991:24-32.
    [43]Muraski,StephanieJ.Make it in a minute[J].Machine Design,February 8,1990:12-13.
    [44]叶冰,刘廷章,李浩亮.快速成型中基于单面薄壁的通用支撑设计方法[J].机电一体化,2002(2):45-47.
    [45]魏群,洪军,丁玉成,王崴.SL快速成型中支撑自动生成技术研究[J].机械科学与技术,2003,22(4):681-684.
    [46]卞宏友,刘伟军,王天然,赵吉宾.基于STL模型支撑生成算法的研究[J].机械设计与制造,2005(7):49-51.
    [47]郭戈,颜永年,卢清萍等.FDM工艺支撑的添加[J].中国机械工程,2000,11(11):11-14.
    [48]王军杰.光固化法快速成型中零件支撑及制作方向的研究[D].博士论文.西安交通大学图书馆,1997.
    [49]钱波.光固化快速成形中支撑自动生成算法的研究[D].华中科技大学硕士学位论文.
    [50]洪军.面向STL模型特征的支撑生成技术研究[D].西安交通大学博士学位论文,2000.
    [51]王斌修,张立强.STL切片轮廓数据的修补和优化[J].组合机床与自动化加工技术,2004(8):59-60.
    [52]刘伟军,张嘉易.快速成形容错切片中线段集合自适应连接方法[J].中国机械工程,2004,15(22):1975-1978.
    [53]赵保军,汪苏,陈五一.STL数据模型的快速切片算法[J].北京航空航天大学学报,2004,30(4):229-233.
    [54]彭学军,肖跃加,韩明等.快速原型制造系统中切片数据拟和算法的研究[J].华中理工大学学报,2000,28(5):27-29.
    [55]丁健,江南,芮挺.一种多边形方向识别的新算法[J].计算机工程,2006,32(9):47-50.
    [56]陈正鸣,马骥.一个多边形快速斜扫描线填充算法[J].河海大学常州分校学报,2000,14(1):7-11.
    [57]潘海鹏.快速成型制造中分层处理技术的研究[D].南昌大学博士学位论文,2007.
    [58]程艳阶.选择性激光烧结激光扫描路径的研究与开发[D].华中科技大学硕士学文,2004.
    [59]刘晓平,吴磊.简单多边形方向及顶点凹凸性的快速判定[J].工程图学报,2005(4):124-128.
    [60]蒋光荣.激光快速成形中三维CAD模型直接切片处理技术的研究[D].合肥工业大学硕士学位论文,2003.
    [61]李向前.快速成型中支撑结构的智能化设计系统[D].西安科技大学硕士学位文,2005.
    [62]Nicolai M.Josuttis著,候捷/孟岩译.c++标准程序库[M].1版.华中科技大学出版社,2002:5-286.
    [63]Swaelens,Bart,Pauwels,Johan,and Vancraen,Wilfried:Support Generation for Rapid Prototyping[C],Proceedings of the Sixth International Conference on Rapid Prototyping,R.P.Chart off and A.J.Light man,eds.University of Dayton,June 1995:115-121
    [64]黄常标,林俊义,江开勇.逆向分层自动添加支撑的算法与实现[J].机械设计与制造,2003(6):71-76.
    [65]陈之佳.FDM速成形中若干关键技术研究[D].华中科技大学硕士学位论文,2004.
    [66]谢存禧,李仲阳,邵明.基于机器人快速成型的截面填充与轨迹规划[J].机械设计与研究,2000(3):30-32.
    [67]陈剑虹,马鹏举等.基于Voronoi图的快速成型扫描路径生成算法研究[J].机械科学与技术,2003,22(5):728-731.
    [68]张人佶,单忠德,隋光华等.粉末材料的SLS工艺激光扫描过程研究[J].应用激光,1999,19(5):299-302
    [69]Onuh,S.O.,Hon,K.K.B.Application of the Taguchi method and new hatch styles for quality improvement in stereolithography[J].Proceedings of the Institution of Mechanical Engineers,1998,212:461-471
    [70]卞宏友,刘伟军等.基于层面轮廓凸分解的光固化选区环形扫描路径的生成算法[J].高技术通讯,2005.15(7):35-39.
    [71]陈绪兵,叶献方,肖跃加等.快速成型中CLI模型的真实感图形研究[J].机械设计与制造,2000(6):16-18.
    [72]王红亮.面向RE/RP的ICT切片数据的CLI建模技术研究[D].华北工学院硕士学位论文2004.
    [73]杨俊杰.零件表面倾角对MEM工艺支撑参数的影响[J].机械工程师,2006(5):84-86.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700