用户名: 密码: 验证码:
灌溉管网非恒定流计算及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
管道输水具有输水效率高、施工简便、占地少、维护成本低等优点,目前已成为世界上农业节水的一项关键技术。灌溉管网一般使用PVC、PE等塑料管道,这种管道的承压能力比较低,常常由于阀门、给水栓的快速启闭以及事故停泵等因素,导致管网水锤的发生,引起管道爆裂事故使整个管网系统陷入瘫痪状态。一般情况下,管网中产生水锤的危害比相同激励作用下单管产生的危害要大。随着滴灌、喷灌的不断发展,管道的材料向轻型化的方向发展,管网的结构形式也会越来越复杂,水锤问题将会愈来愈突出。因此开展灌溉管网非恒定流方面的研究对于管网的科学管理、安全运行具有重要意义。
     本文通过试验与数值模拟对灌溉管网的非恒定流过程进行了研究,作为非恒定流计算的初始条件,之前对恒定流方面的有关内容也进行了探讨。研究的主要内容有:常见PVC三通管和PVC球阀的阻力特性及流动特征研究;简单PVC管网水锤的试验与计算分析;滴灌、喷灌管网的非恒定流建模与分析,水锤防护研究;非恒定流计算程序设计方法研究。得到了以下主要结论:
     (1)研究了PVC三通管的阻力特性,数据在管网计算中调用。三通管由于边界的影响在分叉处增加了水流的掺混和紊动,使水流提前进入类似圆管沿程阻力系数的阻力平方区,局部阻力系数趋于稳定值的雷诺数约为1.5×105。通过试验与数值模拟得到了常见的7种三通管阻力系数的定量表达式,三通管的局部阻力系数与分流比成二次抛物线关系。引起主管——侧管方向局部水头损失的主要原因是水流方向变化的损失和离心力造成的速度分布变化损失,而引起主管——直管水流方向的主要诱因是在较大分流比时由于水流的剪切和横向环流导致直管分岔处上侧的漩涡运动和流速梯度变化损失。
     (2)球阀的阻力规律是计算恒定流和非恒定流的重要参数,通过试验与数值模拟得到了5种规格PVC球阀阻力系数随相对开度变化的幂函数表达式。流场分析表明球阀开度较小时在阀体内形成回流区,出现较大的漩涡,导致很大的能量损失。
     (3)通过建立的管网非恒定流模型与试验结果对比分析表明,采用特征线法求解能较好的模拟管网最大水锤压力值,所有试验工况下管网监测点处计算与试验得到的最大水锤压力相对误差小于14%,但特征线法计算的压力波的衰减规律明显比试验结果缓慢,主要原因是在传统的特征线法计算时摩阻项采用了恒定流摩阻,关于非恒定摩阻在管网计算中的广泛应用还需深入研究。管网最大水锤压力随关闭时间的延长而减小;当关闭时间一定时,不同关闭规律对最大水锤压力的影响不同,其中直线关闭规律产生的最大水锤压力较大,两阶段线性关闭规律产生的压力次之,采用曲线关闭规律产生的压力最小。在两阶段关闭方式中,第一阶段时间较长的操作产生的水锤压力小于第一阶段时间较短的关闭方式。在曲线关闭规律中,幂函数关闭方式产生的压力小于抛物线关闭方式产生的压力。
     (4)建立了典型滴灌管网和喷灌管网的非恒定流计算数学模型,研究了管段分段最优时间步长的处理方法,提出了用当量毛管代替原来毛管的方法,经过处理后边界水锤波的反射与透射情况与原来相似。典型管网的计算表明几个阀门同时关闭时容易在管网中形成叠加波,最大水锤压力值比无叠加波时的要大;当管网中无叠加波时,管网中的最大水锤压力与操作阀门的距离有关,距离操作阀门越近,最大水锤压力的值越大,紧靠阀门处的压力峰值最大。本算例中管网最大水头一般为稳定流时的2~5倍左右,最大水锤发生的时间为阀门完全关闭后的稍后时间内。从波形的衰减幅度来看,管网中水锤波的衰减较快,明显大于长距离单管输送液体管道的情况,原因可能是管网中支路和节点较多,其水流冲撞作用比较明显、水头损失较大。
     (5)管网中在操作的阀门前和水泵的出口位置设置空气罐,能使最大水锤压力比无防护时减小30%左右,而且可以有效的控制负压,降低了水锤破坏的几率。
     (6)针对复杂管网,研究了管网信息的表达与编码设计方法,介绍了基于VisualBasic6.0语言平台管网非恒定流的计算方法,编写了相应的代码。表明设计的程序输入简单,计算、输出方便,可用于实际管网的计算。
     (7)本文建立的数学模型可方便地计算出整个管网、泵站等每个部位水锤压力波动过程以及最大水锤压力的变化规律,从而指出水锤压力对管网危及的程度、范围和所在位置,为管网的防护工作提供理论依据。
The pipeline has become a key technology of water-saving agriculture in the worldbecause of high efficiency, simple construction, less land occupation and low maintenancecosts. The irrigation pipe network always uses PVC、PE and other plastic pipe. The pressureof this pipe is relatively low, with often led broken and made the whole system fall intoparalyzed state by water hammer caused by rapid opening and closing valve and pumpstopped. The water hammer damage generated in network is higher than the same excitationin pipeline. With the development of drip irrigation and sprinkler irrigation, the pipe materialdeveloped to the light direction and the structure of network will be more complex, and thewater hammer problems will be more and more outstanding. So research on the unsteady flowproblems in irrigation network has important significance for correct management and safeoperation.
     This paper studies the process of unsteady flow in irrigation network by experiment andnumerical simulation. As initial conditions of unsteady flow calculation, the constant flow isdiscussed in prior. The main research content includes: Study on the resistance characteristicsand flow characteristics of PVC tee pipes and PVC ball valve; Study on the water hammer ofsimple PVC pipe network by Tests and analysis; Discuss and build unsteady flow model ofdrip irrigation and sprinkler irrigation pipe network, and research on water hammer protection;Design the calculation program of unsteady flow. The main results are as follows:
     (1) The resistance of PVC tee pipes was studied and the data was used in the networkcalculation. Due to boundary effects in the bifurcation increased the flow mixing andturbulence, the water flow advanced into the similar pipe drag square zone friction coefficient.The Reynolds number which the local resistance coefficient tended to stable value wan about1.5×105。The resistance coefficient quantitative expression of7kinds of pipes was obtainedby experiment and numerical simulation, which the local resistance coefficient was correlatedwith the flow by second-order parabolic equations. Flow characteristics analysis showed thatthe main reason caused the main branch to side branch due to the loss of direction changesand velocity distribution cause by centrifugal force, and changes main branch to straightbranch was due to the vortex motion and velocity gradient in the straight caused by water shearing and transverse circulation in the large flow ratio.
     (2) The resistance of ball valve was the important parameter to calculate the steady flowand unsteady flow.5kinds of power function of PVC ball resistance coefficient with openingdegree was obtained by experiment and numerical simulation. The flow field analysis showedthat there has flow region and large vortex in the small opening degree which caused greaterhydraulic losses.
     (3) Through comparison of experiment and calculation showed that the MOC methodcan better predict the maximum water hammer pressure in pipe network which the relativeerror between experiment and calculation is less than13%. The pressure wave attenuation ofsimulation is slower than experiment because of the constant flow friction is used in thecalculation. The maximum water hammer pressure is reduced with the closing time extension.The maximum water pressure of difference closure rules was distinct, with the linear closingpattern was maximal, the two-stage straight closing pattern by the second, and the curveclosing pattern was lowest. In the curve closing pattern of power function, the pressuregenerated by power function pattern was less than the parabolic closed mode.
     (4) The unsteady flow mathematical model of drip irrigation pipe network and sprinklepipe network was established and the optimal step processing of pipe segments was studied. Amethod which used the equivalent capillary to replace primary capillary was presented. It wasaffirmed that the processed reflection and transmission of boundary water hammer wave wassimilar to original. The calculation of typical network showed that the double wave was easilyformatted in pipe network when several valve closed simultaneously, and the value ofmaximum water hammer pressure was greater than no overlapping wave. The maximumwater hammer pressure in pipe network was related to the distance of operation value, withthe distance was closer, the pressure was greater. The maximum head of calculation networkwas about2~5times of steady and the maximum water hammer occurred at a time when thevalve completely closed. From the point of view to the wave attenuation, attenuation of waterhammer wave in the pipe network was significantly larger than the long distance pipelineswith conveying fluid because of large nodes and branches in the network which caused muchresistance losses.
     (5) Arranged air tank in pipe network before operation valve and outlet location of pumpcould decrease the maximum water hammer pressure by about30%, and could control thenegative pressure effectively to reduce the probability of water hammer damage.
     (6) The network information expression, design method of coding and unsteady flowcalculation in view of the complex network was introduces based on Visual Basic6platformsystem. It showed that the designed procedure with simple input, calculation and convenient output, which can be used to calculate the actual pipe network.
     (7) The mathematical model established in this paper can be conveniently calculate thewater hammer variation of each part of the whole pipe network, pumping station and the ruleof maximum water hammer pressure, so that indicate the water hammer pressure endangerdegree, range and location to provide a basis for pipe network protection.
引文
白丹.1990.喷灌支管优化设计的图解法.节水灌溉,(3):32~35.
    曹源,金先龙,王建炜,等.2010. T型管及管内流体动态响应仿真研究.振动与冲击,29(4):54~58.
    岑康,李长俊,廖柯熹,等.2005.液体管道瞬变流摩阻的计算方法.西南石油学院学报,27(3):76~79.
    陈怀先,林方标.1987.水击基本方程中斜坡项的影响.河海大学学报,15(3):34~38.
    陈军.滴灌技术的优势及存在问题的分析.中国水运,8(6):161~162.
    程永光,陈鉴治,杨建东.连接管长度对调压井水位波动和水锤压力的影响.水利学报,(5):47~51.
    崔健,李良庚.2002.代数水锤法在复杂供水管网系统瞬态计算中的应用.管道技术与设备,2002,(3):7~10.
    董学佳,于恩禄,李军,等.2009.天然气管网的瞬变流数值模拟研究.哈尔滨商业大学学报(自然科学版),25(1):101~104.
    E. B.怀利, V.L.斯特里特.1978.瞬变流(清华大学流体传动与控制教研组译).北京:水利电力出版社.
    费文平,杨建东,赖旭.1997.水泵断电的数值分析.武汉水利电力大学学报,(30):35~39.
    郭新蕾,杨开林.2009.基于瞬变流和遗传算法的管道泄漏辨识.计算力学学报,26(5):664~669.
    贺益英,赵懿珺,孙淑卿,等.2003.弯管局部阻力系数的试验研究.水利学报,2003,(11):54~58.
    胡建永,张健,索丽生.2007.长距离输水系统工程中空气阀的进排气特性研究.水利学报,增刊:340~345.
    华绍曾等.1985.实用流体阻力手册.北京:国防工业出版社.
    蒋仕章,蒲家宁.2001.水力瞬变特征线法和隐式差分法的对比分析.油气储运,20(1):12~14.
    江帆,黄鹏.2008. Fluent高级应用与实例分析.北京:清华大学出版社.
    季琨,胡瑞法,张林,等.2000.中国农业科技投资经济.北京:中国农业出版社.
    金锥,姜乃昌,汪兴华,等.2004.停泵水锤及其防护(第二版).北京:中国建筑工业出版社.
    康绍忠.1998.新的农业科技革命与21世纪我国节水农业的发展.干旱地区农业研究,16(1):12~17.
    康绍忠.2007.农业水土工程概论.北京:中国农业出版社.
    雷川华,吴运卿.2007.我国水资源现状、问题与对策研究.节水灌溉,(4):41~43.
    李蔼铿.1994.多口出流管道水力设计的微机诺谟图原理的研究.水利学报,(2):1~7.
    李玲,李玉梁,黄继汤,等.2001.三叉管内水流流动的数值模拟与实验研究.水利学报,(3):49~52.
    李敏,劳增江,刘杰.2010.基于非恒定流过渡过程计算的水电站.四川水力发电,29(3):87~100.
    李玉梁,李玲,陈嘉范,等.2003.抽水蓄能电站对称岔管的流动阻力特性.清华大学学报(自然科学版),2003,43(2):270~272.
    李宗礼,赵文举,孙伟,等.2012.喷灌技术在北方缺水地区的应用前景.农业工程学报,28(6):1~6.
    李永欣,李光永,邱象玉,等.2005.迷宫低头水力特性的计算与计算流体动力学模拟.农业工程学报,21(3):12~16.
    练继建,王俊,万五一,等.2003.变时步的特征线法计算复杂输水系统的水力过渡过程.水利水电技术,34(9):12~14.
    廖永诚.1998.管网水锤与调压的分析计算.灌溉排水,5(1):29~41.
    刘昌明,何希吾.1998.中国21世纪水问题方略.北京:科学出版社.
    刘昌明,陈志恺.2001.中国水资源现状评价和供需发展趋势分析.北京:中国水利水电出版社.
    刘延娥.2006.泽州县农业资源与农业可持续发展探讨讨.农产品加工:学刊,(9):63~64.
    刘德有,郜正华.2002,有压管道系统瞬变流计算的时间步长取值方法研究.河海大学常州分校学报,16(6):6~11.
    刘光临,蒋劲.1995.大型轴流泵站停泵水锤的调压塔防护研究.水利水电技术,(2):42~46
    刘光临,刘梅清.1998.多泵并串联复杂泵系统水锤分析及控制农业机械学报,29(3):59~64.
    刘梅清,冯卫民.1995.单向调压塔防护水锤特性的数值模拟与研究.水利学报,(10):23~28.
    刘梅清,孙岚凤,周龙才,等.2004.长管道泵系统中空气阀的水锤防护特性模拟.武汉大学学报(工学版),(4):23~27.
    刘竹青,毕慧丽,王福军.2011.空气阀在有压输水管路中的水锤防护作用.排灌机械工程学报,29(4):333~337.
    刘竹溪,刘光临.1995.泵站水锤及其防护.北京:水利水电出版社.
    刘天顺.2003.瞬变流反闷题分析在给水管网漏失检测中的应用:[硕士学位论文].哈尔滨:哈尔滨工业大学.
    刘华,鞠小明,陈嘉远.1999.供水管道中的水力过渡过程研究.四川大学学报,(1):5~10.
    刘云发.1998.我国大田作物滴灌现状及发展前景.节水灌溉,(4):26~31.
    刘婧.2010.高扬程长距离压力管路停泵水锤技术的数值模拟研究:[硕士学位论文].太原:太原理工大学.
    刘志勇,冯卫民.2001.喷灌系统水锤及其防护.节水灌溉,(2):4~6.
    龙晓辉,周卫军,郝吟菊,等.2010.我国水资源现状及高效节水型农业发展对策.现代农业科技,(11):303~304.
    吕宏兴,裴国霞,杨玲霞.2002.水力学.北京:中国农业出版社
    卢国荣,李英能.2002.加入WTO后我国喷灌设备发展前景与对策.节水灌溉,26(4):29~31.
    马飞,曲世琳,吴一民.2009.给水管网非恒定流动数值计算方法.北京科技大学学报,31(4):423~427.
    毛根海,章军军,程伟平,等.2005.型叉管水力模型试验及三维数值计算研究.水力发电学报,24(2):16~20.
    茅泽育,徐千惠,孙梅,等.2007.结点局部能量损失对管网水力计算的影响.水利水电技术,38(1):78-81.
    孟振虎,陈毅忠,王永忠,等.2000.给水管网水力瞬变分析.江苏石油化工学院学报,12(1):49~52.
    穆祥鹏.2004.长距离输水系统的过渡过程数值计算及水力特性研究.[硕士学位论文].天津:天津大学.
    聂德权.2012.我国喷灌技术发展中的问题探讨.水利科技,(1):101~102.
    邱象玉,王福军.2008.滴灌系统CAD管网布置模型的应用.农业工程学报,24(8):10~14.
    曲世琳,袁一星,伍悦滨,等.2005.长距离输水管线的非恒定流动分析.中国给水排水,21(12):59~61.
    施卫东,董颖,马新华,等.2005.流道截面形状对旋涡泵内部流动影响的数值模拟.农业工程学报,21(3):21~23.
    孙景生,康绍忠.2000.我国水资源利用现状与节水灌溉发展对策.农业工程学报,16(2):1~5.
    田文军.2008.压力管道系统的水锤防护.给水排水动态,(6):28~30.
    万五一,练继建,崔广涛,等.2002.水击特征线计算中重分阻尼系数的时步处理方法.水利水电技术,33(3):17~18.
    王春堂.2001.我国水资源现状及缓解用水紧张现状的措施.排灌机械,19(2):35~36.
    王国丰.2006.喷灌技术及其应用发展建议.黑龙江水利科技,(3):222~223.
    王双明,杨红,潘光在.2003.管网中泵破坏瞬变流的数值模拟.农业机械学报,34(2):34~36.
    王文全,张立翔,闫妍,等.2010.长距离输水系统停泵水锤的数值模拟.农业机械学报,41(11):62~66.
    王文全,张立翔,闫妍.等.2011.压力供水管路事故停泵时缓闭蝶阀关闭方式的优化.北京理工大学学报,31(10):1135~1138.
    王勇.2009.供水系统水锤数值计算及动态模拟:[硕士学位论文].合肥:合肥工业大学.
    王岳,冯玉国,魏同锋.2008.加油系统的管网布置对水力瞬变的影响.辽宁石油化工大学学报,28(1):31~33.
    王芳群,李岚,伍琴琳,等.2010.无负压供水系统中水泵水锤的瞬态分析.流体机械,38(12):26~29.
    王学芳,叶宏开.1995.工业管道中的水锤.北京:科学出版社.
    王瑗,盛连喜,李科,等.2008.中国水资源现状分析与可持续发展对策研究.水资源与水工程学报,19(3):10~14.
    汪顺生,高传昌.2004.管道输水灌溉技术在丘陵地区的应用.排灌机械,22(5):32~34.
    汪志农.2003.灌溉排水工程.北京:中国农业出版社.
    文明.2007.浅谈我国水资源的可持续利用战略.资源与环境,(26):147~147.
    魏闯,李明思,李东伟,等.2012. PVC管网中支管连接方式对干管水锤压力叠加的影响.农业工程学报,28(18):88~97.
    伍悦滨,刘天顺.2005.基于瞬变反问题分析的给水管网漏失数值模拟.哈尔滨工业大学学报,37(11):1483~1485.
    伍悦滨,曲世琳,刘天顺.2006.给水管网系统中的水力瞬态工况模拟.北京科技大学学报,28(5):422~426.
    许仕荣,孙伟.2009.管网叠压供水系统的瞬态模拟.湖南科技大学学报,24(4):47~51.
    许志刚.2009.停泵水锤数值模拟及其可视化技术的研究:[硕士学位论文].长沙:湖南大学.
    薛亦扬.2007.节水灌溉—现代农田的必然选择.中国农业科学,(6):30~31.
    燕在华.1999.水锤的发生于防护.节水灌溉,1999,(2):11~13.
    杨宝奎,朱满林,程虹,等.2007.水锤计算中压力竹迸的分段问题研究.水利水电技术,38:53~55.
    杨开林,董兴林.水电站长输水管道管流气泡动力特性研究.水利学报,29(11):6~16.
    杨开林.2011.控制输水管道瞬态液柱分离的空气阀调压室.水利学报,42(7):805~811.
    杨晓东,栾鸿儒.1993.泵站水锤计算中的自动分段法.中国给水排水,19(3):10~12.
    杨玉思,董茹,井涛,等.2010.水泵全特性曲线对停泵水锤的影响及防护.中国给水排水,26(19):63~66.
    杨玉思,辛亚娟.2006.管网爆管的水力因素分析及防爆技术探讨.中国给水排水,22(21):61~63.
    赵凤娇.2007.喷灌管网系统水力计算方法研究及软件开发.[博士学位论文].北京:中国农业大学.
    赵竞成.1999.喷灌工程技术.北京:中国水利水电出版社.
    詹咏,陈荣,何玉武,等.2012.工程中空气阀防护停泵水锤的应用.上海理工大学学报,34(1):93~97.
    张国祥.1991.微灌毛管水利计算曲线及应用(均匀管坡).喷灌技术,(2):28~32.
    张小康,杨建东.2009.水头损失的CFD计算.中国农村水利水电,(5):105~107.
    张志新.2007.滴灌工程规划设计原理与应用.北京:中国水利水电出版社.
    郑成志,高金良,王焕君,等.2012.长距离平坦输水管线负压防护措施分析.中国给水排水,28(1):39~42.
    郑大琼,赵晓利,张国斌,等.2006.城镇供水管网瞬变流计算.中国给水排水,22(6):42~45.
    郑新民,赵昕.2001.计算水动力学.武汉:武汉大学出版社.
    郑铭,陈池,袁寿其.2000.水锤数值计算的全特性曲线法.农业机械学报,(31):41-44.
    中华人民共和国住房和城乡建设部.2009.微灌工程技术规范(GB/T50485-2009).北京:中国计划出版社.
    中华人民共和国建设部.2007.喷灌工程技术规范(GB/T50085-2007).北京:中国计划出版社.
    周世峰.2004.喷灌工程学.北京:北京工业大学出版社.
    周大雕,李蔼铿.1988.微喷灌.北京:水利电力出版社.
    左巧林,秋穗正,芦苇,等.2012.核反应堆一回路系统水锤数值模拟.核动力工程,33(4):85~90.
    Aaron C. Zecchin L, Martin F, etal.2012. Inverse Laplace Transform for Transient-State Fluid LineNetwork Simulation. J. Eng. Mesh,(138):101~115.
    Afshar M H, Rohani M.2008. Water hammer simulation by implicit method of characteristic. InternationalJournal of Pressure Vessels and Piping,(85):851~859.
    Ahmadi A, Keramat A R.2010. Investigation of fluid-structure interaction with various types of junctioncoupling. Journal of Fluid and Structures,(26):1123~1141.
    Alexander A.1976. Menabreas Note on Water hammer. Journal of the Hydraulics Division, Proc. ASCE,(102):103~115.
    Allievi L.1925. Theory of water hammer(translated by E. E. Halmos). Riccardo Garoni, Rome.
    Andersin A.1976. Menabrea’s note on water hammer. Journal of Hydraulic Engineering, ASCE,102(3):29~39.
    Anwar A.1999. Factor G for pipelines with equally spaced multiple outlets and outflow. Journal ofIrrigation and Drainage Engineering, ASCE,125(1):34~38.
    Anwar A.2000. Inlet pressure for horizontal tapered lateral. Journal of Irrigation and Drainage andDrainage Dngineering, ASCE,126(1):51~63.
    Augus, R W.1935. Simple graphical solutions for pressure rise in pipe and pump discharge lines. Jour.Engineering Institute of Canada,(2):72~81.
    Babaeyan K K.2001. Dimensionless curves for normal-depth calculations in canal sections. Journal ofIrrigation and Drainage Engineering, ASCE,127(6):386~389.
    Bergant A, Simpson A R, Tijsseling A S.2006. Water hammer with column separation: A historical review.Journal of Fluids and Structures,(12):135-171.
    Bralts V F, Segerlind.1985. Finite element analysis o f drip irrigation submain units. Transactions of theASAE,28(3):809~814.
    Brunone B, Golia U M, Greeo M.1991. Modeling Of fast transients by numerical method.9thround TableIahr Group, Valencia,273~280.
    Brunone B, Karney W, Mecarelli M, et al.2000. Velocity profiles and unsteady pipe friction in transientflows. Journal of Water Resource Planning and Management,(8):236~244.
    Bryan W K, Duncan M.1992. Effieient calculation of transient flow in simple networks. Journal ofHydraulic Engineering,118(7):1014~1030.
    Bryan W K.1990. Energy relations in transient closed-conduit flow. Journal of Hydraulic Engineering,116(10):1180~1196.
    Cabelka J, Franc I.1959. Closure Characteristics of a Valve with Respect to Water hammer. Proc.8thCongress, International Assoc. for Hydraulic Research, Montreal, Canada, Aug:66~72.
    Carstens M R, Roller J E.1959. Boundary shear stress in unsteady turbulent pipe flow. Journal of theHydraulics Division,85(HY2):67~81.
    Chaudhry M H.1970. Governing Stabi1ity of a Hydraulic Power Plant. Water Power, April,131~136.
    Daily W L, Hankey W L, Olive R W, et al.1956. Resistance coefficients for accelerated and deceleratedflows through smooth tubes and orifices. Transactions of ASME,(78):1071~1077.
    Duc F.1959. Water column separation. Sulzer Tech Review,(41):154~162.
    Frizell J P.1898. Pressure resulting from changes of velocity of water in pipes. Trans. Amler. Soc. CivilEngrs,(39):1~18.
    Gargouri J, Hadj-Taieb E, Schmitt C, etal.2011. Failure conditions analysis of looped network pipes due towater hammer phenomenon. Mecanique&Industries,12(2):121~137.
    Gargouri J, Jiali A, Hadj-Taieb E, etal.2008. Evaluation of maximum pressure in networks caused by waterhammer phenomenon. Houille Blanche-Revue Internationale De I Eau,(2):83~92.
    Gibson N R.1919. Pressures in penstocks caused by gradual closing of turbine gates. Trans. ASCE,83:707~715.
    Gray C A M.1953. The Analysis of the Dissipation of Energy in Water hammer, Proc. ASCE,199(6):1176~1194.
    Gibson N R.1923. The Gibson method and apparatus for measuring the flow of water in closed conduits.Trans. ASME,45:343~392.
    Haghighi K, Bralts V F, Mohtar R H, et al.1989. Modeling expansion contraction, valve and booster pumpin hydraulic pipe network analysis: a finite element approach. Transactions of the ASAE,32(6):1945~1953.
    Hathoot H M, Abo-Ghobar H M, Al-Amoud A I, etal.1994. Analysis and design of sprinkler irrigationlaterals. Journal of irrigation and drainage engineering, ASCE,120(3):534~549.
    Kong X A, Chen D P.1995. Object-oriented design of FEM programs. Computers and Structures,57(1):157-166.
    Jayaraj K, Ganesan N, Padmanabhan C.2005. A new finite element formulation based on the velocity offlow for water hammer problems. International Journal of Pressure Vessels and Piping,(82):1~14.
    Kang Y H, Nishiy A S.1996. Analysis and design of microirrigation laterals. Journal of Irrigation andDrainage Engineering, ASCE,122(2):75~82.
    Kwon H J, Lee J J.2008. Computer and Experimental Models of Transient Flow in a Pipe InvolvingBackflow Preventers. J.Hydraul.eng,(134):426~434.
    Lai A, Hau K F, Noghrehkar R.2000. Investigation of water hammer in piping network s with voidscontaining non-condensable gas. Nuclear Engineering and Design,197:61~74.
    Lee T S.1999. Air influence on hydraulic transients on fluid system with air valves. Fluids Eng, ASME,(9):646~650.
    Li A K.1988. A model to design micro-irrigation systems. Proc. of fourth international micro-irrigationcongress, Aibury-Wodonga, Australia.
    Meng H B, Liu Y.2012. Experimental on water hammer protection performances of the shuttle check valvein multi-pump parallel connection system. Advanced Mechanical Engineering,(192):37~41.
    Mukunda G R, Sotelino E D, Hsieh S H.1998. Distributed finiteelement computations usingobject-oriented techniques. Engineering with Computers,14(1):59~72.
    Mohamed S G, Sameh G S M, Zhao M.2002. Applicability of Quasisteady and Axisymmetric TurbulenceModels inWater Hammer. Journal Of Hydraulic Engineering,(8):918-920.
    Pudar R S, Liggett J A.1922. Leaks in pipe networks. Journal of Hydraulic Engineering,118(7):1031~1046.
    Richard R T.1956. Water column separation in pump discharge lines. Trans. ASME,(101):79~88.
    Saldivia L A, Bralts V F, Shayya W H, et al.1990. Hydraulic analysis of sprinkler irrigation systemcomponents using the finite element method. Transactions of the ASAE,33(4):1195~1202.
    Scaloppi E J.1988. Adjusted F factor for multiple outlet pipes. Journal of Irrigation and drainageengineering, ASCE,114(1):169~174.
    Schmidt J, Peschel W, Beune A.2009. Experimental and theoretical studies on high pressure safety valves:sizing and design supported by numerical calculations (CFD). Forschung iningenieurwesen-engineering Research,72(2):105~117.
    Shih T H,Liou W W,Shabbir A,et al.1995. A new k-εeddy-viscosity model for high Reynolds numberturbulent flows-model development and validation. Computers Fluids,(3):227~238.
    Silva-Araya W F, Chaudhry M H.1997. Computation of energy dissipation intransient flow. Journal ofHydraulic Engineering,(10):123~124.
    Stephenson D.1997. Effects of air valves and pipework onwater hammer pressure. Journal ofTransportation Engineering, ASCE,(3):101~106.
    Streeter V L.1963. Valve Stroking ton Control Water hammer. Jour. Hyd. Div, ASCE, March,89(4):39~66.
    Streeter V L.1983. Transient cavitating pipe Flow. Journal of Hydraulic Engineering,109(11):1407~1423.
    Strowger E B, Derr S L.1926. Speed changes of hydraulic Turbines for Sudden Changes of Load. Trans.ASME,48:209~262.
    Tian W X, Su G H, Wang G P, etal.2008. Numerical simulation and optimization on valve-inducedwaterhammer characteristics for parallel pump feedwater system. Annals of Nuclear Energy,(35):2280~2287.
    Valiantzas J D.1998. Analytical approach for direct drip lateral hydranlic calculation. Journal of irrigationand drainage engineering, ASCE,119(1):91~115.
    Vardy A E, Hwang K L.1991. A characteristic model of transient friction in pipes. J. of HydraulicResearch,29:669~654.
    Vardy A E, Brown J M B.2003. Transient turbulent friction in smooth pipe Flows. Journal of Sound andVibration,259(5):1011~1036.
    Vitkovsky J P, Simpson A R, Lambert M F.2000. Leak detection and calibration using transients andgenetic algorithms. Joumal of water resources planning and management, ASCE,126(4):262~265.
    Valiantzus J D.2002. Continuous outflow variation along irrigation lateral: effect of the number of outlets.Journal of irrigation and drainage engineering, ASCE,123(1):34~42.
    Wu I P.1975. Design of drip irrigation main lines. Journal of irrigation and drainage engineering, ASCE,101(IR4),265~278.
    Wu I P.1985. A uni-plot for drip irrigation lateral and submain design. Transactions of the ASAE,28(2):522~528.
    Wu I P.1991. Energy gradient line approach for direct hydraulic calculation in drip irrigation design.Irrigation science,(13):20~29.
    Watt C S.1980. Combination of finite different and finite element techniques in hydraulic transientsproblems.3rd Int Conf Pressure Surges. NewYork: BHRA,37~42.
    Water F, Silva-Araya M.1997. Computation of energy dissipation in transient flow. Joumal of HydraulicEngineering,(2):153~160.
    Wood F M.1926. Discussion of speed changes of hydraulic turbines for sudden changes of load. Trans.ASME,(48):56~68.
    Wylie E B, Streeter V L, Suo L S.1993. Fluid transients in system. Engle Wood Cliffs, Prentice-Hall Inc:287~305.
    Zhu M L, Zhang Y H, Wang T.2012. Discussion on operation mode of long distances gravity-fedressurediversion project. Materials Science and Information Technology,(433):7125~7130.
    Zielke W.1968. Frequency-dependent friction in transient pipe flow. Journal of basic engineering,(90):109~115.
    Zohra O, Loraud J C, Ghezal A, etal.2012. An investigation of highly pressurized transient fluid flow inpipelines. International Journal of Pressure Vessels and Piping,(92):106~114.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700