用户名: 密码: 验证码:
天然纤维LS-SBBR工艺强化生物除磷与自养脱氮研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
污水排放中的氮、磷是造成水体富营养化的主要因素,国内外城镇污水处理厂出水的氮、磷排放标准日趋严格。新型生物膜反应器以其结构简单、污泥产量少、除磷脱氮效果较好等优点,重新成为污水强化生物除磷脱氮处理领域工程应用和研究的热点之一。
     论文采用以多孔网状天然纤维丝瓜络(Luffa sponge,LS)为填料的序批式生物膜反应器(SBBR)新工艺(LS-SBBR)进行了城市生活污水和中晚期垃圾渗滤处理的试验研究,对LS-SBBR和分置式重力流膜生物反应器(GS-MBR)生活污水处理中反硝化除磷作用进行了比较,并详细考察了LS-SBBR工艺低碳生活污水处理运行的稳定性以及高氨氮垃圾渗滤液生物膜自养脱氮处理效果及其影响因素。
     在LS-SBBR工艺处理低碳生活污水的试验研究中,LS-SBBR挂膜启动迅速,在试验阶段Ⅰ中COD,NH_4~+-N,TP和TN的处理效率分别达到了71.18%,85.01%,58.19%和64.45%。在随后的阶段Ⅱ中大型后生动物仙女虫在反应器内富集,导致生物膜厚度减少,COD去除率下降至56.11%,出水中有明显的TP、TN释放,其释放率分别达到了92.92%和33.45%,但对硝化过程没有不良影响,NH_4~+-N的去除率由阶段Ⅰ的85.01%上升至95.56%。在阶段Ⅲ中,通过有效控制仙女虫数量,LS-SBBR反应器恢复处理效果。天然纤维LS在污水生物处理中,其本身N、P等营养元素分别由0.3646%和0.0646%下降至0.0378%和0.0238%;试验结果表明LS填料中N、P等物质的释放对生物处理出水没有不良影响。
     在LS-SBBR与GS-MBR均采用A~2O方式运行处理污水时,均实现了反硝化除磷作用;处理出水均达到了《城镇污水处理厂污染物排放标准(GB18918-2002)》中一级A标准;LS-SBBR工艺缺氧段反硝化吸磷量为好氧段吸磷量的39.97%,而GS-MBR工艺为7.12%;GS-MBR工艺缺氧吸磷率较弱的原因是MBR缺氧段缺乏储能物质PHB,致其吸磷和合成聚磷的能力减弱而造成。
     在LS-SBBR工艺处理城市中晚期垃圾渗滤液的试验研究中,采用联合混凝与两级LS-SBBR工艺组合,两级LS-SBBR中均出现了生物膜内好氧亚硝化-厌氧氨氧化脱氮(CANON)现象。试验结果表明:当一级LS-SBBR进水NH_4~+-N负荷为0.104kgNH_4~+-N/(m~3·d),温度在30℃以上,DO为1.29mg/L,游离氨浓度为7.2mg/L时,生物膜内好氧亚硝化-厌氧氨氧化脱氮效果明显,此时反应器内NO_2~--N积累率为48.90%;当一级LS-SBBR进水NH_4~+-N负荷平均为0.229kgNH_4~+-N/(m~3·d)时,两级LS-SBBRCOD平均去除率为64.04%,NH_4~+-N去除率可逐步提高至72.45%。
Discharges of phosphate and nitrogen in the effluent from wastewater treatment plants was becoming the primary factor of eutrophication, and the effluent standards were more and more strict. There are various of novel biofilm wastewater treating bioreactor were developed with simple configuration, low sludge production and effective of phosphate and nitrogen removal. Nowadays the biofilm bioreactor rebecome one of the important research aspect in enhanced biological phosphate removal(EBPR).
     For its netting-like fibrous vascular structural system, the natural fiber, Luffa cylindrical sponge (LS), was utilized as the biofilm support media in a sequencing batch biofilm reactor (LS-SBBR). Experiments on enhanced biological phosphate and nitrogen removal were carried out to disposal the municipal wastewater and metaphase-later landfill leachate with LS-SBBR. Moreover, comparative effect of denitrifying phosphate removal in LS-SBBR and side-stream MBR with gravitation filtration system (GS-MBR) was developed both in lab scale experiments, with comparative experiments on the effect of phosphate uptake in aerobic and anoxic conditions. Investigation of the operational stability with LS-SBBR during the municipal wastewater treatment and the disposal effect of landfill leachate as well as its influence factors under completely autotrophic nitrogen removal over nitrite process (CANON) were implemented simultaneously with the experiments.
     For its porous biological structural speciality, SBBR with Luffa cylindrical sponge media accomplished biofilm forming in less than a week in the light of the operation mode in the experiment of minucipal wastewater treatment, followed an average removal of COD, NH_4~+-N, TP and TN were 71.18%, 85.01%, 58.19% and 64.45%, respectively. At the following operation period, Nais elinguis appeared in the LS-SBBR system, thus induced reduction of the thickness of biofilm and the removal rate of COD decreased to 56.11%. At meantime, TN and TP were released obviously, the releasing rate of TP and TN was 92.92% and 33.45%, respectively, in the appearance of Nais elinguis. While the grazing of Nais elinguis did not influenced the ammonia oxidation and could strengthened it to an extent, NH_4~+-N removal was enhanced from 85.01% to 95.56% in this operation period. The performance of domestic wastewater treatment in LS-SBBR was resumed through discharging excess Nais elinguis. The average nutrient element concentration of nitrogen and phosphorus of Luffa cylindrical sponge was 0.3646% and 0.0646%, respectively, while after the experiment these values decreased to 0.0378% and 0.0238%, respectively, in average. However, the releasing extent of nitrogen and phosphorus from Luffa cylindrical sponge fibers, contrasted to the domestic wastewater disposal under its influent and effluent frequently, as well as organic components, could be eliminated from LS-SBBR system according to research results .
     LS-SBBR and GS-MBR had realized dentrifying phosphate and nitrogen removal under anaerobic-aerobic-anoxic operational mode in comparative biological nutriment removal tests. Quantity of phosphate uptake in anoxic period to aerobic was 39.97% in LS-SBBR while the value was merely 7.12% refer to the GS-MBR. The feebleness phosphate uptake of GS-MBR was the lack of PHB in anoxic period, thus weakened the absorption of phosphate and the anabolism of polyphosphate.
     Completely autotrophic nitrogen removal over nitrite (CANON) was observed in the two-staged sequencing batch bioflim reactor (SBBR) in the experiment of landfill leachate treatment with coagulating pretreatment. The experiment results indicated that the most suitable condition for CANON process was as follows: the volumetric loading of NH_4~+-N was 0.104 kg NH_4~+-N/(m~3·d), the SBBR system temperature above 30℃, DO 1.29mg/L, the free ammonia nitrogen 7.2mg/L, and the accumulation rate of NO_2~--N 48.90%. When the influent loading rate of NH_4~+-N of the first SBBR reached steadily at 0.229 kg NH_4~+-N /(m~3·d), the averaged COD removal was 64.04%, meanwhile the NH_4~+-N removal increased to 72.45%.
引文
[1] Jurg Keller, Zhiguo Yuan, Linda L, et al. Integrating process engineering and microbiology tools to advance activated sludge wastewater treatment research and development[J].Re/Views in Environmental Science & Bio/Technology, 2002 1: 83-97.
    
    [2] Robert J. Seviour, Takashi Mino, Motoharu Onuki. The microbiology of biological phosphorus removal in activated sludge systems[J]. FEMS Microbiology Reviews, 2003, 27: 99-127.
    [3] Luz E. de-Bashan,Yoav Bashan. Recent advances in removing phosphorus from wastewater and its future use as fertilizer (1997-2003) [J]. Water Research, 2004,38:4222-4246.
    [4] Peter A. Wilderer, Hans-Joachim Bungartz, Hilde Lemmer, Michael Wagner, Jurg Keller, Stefan Wuertz. Modern scientific methods and their potential in wastewater science and technology[J]. Water Research, 2002, 36:370-393.
    [5] Linda L. Blackalll, Gregory R. Crocetti, Aaron M. Saunders, et al. A review and update of the microbiology of enhanced biological phosphorus removal in wastewater treatment plants[J]. Antonie van Leeuwenhoek, 2002, 81: 681-691.
    [6] Jinwook Chung, Wookeun Bae. Nitrite reduction by a mixed culture under conditions relevant to shortcut biological nitrogen removal[J]. Biodegradation, 2002,13:163-170.
    [7] Wookeun Bael, Seungcheon Baek, Jinwook Chung, et al. Optimal operational factors for nitrite accumulation in batch reactors[J]. Biodegradation, 2002,12: 359-366.
    [8] Sunjin Hwang, Kwangun Jang, Hyunsup Jang, et al. Factors affecting nitrous oxide production: a comparison of biological nitrogen removal processes with partial and complete nitrification[J]. Biodegradation, 2006,17:19-29.
    [9] Alfieri Pollice, Giuseppe Laera, Massimo Blonda. Biomass growth and activity in a membrane bioreactor with complete sludge retention[J]. Water Research, 2004,38:1799-1808.
    [10] Euan W. Low, Howard A. Chase. Reducing production of excess biomass during wastewater treatment[J]. Water Research, 1999,33(5):1119-1132.
    
    [11] P.A. Wilderer, P. Arnz, E. Arnold. Application of biofilm and biofilm support materials[J]. Water, Air, and Soil Pollution.2000,123: 147-158.
    
    [12] Kolb Frank R. Wilderer Peter A. Activated carbon sequencing batch biofilm reactor to treat industrial wastewater[J].Water Science and Technology, 1997, 35(1):169-176.
    
    [13] Mohan S. Venkata, Rao N. Chandrasekhara, Prasad K. Krishna, et al. Bioaugmentation of an anaerobic sequencing batch biofilm reactor (AnSBBR) with immobilized sulphate reducing bacteria (SRB) for the treatment of sulphate bearing chemical wastewater[J]. Process Biochemistry, 2005, 40(8):2849-2857.
    [14] Zhan Xin-Min, Rodgers Michael, O'Reilly Edmond. Biofilm growth and characteristics in an alternating pumped sequencing batch biofilm reactor (APSBBR) [J]. Water Research, 2006, 40(4):817-825.
    [15] Garzon-Zuniga Marco A., Gonzalez-Martinez Simon. Biological phosphate and nitrogen removal in a biofilm sequencing batch reactor[J]. Water Science and Technology, 1996, 34(1): 293-301.
    [16] A.J.Cooke, R.K.Rowe, B.E.Rittmann, et al. Modelling biochemically driven mineral precipitation in an aerobic biofilms[J]. Water science and technology,1999,39(7):57-64.
    [17] Michael G.Trulear, William G. Characklis. Dynamics of biofilm processes [J]. Journal WPCF, 1982, 54(9):1288-1301.
    [18] Capdeville B., Nguyen K. M. Kinetics and modeling of aerobic and anaerobic film growth [J]. Wat. Sci. Technol., 1990, 22: 149-170.
    [19] Heijnen.J.J., van Loosdrecht. M.C.M. Mulder.A, Tijhuis.L. Formation of biofilm in a biofilm air-lift suspension reactor [J]. Wat. Sci. Technol., 1992, 26: 647-654.
    [20] C.Picioreanu, van Loosdrecht, J.J.Heijnen. Discrete-differential modelling of biofilm structure [J]. Wat. Sci. Tech., t999, Vol 39(7): 115-122.
    [21] M. Espinosa-Urgel, J-L. Rmos. Genetics of biofilm formation [M]: in Biofilms in Medicine Industry and Environmental Biotechnol. 2003 IWA published:49.
    [22] 方芳,龙腾锐,郭劲松,高旭.多孔填料表面物理特性对生物膜附着的影响[J].工业用水与废水.2004,35(6):1-4.
    [23] 江帆,陈维平,张弢,李元元.新型水环境治理材料的研究进展[J].水处理技术.2006,32(2):1-4.
    [24] 张自杰,林崇忱,金儒霖.排水工程(下)[M].北京:中国建筑工业出版社,2000.245-246.
    [25] Alessandro Zampieri, Godwin T.P. Mabande, Thangaraj Selvam, et al. Biotemplating of Luffa cylindrical sponges to self-supporting hierarchical zeolite macrostructures for bio-inspired structured catalytic reactors [J]. Materials Science and Engineering C,2006,26, 130-135.
    [26] M. Ali Mazmanci, Ali Unyayar. Decolourisation of Reactive Black 5 by Funalia trogii immobilised on Luffa cylindrica sponge [J]. Process Biochemistry. 2005, 40, 337-342.
    [27] Noel D. Roble, James C. Ogbonna & Hideo Tanaka. L-Lactic acid production from raw cassava starch in a circulating loop bioreactor with cells immobilized in loofa (Luffa cylindrica) [J]. Biotechnology Letters, 2003, 25, 1093-1098.
    [28] Nasreen Akhtar, Asma Saeed, Muhammed Iqbal. Chlorella sorokiniana immobilized on the biomatrix of vegetable sponge of Luffa cylindrica: a new system to remove cadmium from contaminated aqueous medium [J]. Bioresource Technology, 2003, 88,163-165.
    [29] Asma Saeed, Muhammad Iqbal. Immobilization of blue green microalgae on loofa sponge to biosorb cadmium in repeated shake flask batch and continuous flow fixed bed column reactor system [J]. World Journal of Microbiology & Biotechnology, 2006, 22:775-782.
    [30] C. A. Boynard, J. R. M. D'almeida.. Water absorption by sponge gourd Luffa cylindrical-polyester composite materials[J]. Journal of Materials Science Letters, 1999,18,1789-1791.
    [31] Rowell. R. M., Rowell. J. K., Young. R. A. Paper and Composites from Agro-Based Resources[M]. CRC. Florida, 1997.
    [32] Mohammad L. Hassan. Quaternization and anion exchange capacity of sponge gourd (Luffa cylindrica) [J]. Journal of Applied Polymer Science. 2006, 101:2495-2503.
    [33] 荣宏伟,吕炳南.SBBR工艺同步脱氮除磷处理效能研究[J].广州大学学报(自然科学版).2006,5(5):40-44.
    [34] Pambrun V, Paul E, Sperandio M. Treatment of nitrogen and phosphorus in highly concentrated effluent in SBR and SBBR processes[J]. Water Science and Technology, 2004,50(6):269-276.
    [35] Gieseke A, Arnz P, Amann R, et al. Simultaneous P and N removal in a sequencing batch biofilm reactor: Insights from reactor and microscale investigations [J]. Water Research, 2002, 36(2):501-509.
    [36] Kim H, Rhu D, Hwang H, et al. Performance of a hybrid SBR with fixed bed and suspended growth [J]. Water Science and Technology, 2004, 48(11-12):309-317.
    [37] Kaballo H P, Zhao Y, Wilderer P A. Elimination of p-chlorophenol in biofilm reactors-a comparative study of continuous flow and sequenced batch operation [J]. Water Science and Technology, 1995, 31(1):51-60.
    [38] White D M, Schnabel W. Treatment of cyanide waste in a sequencing batch biofilm reactor [J]. Water Research, 1998, 32(1):254-257
    [39] White D M, Pilon T A, Woolard C. Biological treatment of cyanide containing wastewater [J]. Water Research, 2000, 34(7):2105-2109
    [40] Cho B C, Chang C N, Liaw S L, et al. The feasible sequential control strategy of treating high strength organic nitrogen wastewater with sequencing batch biofilm reactor [J]. Water Science and Technology, 2001, 43(3):115-122.
    [41] Chang C N, Chen H R, Huang C H, et al. Using sequencing batch biofilm reactor (SBBR) to treat ABS wastewater [J]. Water Science and Technology, 2000, 41(4):433-440
    [42] Mohan S Venkata, Rao N Chandrasekhara, Sarma P N. Low-biodegradable composite chemical wastewater treatment by biofilm configured sequencing batch reactor (SBBR) [J]. Journal of Hazardous Materials, 2007, 144(1-2):108-117.
    [43] Kumar B Manoj, Chaudhari S. Evaluation of sequencing batch reactor (SBR) and sequencing batch biofilm reactor (SBBR) for biological nutrient removal from simulated wastewater containing glucose as carbon source [J]. Water Science and Technology, 2003, 48(3):73-79
    
    [44] Chozick R, Irvine R L. Preliminary studies on the granular activated carbon-sequencing batch biofilm reactor [J]. Environmental Progress, 1991,10(4):282-289
    [45] Mino, T., Van Loosdrecht, M.C.M., et al. Microbiology and biochemistry of the enhanced biological phosphate removal process [J]. Water Res., 1998,32, 3193-3207.
    [46] Pramanik, J., Trelstad, P.L., Schuler, et al. Development and validation of a flux-based stoichiometric model for enhanced biological phosphorus removal metabolism[J]. Water Res., 1999, 33,462-476.
    [47] Chuang, S.-H., Ouyang, et al. The biomass fractions of heterotrophs and phosphate accumulating organisms in a nitrogen and phosphorus removal system[J]. Water Res., 2000,34,2283-2290.
    [48] Merzouki M., Delgenes J.-P, Bernet N., et al. Polyphosphate-accumulating and enitrifying bacteria isolated from anaerobic-anoxic and anaerobic-aerobic sequencing batch reactors[J]. Curr. Microbiol., 1999,38, 9-17.
    [49] Merzouki M., Bernet N., Delgenes J.-P., et al. Biological denitrifying phosphorus emoval in SBR: effect of added nitrate concentration andsludge retention time[J]. Water Sci. Technol., 2001,43,191-194.
    [50] Liu, Y.H. Low sludge carbohydrate content: a prerequisitefor enhanced biological phosphate removal[J]. Water Environ. Res., 1999,69,1290-295.
    [51] Liu, Y.H. Relation between sludge carbohydrate content and biological phosphate removal. Water Res., 1998, 32,1635-1641.
    [52] Khin, Than, Annachhatre, et al. Novel microbial nitrogen removal processes [J]. Biotechnology advances, 2004, 22(7): 519-532.
    [53] Paredes. D, Kuschk Peter; Mbwette T.S.A, et al. New aspects of microbial nitrogen transformations in the context of wastewater treatment - A review [J]. Engineering in Life Sciences, 2007, 7(1): 13-25
    [54] Third KA, Paxman J, Schmid M, et al. Treatment of nitrogen-rich wastewater using partial nitrification and Anammox in the CANON process [J]. Water Science and Technology, 2005, 52(4):47-54.
    [55] Jetten M S M, Cirpus I, Kartal B, et al. 1994-2004: 10 years of research on the anaerobic oxidation of ammonium[J]. Biochem SocTrans, 2005, 33:119-123.
    [56] Manipura A., Duncan J.R., Roman H.J, et al. Potential biological processes available for removal of nitrogenous compounds from metal industry wastewater[J]. Process Safety and Environmental Protection, 2005, 83(5B):472-480.
    [57] Pathak BK, Kazama F, Saiki Y, et al. Presence and activity of anammox and denitrification process in low ammonium- fed bioreactors[J]. Bioresour Technol., 2007, 98(11):2201-2206.
    [58] Hellinga C, Schellen A.A.J.C., Mulder J.W., et al, SHARON process: an innovative method for nitrogen removal from ammonium-rich waste water[J]. Water Science and Technology, 1998,37(9):134-142.
    [59] Mulder J.W., Van Loosdrecht M.C.M., Hellinga C, et al, Full-scale application of the SHARON process for treatment of rejection water of digested sludge dewatering[J]. Water Science and Technology, 2001, 43(11):127-134.
    [60]Van Kempen Rogier, Ten Have Cheryl C.R., Meijer S.C.F., et al. SHARON process evaluated for improved wastewater treatment plant nitrogen effluent quality[J]. Water Science and Technology, 2005,52(4):55-62.
    [61] Hwang I.S., Min K.S., Choi E., et al. Nitrogen removal from piggery waste using the combined SHARON and ANAMMOX process[J]. Water Science and Technology, 2005, 52(10-11):487-494.
    [62] Gali A., Dosta J., van Loosdrecht M.C.M., et al. Two ways to achieve an anammox influent from real reject water treatment at lab-scale: Partial SBR nitrification and SHARON process [J]. Process Biochemistry, 2007,42(4):715-720.
    [63] Sliekers A. Olav, Haaijer Suzanne C. M., Stafsnes Marit H., et al, Competition and coexistence of aerobic ammonium- and nitrite-oxidizing bacteria at low oxygen concentrations[J]. Applied Microbiology and Biotechnology, 2005, 68(6):808-817
    [64] A olav Sliekers, K A Third. CANON and Anammox in a gas-lif reactor[J]. FEMS Microbiology Letters, 2003, 218:339-344
    [65] Egli K. Microbial compositio and structure of arotatin biological contactor biofilm treating ammonium-rich waste water without organic carbon[J]. Microb. Ecol., 2003, 45:419-432.
    [66] 孟了,陈永,陈石.CANON工艺处理垃圾渗滤液中的高浓度氨氮[J].给水排水,2004,30(8):24—29
    
    [67] Laanbroek H J, Gerards S. Competition for limiting amounts of oxygen between nitrosomonas europaea and nitrobacteria winogradskyi grown in mixed continuous cultured [J]. Archives of Microbiology, 1993,159: 453-459.
    [68] Garrido J.M, Van Benthum W.A.J, Van Loosdrecht M.C.M, et al. Influence of oxygen concentration on nitrite accumulation in a biofilm airlift suspension reactor[J]. Biotechnology and Bioengineering, 1997,53:168-178.
    [69] Jetten M.S.M.The anaerobic oxidation of ammonium[J]. FEMS Microbiol Reviews. 1999, 22:421-437.
    [70] Tsushima Ikuo, Ogasawara Yuji, Satoh Hisashi, et al, Development of high-rate anaerobic ammonium-oxidizing (anammox) biofilm reactors[J]. Water Research, 2007, 41(8):1623-1634.
    [71] Van Hulle Stijn W.H., Teruel Josefa Lopez, Volcke Eveline I.P., et al. Influence of temperature and pH on the kinetics of the Sharon nitritation process[J]. Journal of Chemical Technology and Biotechnology, 2007, 82(5):471-480.
    [72] Mosquera-Corral A., Gonzalez F., Campos J.L., et al. Partial nitrification in a SHARON reactor in the presence of salts and organic carbon compounds[J]. Process Biochemistry, 2005, 40(9):3109-3118.
    [73] Dapena-Mora A., Fernandez I., Campos J.L., et al. Evaluation of activity and inhibition effects on Anammox process by batch tests based on the nitrogen gas production[J]. Enzyme and Microbial Technology, 2007,40(4):859-865.
    [74] Hao Xiao-Di, van Loosdrecht M.C.M. Model-based evaluation of COD influence on a partial nitrification-Anammox biofilm (CANON) process[J]. Water Science and Technology, 2004, 49(11-12):83-90.
    [75] Hao Xiaodi, Heijnen Joseph J., Van Loosdrecht Mark C. M. Sensitivity analysis of a biofilm model describing a one-stage completely autotrophic nitrogen removal (CANON) process[J]. Biotechnology and Bioengineering, 2001, 77(3):266-277.
    [76] Hao X.-D., Cao X.-Q., Picioreanu C, et al. Model-based evaluation of oxygen consumption in a partial nitrification - Anammox biofilm process[J]. Water Science and Technology, 2005, 52(7):155-160
    [77] Hao Xiaodi, Heijnen Joseph J., Van Loosdrecht Mark CM. Model-based evaluation of temperature and inflow variations on a partial nitrification-ANAMMOX biofilm process[J]. Water Research, 2002, 36(19):4839-4849.
    [78] Arnold E. Boehm, B. Wilderer P.A. Application of activated sludge and biofilm sequencing batch reactor technology to treat reject water from sludge dewatering systems: a comparison[J]. Water Science and Technology,2000,41(1):115-122.
    [79] Mohan S. Venkata. Rao, N. Chandrasekhara, Sarma P.N. Low-biodegradable composite chemical wastewater treatment by biofilm configured sequencing batch reactor (SBBR) [J]. Journal of Hazardous Materials,2007,144(1):108-117.
    [80] Balmelle B, Nguyen M, Capdeville B, et al. Study of factors controlling nitrite build-up in biological p rocesses for water nitrification [J]. Wat Sci Tech, 1992,26 (5-6): 1017-1025.
    [81] 龙腾锐,郭劲松,高旭.连续流间歇曝气工艺脱氮除磷研究[J].中国环境学,2000(4):366-370.
    [82] 荣宏伟,吕炳南.SBBR工艺同步脱氮除磷处理效能研究[J].广州大学学报(自然科学版).2006,5(5):40-44.
    [83] 方茜,张朝升,张可方,荣宏伟.序批式生物膜法处理低碳城市污水高效除磷的试验[J].水处理技术,2006,32(12):31-34.
    [84] 国家环境保护总局《水和废水监测分析方法》编委会.水和废水监测分析方法(第四版)[M].北京:中国环境科学出版社,2002.
    [85] 俞汉青,顾国维.生物膜反应器挂膜方法的试验研究[J].中国给水排水,1992,8(3):13-17.
    [86] Curds C R. The ecology and role of protozoa in aerobic sewage treatment processes [J]. Ann. Rev. Microbiol,1982,36:27-46.
    [87] Madoni P. Microfauna biomass in activated sludge and biofilm[J]. Wat. Sci. Tech., 1994, 29(7):63-66.
    [88] Madoni P, Ghetti P F. The structure of ciliate protozoa communities in biological swage treatment plants [J]. Hydro-biologia, 1981, 83:207-215.
    [89] Rensink J H, Rulkens W. H. Using metazoa to reduce sludge production[J]. Water Science Technology, 1997, 36 (11): 171-179
    [90] Ratsak C H. Grazer induced sludge reduction in wastewater treatment[M]. Vrije University, the Netherlands, 1994.
    [91] Ratsak C H. Effects of Nais elinguis on the performance of an activated sludge plant [J] .Hydrobiologia, 2001, 463: 217-222.
    [92] Rensink J H, Corstanje R, van der Pal J H. A new approach to sludge reduction by metazoa[J]. In 10th European Sewage and Reuse Symposium, Munichen, IFAT 1996: 339-364.
    [93] Janssen P M J, Rulkens W H, Rensink J H, et al. The potential for metazoa in biological wastewater treatment[J]. WQI, 1998,9(10):25-27.
    [94] Berninger U G. The functioning and significance of microbial food webs in freshwater environments[J]. PhD thesis, der Freien Universitfit 1990, Berlin.
    [95] Kuiper J. De rol van protozo6n in de waterzuivering[J]. H_2O, 1973, 6, 491-496.
    [96] Sherr B. F.,Shelf E. B., Hopkinson C. S. Trophic interactions within pelagic microbial communities: indications of feedback regulation of carbon flow[J]. Hydrobiologia,1988,159, 19-26.
    [97] Clarholm M. Microbes as predators or prey. In Current Perspectives on Microbial Ecology. american society for microbiology, Washington, DC.1984,321-326.
    [98] Coleman D. C., Cole C. V., Hunt H. W., et al. Trophic interactions in soils as they affect energy and nutrient dynamics. I. Introduction[J]. Microb. Ecol., 1978,4,345-349.
    [99] Nisbet B. Nutrition and Feeding Strategies in Protozoa[J]. Croom Helm, 1984, London.
    [100] C H Rastak, K A Maarsen, S A L M.Kooijman. Effects of protozoa on carbon mineralization in activated sludge [J]. Wat. Res.,1996,30(1):1-12.
    [101] Sherr B. F., Sherr E. B., Berman T. Decomposition of organic detritus: a selective role for microflagellate protozoa[J]. Limnol. Oceanogr.,1982, 27, 765-769.
    [102] Bloem J. B/ir-Gilissen M. J. B. Bacterial activity and protozoan grazing potential in a stratified lake[J]. Limnol. Oceanogr. 1989, 34, 297-307.
    [103] Bloem J., Albert C., B/ir-Gilissen M. J. B., et al. Nutrient cycling through phytoplankton bacteria and protozoa in selectively filtered lake vechten water[J]. J. Plankton Res.,1989,11, 119-131.
    [104] 王宝贞,李高奇,王琳等.淹没式生物膜法污水处理厂的设计及运行[J].中国给水排水,2000,16(3):16-19.
    [105] 魏源送,刘俊新.利用寡毛类蠕虫反应器处理剩余污泥的研究[J].环境科学学报.2005,25(6):803-808.
    [106] 李军,赵琦,王宝贞等.序批式生物膜法同步除磷脱氮特性研究[J].城市环境与城市生态.2002,15(1):1-3.
    [107] 李军,王宝贞,聂梅生.序批式生物膜法的脱氮特性研究[J].中国给水排水.2004,20(6):1-4.
    [108] 张可方,张朝升,方茜等.序批式生物膜法的脱氮除磷功效研究[J].中国给水排水.2006,22(3):77-80.
    [109] Wentzel M. C., Ekama G. A., Loewenthal R. E., et al. Enhanced polyphosphate organisms cultures in activated sludge systems. Part Ⅱ: experimental behaviour[J]. Water S. A.,1989, 15, 71-81.
    [110] Vlekke G. J. F., Comeau Y., Oldham W. K. Biological phosphate removal from wastewater with oxygen or nitrate in sequencing batchreactors[J]. Environ. Technol. Lett.,1988, 9, 791-796
    [111] Kerrn-Jesperson J. P., Henze M. Biological phosphorus uptake under anoxic and aerobic conditions[J]. Water Res.,1993, 27(4), 617-624.
    [112] Gerber A., de Villiers R. H., Mostert E. S. et al. The phenomenon of simultaneous phosphate uptake and release, and its importance in biological nutrient removal[M]. In Biological Phosphate Removal from Wastewaters, ed. R. Ramadori, Pergamon Press, 1987, Oxford.
    
    [113] Meinhold J., Pedersen H., Arnold E., et al. Effect of continuous addition of an organic substrate to the anoxic phase on biological phosphorus removal[J]. Water Sci. Tech.,1998, 38(1), 97-105.
    [114] Kuba T., Murnleitner E., van Loosdrecht M. C. M., et al. A metabolic model for biological phosphorus removal by denitrifying organisms[J]. Biotech. Bioeng., 1996,52, 685-695.
    [115] Murnleitner E., Kuba T., van Loosdrecht M. C. M., et al. An integrated metabolic model for the aerobic and denitrifying biological phosphorus removal[J]. Biotechnol. Bioeng., 1997,54(5), 434-450.
    [116] Kuba T., Smolders G. J. F, van Loosdrecht M. C. M., et al. Biological phosphorus removal from wastewater by anaerobic-anoxic sequencing batchreactor[J]. Water Sci. Tech., 1993, 27, 241-252.
    [117] Sorm R., Bortone G., Wanner J., et al. Behaviour of activated sludge from a system with anoxic phosphate uptake[J]. Water Sci. Tech., 1998,37(4-5), 563-566.
    [118] Andrew G. Livingston, Jean-Pierre Arcangeli, Andrew T. Boam, et al. Extractive membrane bioreactors for detoxification of chemical industry wastes: process development[J]. Journal of Membrane Science,1998,151, 29-44.
    [119] M. Pankhania, K. Brindle, T. Stephenson. Membrane aeration bioreactors for wastewater treatment: completely mixed and plug-fow operation[J].Chemical Engineering Journal, 1999,73,131-136.
    [120] Seong-Hoon Yoona, Hyung-Soo Kim, Ik-Tae Yeom. The optimum operational condition of membrane bioreactor(MBR): cost estimation of aeration and sludge treatment[J]. Wat. Res., 2004,38, 37-46.
    [121] Wouter Ghyoot, Stefaan Vandaele, Willy Verstraete. Nitrogen removal from sludge reject water with a membranassisted bioreactor[J].Wat. Res., 1999, 33, 23-32.
    [122] Alfieri Pollice, Giuseppe Laera , Massimo Blonda. Biomass growth and activity in a membrane bioreactor with complete sludge retention[J]. Wat. Res., 2004, 38, 1799-1808.
    [123] M. Gander, B. Jefferson, S. Judd. Aerobic MBRs for domestic wastewater treatment: review with cost considerations. Separation and Purification Technology [J]. 2000, 18, 119-130.
    [124]. Tatsuki Ueda, Kenji Hata. Domestic wastewater treatment by a submerged membrane bioreactor with gravitation filtration [J]. Wat. Res., 1999, 33, 2888-2892
    [125] Dae sung lee, Che ok jeon, Jong moon park. Biological nireogen removal with enhanced phosphate uptake in a sequencing batch reactor using single sludge system [J]. Wat. Res. 2001,35(16):3968-3976.
    [126] J.Wiszniowski, D. Robert, J. Surmacz-Gorska, et al. Landfill leachate treatment methods: A review[J]. Environ Chem Lett, 2006,4:51-61.
    [127] 楼紫阳,赵由才,张金.渗滤液处理处置技术及工程实例[M].北京:化学工业出版社.
    [128] Surmacz-Go, rska J. Removal of organics and nitrogen from landfill leachate[J]. In_zynieria S rodowiska. 2000, 44.
    [129] Pelkonen M, Kotro M, Rintala J. Biological nitrogen removal from landfill leachate a pilot-scale study[J]. Waste Manage Res. 1999, 17:493-497.
    [130] Hoilijoki TH, Kettunen RH, Rintala JA. Nitrification of anaerobically pretreated municipal landfill leachate at low temperature[J]. Water Res., 2000,34(5):1435-1446.
    [131] Im J-H, Woo H-J, Choi M-W, et al. Simultaneous organic and nitrogen removal from municipal landfill leachate using an anaerobic-aerobic system[J]. Water Res. 2000, 35(10):2403-2410.
    [132] Luning L, Notenboom G. The membrane bioreactor advanced leachate treatment. In: Christensen TH, Cossu R, Stegrnann R (eds) Proceedings of the sixth international landfill symposium. CISA, Cagliari, Italy, 1997:275-281.
    [133] Jokela JPY, Kettunen RH, Sormunen KM, et al. Biological nitrogen removal from municipal landfill leachate: low-cost nitrification in biofilters and laboratory scale in-situ denitrification[J]. Water Res., 2002, 36:4079-4087.
    [134] Welander U, Henrysson T, Welander T. Biological nitrogen removal from municipal landfill leachate in a pilot scale suspended carrier biofilm process[J]. Water Res. 1998, 32(5):1564-1570
    [135] Ilies P, Mavinic DS. The effect of decreased ambient temperature on the biological nitrification and denitfification of a high ammonia landfill leachate[J]. Water Res.,2001, 35(8):2065-2072
    [136] Martienssen M, Schops R. Biological treatment of leachate from solid waste landfill sites-alternations in the bacterial community during the denitrification process[J]. Water Res.,1997,31(5):1164-1170.
    [137] Jokela JPY, Kettunen RH, Sormunen KM, et al. Biological nitrogen removal from municipal landfill leachate: low-cost nitrification in biofilters and laboratory scale in-situ denitrification[J]. Water Res.,2002,36:4079-4087
    [138] Stephenson T, Pollard SJT, Cartmell E. Feasability of biological aerated filters (BAFs) for leachate treatment. In: Proceedings Sardinia 2003, ninth international waste management and landfill symposium.
    [139] Henderson JP, Besler DA, Atwater JA, et al. Treatment of methanogenic lanfill leachate to remove ammonia using a rotating biological contactor (RBC) and a sequencing batch reactor (SBR) [J]. Environ Technol., 1997,18:687-698.
    [140] Welander U, Henrysson T, Welander T. Biological nitrogen removal from municipal landfill leachate in a pilot scale suspended carrier biofilm process[J]. Water Res., 1998,32(5): 1564-1570.
    [141] Schwarzenbeck N, Leonhard K, Wilderer PA. Treatment of landfill leachate-high tech or low tech? A case study[J]. Water Sci Technol., 2003, 48(11-12):277-284.
    [142] AmokraneA, ComelC, Veron J. Landfill leachate pretreatment by coagulation-flocculation[J]. Water Res.,1997,31:2775-2782
    [143] Tatsi AA, Zouboulis AI, Matis KA, et al. Coagulation-flocculation pre-treatment of sanitary landfill leachates[J]. Chemosphere, 2003,53:737-744.
    [144] Bekbolet M, Lindner M, Weichgrebe D, et al. Photocatalytic detoxication with the thin-film fixed bed reactor(TFFBR): clean-up of highly polluted landfill effluents using a novel TiO2 photocatalyst[J]. Solar Energy.,1996,56:455-469.
    [145] Wenzel A, Gahr A, Niessner R. TOC-removal and degradation of pollutants in leachate using a thin-film photoreactor[J]. Water Res.,1999,33:937-946.
    [146] 郭劲松,罗本福,方芳.生物脱氮研究的新进展—全程自养脱氮工艺[J].环境科学与技术,2005,28(6):102-106.
    [147] 操家顺,蔡娟.新型生物脱氮工艺—CANON工艺[J].中国给水排水,2005,21(8):26-29.
    [148] Sliekers, Derwort N, Campos, et al. Completely autotrophic ammonia removal over nit rite in one reactor[J].Water Res., 2002,36:2475-2482.
    [149] Sliekers, K A Third, W Abma, et al. CANON and Anammox in a gas-lift reactor[J]. FEMS Microbiology Letters,2003,218:339-344.
    [150] van de Graaf AA, Mulder A, de Bruijn P, et al. Anaerobic oxidation of ammonium is a biologically mediated process[J]. Appl. Environ. Microbiol., 1995,61:1246-1251.
    [151] Arnold E., Boehm B., Wilderer P.A. Application of activated sludge and biofilm sequencing batch reactor technology to treat reject water from sludge dewatering systems: a comparison[J]. Water Science and Technology, 2000, 41(1):115-122.
    [152] Mohan S., Venkata. Rao, N. Chandrasekhara, et al. Low-biodegradable composite chemical wastewater treatment by biofilm configured sequencing batch reactor (SBBR)[J]. Journal of Hazardous Materials, 2007, 144(1):108-117.
    [153] Balmelle B, Nguyen M, Capdeville B, et al. Study of factors controlling nitrite build-up in biological processes for water nitrification[J]. Wat Sci Tech, 1992, 26 (5-6):1017-1025.
    [154] 马勇,王淑莹,曾薇,等.A/O生物脱氮工艺处理生活污水中试(一)短程硝化反硝化的研究[J].环境科学学报,2006,26(5):703-709.
    [155] Abeling U, Seyfried C F. Anaerobic-aerobic treatment of high strength ammonia wastewater nitrogen removal via nitrite[J]. Wat. Sci. Tech.., 1992,26: 1007-1015.
    [156] Balmelle B, Nguyen M, Capdeville B, et al. Study of factors controlling nitrite build-up in biological p rocesses for water nitrification [J]. Wat. Sci. Tech., 1992,26 (5-6):1017-1025

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700