用户名: 密码: 验证码:
耐磨堆焊用无渣自保护药芯焊丝及其冶金行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
无渣自保护药芯焊丝无需保护气源、焊剂,焊后无渣,熔敷速度明显高于普通的药芯焊丝和实芯焊丝,这些优点契合了大型设备如辊压机对修复效率的内在需求,为大型、超大型构件的高效、自动化堆焊修复提供了新的有效途径。本文针对辊压机辊面的磨损失效及堆焊修复现状,提出并按照气体-金属联合保护的思想,研制了一种环境友好型无渣自保护药芯焊丝。该焊丝焊接工艺性能较佳,堆焊层硬度在58~67HRC范围,耐磨性能优良。在此基础上,本文围绕无渣自保护药芯焊丝工艺性能和耐磨性能展开了系统的研究。
     研究认为,无渣自保护药芯焊丝的飞溅主要有四种类型:电弧斥力飞溅、电爆炸飞溅、气体析出飞溅和蒸汽阻力飞溅。利用一次回归正交设计试验方案,建立了药芯组分硼铁、锰粉、石墨、铝镁合金和硅铁对飞溅组成的数学模型。并从表面张力、焊接电弧导电性、气体析出、焊接反应放热程度等四个方面对无渣自保护药芯焊丝飞溅行为机理展开了系统的研究,认为添加能够降低熔滴表面张力、提高电弧导电性、减小气体析出或焊接反应放热程度的药芯组分,有利于降低飞溅率。通过药芯组分调整飞溅率最小仅0.57%。分析了无渣自保护药芯焊丝的环保特性。与目前常用的手工焊条或CO2气体保护堆焊相比,它节约了大量的能耗,并减少排放。
     依托自主搭建的高速摄影观察平台和电弧物理监测系统,在国内外首次对无渣自保护药芯焊丝熔滴过渡行为展开系统研究。发现无渣自保护药芯焊丝熔滴过渡过程中频繁的熔渣飞溅,即“渣溅”这一特有的现象;认为其熔渣与熔融金属高温下线膨胀系数相差大,熔渣本身的体积较小,熔滴在过渡过程中自身快速旋转的事实,是形成““渣溅”的根本原因。“渣溅”的发生成功解释了合金元素脱氧保护之后氧化产物的去向问题,它是导致焊后焊道表面没有熔渣的基本原因。建立了“渣溅”的简单模型。提出了熔滴过渡的几种形态:排斥过渡、表面张力过渡、颗粒过渡和爆炸过渡。排斥过渡和表面张力过渡是无渣自保护药芯焊丝的主要过渡方式。并对其形成机理以及熔滴过渡形态对焊接电弧的影响进行了研究,从焊接工艺参数和药芯组分两个方面探讨熔滴过渡形态的调控方法。
     通过试验确立了无渣自保护药芯焊丝的基本合金系:Fe-Cr-B-C。分别调整药芯组分中石墨、硼铁含量,研究了C、B及B/C对Fe-Cr-B-C系堆焊合金凝固组织的影响规律。石墨促进了堆焊层组织先析碳化物的形成,同时抑制了共晶碳化物的生长,并使得先析碳化物趋于垂直于母材表面生长。随着石墨含量的增加,洛氏硬度值逐渐增加;当石墨含量超过6%后,硬度值增幅放缓。在具体Fe-Cr-C合金系下,不足5%的B添加量就可以使得组织中获得90%以上的碳化物。随着硼铁含量从0增加至12%,Fe-Cr-Ti-C合金组织中先析碳化物的直径从9um增加至20um,同时碳化物体积分数从14.10%增加至36.00%,合金硬度从55HRC增加至65HRC。在药芯中硼铁和石墨添加总量一定的条件下,随着硼铁的比重增加,硬质相的尺寸趋于减小。
     在Fe-Cr-B-C合金系的基础上继续添加含量变化范围较宽的钛铁及铌铁,系统的研究了Ti和Nb对无渣自保护药芯焊丝堆焊合金组织和耐磨性的影响,并揭示了堆焊合金的耐磨机制。钛铁的添加促进堆焊层中高硬度TiC碳化物的形成。TiC可作为M7(C, B)3(M=Cr, Fe, Mn)碳化物的形核核心,并减少M7(C, B)3碳化物的数量。由于形成TiC的过程中消耗了一定量的C,当钛铁含量增至24%时,堆焊合金组织由过共晶组织转变为亚共晶组织。钛铁的添加使得合金具有更高的硬度和细化的组织,因而有利于改善堆焊合金的耐磨性能。当钛铁添加量增加至24%时,磨损量14.9mg,达到最小值。随着药芯中铌铁的添加,M7(C, B)3碳化物的数量逐渐减少,且NbC的数量增多。当铌铁含量添加至18%时,堆焊合金由过共晶转变为共晶组织;当铌铁含量继续添加到24%时,堆焊合金的组织继续转化为亚共晶组织。不加铌时堆焊合金的硬度值为58.9HRC,当药芯中铌铁含量增加至18%时堆焊合金的硬度值达到64.3HRC。当药芯中铌铁添加量继续增加至24%,堆焊合金的硬度值有所回落,为62.7HRC。另一方面,药芯中铌铁含量从0增加至18%时,磨损失重随着药芯中铌铁含量的增加而不断减小;继续增加铌铁含量至24%,磨损失重值不再有明显变化。
     随着药芯中钛铁或铌铁的添加,堆焊合金的组织出现了尺寸较小、硬度极高的MC (M=Ti/Nb)型碳化物,同时堆焊合金中先析M7(C, B)3碳化物的数量和尺寸均不断减少,并且基体组织得到了Cr的固溶强化。这一成分和组织变化导致了堆焊合金磨损机理的变迁:由强化前的微裂纹机制转变为得到Nb或Ti强化堆焊合金时的微切削和经历多次塑形变形所导致的微犁耕机制。
     利用有限元辅助设计了无渣自保护药芯焊丝辊压机辊面堆焊制造工艺。在考虑焊接残余应力的情况底下,利用有限元方法展开对堆焊辊体工作应力分布的模拟分析,结果表明在堆焊四层的情况下,较佳的堆焊工艺为:缓冲层堆焊3层(厚度为60mm),耐磨层堆焊1层(厚度为20mm)。此时,辊压机工作时的最大应力值出现在距离堆焊表面约15mm处,且为558MPa。该结果为成功将无渣自保护药芯焊丝应用于辊压机堆焊修复制造打下了良好的基础。
Slag-free self-shielded flux cored wires have several advantages, such as simple weldingprocedure (not need shielding gas, flux and slag clearing), high deposition rate as compared to thecommon flux-cored wires and solid wires, which offer effective support to the automatic hardfacingfor heavy equipments. In this paper, a new type of slag-free self-shield flux-cored wire was developed.This wire possessed excellent processing properties and wear resistance. The hardness were among58~67HRC. On this basis, the processing properties and wear resistance of slag-free self-shieldedflux cored wires were studied.
     The spatter of slag-free self-shielded flux cored wires typically classified into four types as arcrepulsion force spatter,electrically exploding spatter, gas precipitation spatter and metal vaporpressure. The mathematics model of quantitative relation between spatter and cored-wirecompositions was established using an orthogonal regression design. The mechanism of spatter wasanalyzed from surface tension, electrical conductivity of arc, gas precipitation and exothermicreaction. The cored-wire compositions which reduced surface tension, increased electricalconductivity of arc, reduced the amount of gas precipitation and exothermic reaction contributed tothe decrease of spatter rate. The smallest spatter rate (0.57%) was got by adjusting flux-coredcomposition. For the environmentally aware, the slag-free self-shielded flux cored wires were alsostudied. By comparising the shielded metal arc welding and CO2gas shielded arc welding, slag-freeself-shielded flux-cored contributed to energy saving and emission reduction.
     The dropt transfer of slag-free self-shielded flux cored wires was studied using self-made highspeed photography apparatus and arc physics monitoring system. The results showed that the slagspattered continually in the welding process, which named “slag spatter”. It was discussed that theformation of slag spatter was caused by the great difference of coefficience of linear expansionbetween slag and droplet, small volume of slag and rapid rotation of droplet. The feature of slagspatter was successful in explaining oxidation products where they gone, it was what caused weldbond without slag.
     Moreover, the droplet transfer classified into four types, namely repelled transfer, surface tensiontransfer, drop transfer and explosive transfer. Among them, repelled transfer and surface tensiontransfer were the main droplet transfer. In addition, the effect of mode of droplet transfer on arc wasstudied. Finally, the effects of welding parameter and cored-wire compositions on the mode of droplettransfer were also studied.
     The alloy system of slag-free self-shielded flux cored wire was determined as Fe-Cr-B-C.Especially, the effects of graphite, Fe-B and Fe-B/graphite on the microstructure of Fe-Cr-B-Chardfacing alloys were studied. The graphite promoted the growth of primary carbides perpendicularto the surface of base metal and restrained the growth of eutectic carbides. The hardness wasincreased rapidly with the carbon content increased to6%, and then increased more slowly. When theB content was about5%, the volume of carbides exceeded90%. Moreover, the average diameter ofM7(C, B)3(M=Cr, Fe mainly) carbide was increased from9to20um and carbide volume fraction(CVF) was increased from14.10%to36.00%with the boron content increasing from0to1.4%inFe-Cr-Ti-C alloy. When the total content of graphite and Fe-B remained the same, the size of thecarbides was reduced, the shape of the carbides became grain-like and the distribution of the carbidesbecame diffuse with the increase of the proportion of Fe-B.
     Fe-Nb and Fe-Ti were added into Fe-Cr-B-C slag-free self-shielded flux-cored wire and theeffects of Ti and Nb on the alloy microstructure and wear resistance were investigated. TiC existed inthe iron-based hardfacing alloy due to the addition of Fe-Ti, and it acted as the nucleus of the primaryM7(C, B)3carbides (M=Cr, Fe, Mn). TiC decreased the amount of M7(C, B)3carbides when titaniumwas added into the alloys. When24wt.%Fe-Ti was added, the alloy microstructure was changedfrom a hypereutectic structure to a hypoeutectic one due to the formation of TiC, which consumed amass of carbon. The addition of titanium into iron-based hardfacing alloy was beneficial to the wearresistance with respect to the higher hardness and refined microstructure. The wear loss of the samplewith24wt.%Fe-Ti was the smallest (14.9mg). On the other hand, NbC acted as the nucleus of theprimary M7(C, B)3carbides and decreased the amount of M7(C,B)3carbides when niobium was addedinto the alloys. When18wt.%Fe-Nb was added, the microstructure of hardfacing alloy transformedfrom a hypereutectic structure to a eutectic one due to the formation of NbC, which consumed a massof carbon. Moreover, the microstructure changed into a hypoeutectic structure when the Fe-Nbcontent was up to24wt.%. The hardness of Nb-free hardfacing alloy was58.9HRC. When theFe-Nb content was increased to18%, the hardness was64.3HRC. However, its hardness wasdecreased to62.7HRC when the Fe-Nb content reached to24%. The wear loss of the hardfacingalloy with18wt.%Fe-Nb addition was the smallest among all the alloys.
     With the addition of Fe-Ti or Nb-Fe, the MC-type carbide (M=Ti/Nb) with small size and highhardness was precipitated, the amount and size of M7(C, B)3carbides were both reduced, and thematrix was enhanced by solid solution strengthening of Cr. The main abrasive wear mechanismchanged from microcracking to microcutting and microploughing resulting from times of plastic deformation due to the formation of MC and the reduction of primary M7(C, B)3carbides.
     Hardfacing processing of roller press was simulated by the finite element method (FEM). Theworking stress distribution in roller press was analyzed considering welding residual stress. Theresults showed that when the hardfacing layer has three buffer layers (60mm in thickness) and onewearing layer (20mm in thickness), the maximum stress was558MPa and occurred at the region15mm below the hardfacing surface. It was the optimal hardfacing processing. The results providefundamental base for the further application for hardfacing roller press by using slag-free self-shieldedflux cored wire.
引文
[1]李坚利,周惠群.水泥生产工艺[M].武汉:武汉理工大学出版社,2008.
    [2]魏建军,潘健,黄智泉等.耐磨堆焊材料在我国水泥工业中的应用[J].中国表面工程,2006,19(3):9~13.
    [3] Keeler T. Innershield Welding Part I:development and applications [J]. Metal Construction,1981,13(11):667~673.
    [4]李恒,李国华,胡连海等.长距离输油输气管线建设中焊接设备的选型[C].第十次全国焊接会议论文集,哈尔滨:黑龙江人民出版社,2001,436~439.
    [5]叶罗欣A A.熔焊原理(张炳范译).北京:机械工业出版社,1981,172~180.
    [6] Killing R. Welding with self-shielded flux-cored wires-the mechanism of shielded and droplettransfer [J]. Metal Construction,1980,12(9):433~436.
    [7]陈邦固,雷万钧.“滞熔”现象对碱性气保护药芯焊丝飞溅的影响[J].焊接技术,1995,(6):4~5.
    [8]张占伟. X80管线钢用自保护药芯焊丝的研究,[博士学位论文].天津:天津大学,2009.
    [9] SIS L B. Welding flux cored electrodes in N2-CO2and N2-Ar Atmospheres [J]. Welding Journal,1977,(7):211~216.
    [10]Vaidya V V. Flux-cored Arc Welding Wire [J]. Canadian Welder and Fabrieation,1989,(6):33~38.
    [11]栗卓新.自保护药芯焊丝及其冶金过程的研究,[博士学位论文].天津:天津大学,1994.
    [12]唐伯钢,尹士科,王玉荣.低碳钢与低合金高强度钢焊接材料[M].北京:机械工业出版社,1987.
    [13]罗志昌.药芯焊丝-焊接领域中的高技术[J].焊管,1991,14(2):42~49.
    [14] Lancaster J F. The Physics of Welding [M]. Pergamon Press,1984.
    [15]尹士科,王勇,喻萍.电弧焊的熔滴过渡现象综述[J].焊接技术,2011,40(12):1~5.
    [16] Li Z X, Chen B G, Huang F P. Study on metal transfer modes of self-shielded flux-cored weldingwire [J]. Chinese Journal of Mechanical Engineering,1999,12(1):1~7.
    [17]王宝,宋永伦.焊接电弧现象与焊接材料工艺性[M].北京:机械工业出版社,2012.
    [18] Liu H Y, Li Z X, Li H, et al. Study on metal transfer modes and welding spatter characteristics ofself-shielded flux cored wire [J]. Science and Technology of Welding and Joining,2008,13(8):777~780.
    [19]栗卓新,陈邦固,雷万钧等.药芯组成对碱性自保护药芯焊丝脱渣性影响的研究[J].机械工程学报,2001,37(10):75~78.
    [20]潘川,喻萍,李少华.自保护药芯焊丝熔滴过渡特点的研究[J].焊接技术与应用,2007,36(1):59~60.
    [21]刘海云,栗卓新,史耀武.自保护药芯焊丝工艺性评价[J].焊接学报,2011,32(5):101~104.
    [22] Kim C H, Ahn Y N, Lee K B. Droplet transfer during conventional gas metal arc and plasma-gasmetal arc hybrid welding with Al5183filler metal [J]. Current Applied Physics,2012,12(2):178~183.
    [23] Rao Z H, Liao S M, Tsai H L. Effect of shielding gas composition on metal transfer phenomenain high current GMA welding [J]. Journal of Applied Physics,2010,107(4):902~911.
    [24] Huang Y, Zhang Y M. Laser-enhanced metal transfer–Part II: Analysis and Influence Factors [J].Supplement to the Welding Journal,2011,90(11):205~210.
    [25]王宝.焊条电弧物理与悍条工艺性设计[M].北京:机械工业出版社,1998.
    [26]云绍辉,柳刚,韩国明.熔化极气体保护焊熔滴过渡检测方法现状与展望,[博士学位论文].天津:天津大学,2000.
    [27] Souza D, Resende A A, Scotti A. A qualitative model to explain the polarity influence on thefusion rate in the MIG/MAG process [J]. Welding International,2010,24(12):934~941.
    [28] Pal K, Bhattacharya S, Pal S K. Investigation on arc sound and metal transfer modes for on-linemonitoring in pulsed gas metal arc welding [J].Journal of Materials Processing Technology,2010,210(10):1397~1410.
    [29]武传松,陈茂爱,李士凯. GMAW焊接熔滴长大和脱离动态过程的数学分析[J].机械工程学报,2006,42(2):76~81.
    [30]何建萍.短路过渡GMAW动态过程建模及系统动态过程的研究,[博士学位论文].上海:上海交通大学,2005.
    [31]李士凯.脉冲GMAW焊接熔滴过渡主动控制模式的数值分析,[硕士学位论文].济南:山东大学,2004.
    [32]栗卓新,张征,刘海云. GMAW焊接熔滴过渡模型的研究进展[J].中国工程机械,2007,18(12):1501~1504.
    [33]宋政,李芳,华学明等. GMAW熔滴过渡数值模拟的研究进展[J].焊接,2006,35(19):65~68.
    [34] Allum C J. Metal transfer in arc welding as a varicose instability. II. Development of a model forarc welding [J]. Journal of Physics D: Applied Physics,1985,(18):1447~1468.
    [35] Chang C Y, Wu C W. Microstructural and abrasive characteristics of high carbon Fe-Cr-Chardfacing alloy [J]. Tribology International,2010,43(5-6):929~934.
    [36] Buchanan V E. Solidification and microstructural characterisation of iron-chromium basedhardfaced coatings deposited by SMAW and electric arc spraying [J].Surface and CoatingsTechnology,2009,(203):3638~3645.
    [37] Lu L H, Soda A, Lean M. Microstructure and mechanical properties of Fe-Cr-C eutecticcomposites [J]. Materials Science and Engineering,2003,347(1-2):214~222.
    [38] Buytoz S. Microstructural properties of M7C3eutectic carbides in a Fe-Cr-C alloy [J].MaterialsLetters,2006,60(5):605~608.
    [39] Choo S H, Kim C K, Euh K,et al. Correlation of microstructure with the wear rasistance andfracture roughness of hardfacing alloys reinforced with complex carbides [J]. Metallurgical andMaterials Transactions,2000,(31):3041~3052.
    [40] Xing S L, Yu S F, Deng Y, et al. Effect of cerium on abrasive wear behavior of hardfacingalloy[J]. Journal of Rare Earths,2012,30(1):69~73.
    [41] Zhou Y F, Yang Y L, Jiang Y W, et al. Fe–24wt.%Cr–4.1wt.%C hardfacing alloy:Microstructure and carbide refinement mechanisms with ceria additive [J]. MaterialsCharacterization,2012,72:77~86.
    [42] Jiang M, Li Z X, Wang YJ, et al. Effect of vanadium on microstructures and properties ofFe–Cr–C self-shielded metal cored hardfacing alloys [J]. Science and Technology of Weldingand Joining,2008,13(2):114~117.
    [43] Wang X H, Zhang M, Du B S, et al. Microstructure and wear properties of in situ multiplecarbides reinforced Fe based surface composite coating produced by laser cladding [J]. MaterialsScience and Technology,2010,(26):935~939.
    [44] Wu X J, Xing J D, Fu H G, et al. Effect of titanium on the morphology of primary M7C3carbides in hypereutectic high chromium white iron [J]. Materials Science and Engineering A,2007,(457):180~185.
    [45] Zhi X H, Xing J D, Fu H G, et al. Effect of niobium on the as-cast microstructure of hypereutectichigh chromium cast iron [J]. Materials Letters,2008,62(6-7):857~860.
    [46] Wang Q B, Li X Y. Effects of Nb, V, and W on microstructure and abrasion resistance of Fe-Cr-Chardfacing alloys[J], Welding Jounal,2010,89:133~139.
    [47] Archard J F. Contact and rubbing offlat surfaces [J]. Journal of Applied Physics,1953,24:981~988.
    [48]Suh N P. The delamination theory of wear [J]. Wear,1973,25(1):111~124.
    [49]王成彪,刘家俊,韦淡平等.摩擦学材料及表面工程[M].北京:国防工业出版,2012.
    [50] Kumar S, Mondal D P, Jha A K. Effect of microstructure and chemical composition of hardfacingalloy on abrasive wear behavior [J]. Journal of Materials Engineering and Performance,2000,9(6):649~655.
    [51] Prasad B K, Prasad S V. Abrasion-induced microstructural changes during low stress abrasion ofa plain carbon (0.5%C) steel [J].Wear,1991,151(1):1~12.
    [52] Dasgupta R, Prasad B K, Jha A K, et al. Wear characteristics of a hardfaced steel in slurry [J].Wear,1997,209(1-2):255~262.
    [53] Zum Gahr K H. Wear by hard particles [J]. Tribology International,1998,31(10):587~596.
    [54] Buchely M F, Gutierrez J C,León L M, et al.The effect of microstructure on abrasive wear ofhardfacing alloys[J]. wear,2005,259(1-6):52~61.
    [55] Jankauskas V, Kreivaitis R, Mil ius D, ea al. Analysis of abrasive wear performance of arcwelded hard layers [J], wear,2008,265(11-12):1626~1632.
    [56]王智慧,贺定勇,蒋建敏,崔丽. Fe-Cr-C耐磨堆焊合金磨粒磨损行为[J].焊接学报,2010,131(11):73~76.
    [57]李勇,贺定勇,索红莉等.等离子弧堆焊TiC增强NiTi合金的组织和耐磨性[J].材料热处理学报,2013,34(3):136~139.
    [58]龚建勋,李丹,肖逸锋.铁-碳-铬-钒-钛系药芯焊丝堆焊层的显微组织及耐磨性能[J].机械工程材料,2010,34(11):42~45.
    [59]宗琳,刘政军,高海亮等.等离子熔覆铁基堆焊合金显微组织与耐磨性[J].沈阳工业大学学报,2011,33(4):382~385.
    [60]杨可,包晔峰.氮合金化堆焊硬面合金的抗冲蚀磨损性能研究[J].材料工程,2013,(3):6~9.
    [61]陈伯蠡.焊接冶金原理[M].北京:清华出版社,2007.
    [62] Rosenthal D. Mathematical theory of distribution during welding and cutting [J]. Welding Journal,1941,20(5):220~234.
    [63] Winczek J. Modelling of heat affected zone in cylindrical steel elements surfaced by welding [J].Applied Mathematical Modelling,2012,36(4):1514~1528.
    [64] Picasso M, Hoadley A F. Finite element simulation of laser surface treatments includingconvection in the melt pool [J]. International Journal of Numerical Methods for Heat&Fluid Flow,1994,4(1):61~83.
    [65] Zhang C (Sam), Li L J, Deceuster A.Thermomechanical analysis of multi-bead pulsed laserpowder deposition of a nickel-based superalloy [J]. Materials Processing Technology,2011,211(9):1478~1487.
    [66]李冬林,于有生,温家伶.堆焊温度场的三维动态有限元模拟[J].武汉理工大学学报.2002,26(5):671~673.
    [67]孟庆国,方洪渊,杨建国等.多道焊温度场数值模拟及其分布规律研究[J].机械工程学报,2005,41(1):124~128.
    [68]杜晗婷,陈冰泉,牟军伟等.轧辊堆焊温度场的动态有限元模拟[J].电焊机,2007,37(11):44~48.
    [69] Bhanu Kiran V T, Krishna M, Praveen M, et al. Numerical simulation of multilayer hardfacing onlow carbon steel [J]. IACSIT International Journal of Engineering and Technology,2011,3(1):53~63.
    [70] Punitharani K, Muragun N, Sivagami S M. Finite element analysis of residual stresses anddistortion in hardfaced gate valve [J]. Journal of Scientific&Industrial Research,2010,69(2):129~134.
    [71] Yang Q X, Yao M, Park J K. Numerical simulations and measurements of temperature and stressfield in medium-high carbon steel specimen after hard-face-welding [J], Computational MaterialsScience,2004,29:37~42.
    [72]王志锋,陈佩寅,吴伟等.厚板带极埋弧堆焊温度场的有限元模拟[J].焊接学报,2009,30(1):89~92
    [73]梁晓燕.中厚板多道焊焊接过程中温度场和应力场的三维数值模拟,[硕士学位论文].武汉:华中科技大学,2004.
    [74]郭小燕.冶金轧辊堆焊层表面开裂失效分析及其有限元分析,[硕士学位论文].大连:大连海事大学,2011.
    [75] Cunningham J C, Winstead D, Zavaliangos A. Understanding variation in roller compactionthrough finite element-based process modeling [J]. Computers and Chemical Engineering,2010,34(7):1058~1071.
    [76] Sch nert K, Sander U. Sleat stresses and material slip in high pressure roller mills [J]. PowderTechnology,2002,122:136~144.
    [77]李欣,王国强.辊压机主要工作参数的确定[J].中国水泥,2003,(7):23~26.
    [78]刘义,陈国定,李济顺等.辊磨机磨辊强度有限元仿真分析[J].矿山机械,2007,(12):100~102.
    [79] Prigogine I, Defay R.Chemical Thermodynamics [M]. London: Longmans,1954.
    [80] Richardson F D. Physical chemistry of melts in metallurgy [M]. London and New York:Academic Press,1974.
    [81]汪中玮,张清辉.硅硼系无渣堆焊焊条在工业生产中的应用[J].焊接技术,2002,30(4):43~44.
    [82]李达,郝飞飞,刘庆峰等.高铬铸铁型自保护药芯焊丝堆焊组织与性能分析[J].燕山大学学报,2009,33(3):215~219.
    [83]李云雁,胡传荣.试验设计与数据处理(第二版)[M].北京:化学工业出版社,2008.
    [84]安藤弘平,长谷川光雄.焊接电弧现象(施雨湘译)[M].北京:机械工业出版社,1982.
    [85]孟庆森,王宝.焊条药皮组成物对熔滴表面张力的影响[J].焊接学报,1993,14(2):63~68.
    [86]姜焕中.电弧焊及电渣焊[M].北京:机械工业出版社,1988.
    [87]王宝,杨林,王勇.焊条典型熔滴过渡形态的判读[J].焊接学报,2006,27(11):95~98.
    [88]田志凌,潘川,梁东图.药芯焊丝[M].北京:冶金工业出版社,1991.
    [89]吴振卿,卢广玺,关绍康等.型内感应加热双金属复合磨辊的研制[J].铸造,2005,54(2):190~192.
    [90] H舒尔兹.陶瓷的物理及化学原理(黄照柏译)[M].北京:中国建筑工业出版社,1975.
    [91]张文钺.熔焊工艺及原理[M].北京:机械工业出版社,1980.
    [92]殷树言,郑兵,姜伟雁.粗丝CO2气体保护焊熔滴过渡与潜弧机理的研究[J].金属科学与工艺,1989,8(2):95~103.
    [93]张富巨,王燕,张晓昱.药芯焊丝电弧焊电弧形态与熔滴过渡行为的研究[J],焊接技术,2004,33(4):11~13.
    [94]王星.金属粉芯型药芯焊丝熔滴过渡及飞溅的试验研究,[硕士学位论文].太原:太原理工大学,2012.
    [95]王宝.焊接电弧物理与焊条工艺性设计[M].北京:机械工业出版社,1998.
    [96]葛哲学,陈仲生. Matlab时频分析技术及其应用[M].北京:人民邮电出版社,2006.
    [97] Gabor D. Theory of communication [J]. Electrical Engineers,1946,93(26):429~441.
    [98] Al-Erhayem O. Analysing Conceptual problems of arc welding electrical parameters [R],symposium on joining of materials,1996.
    [99] Kobayashi M, Maki S, Hashimoto Y, et a1. Investigations on chemical composition of weldingfumes [J]. Welding Journal,1983,62(7):190~196.
    [100]符寒光,胡开华.高硼铸造耐磨合金研究的进展[J].现代铸铁,2005,3:33~37.
    [101] Lorinczi J, Kralik G, Kovacs M, et al. Investigation of the relationships between materialproperties and processing parameters of boron micro-alloyed quenched and tempered steels[J].Materials Science Forum,2003,414-415:267~274
    [102] Baarman M H. Effect of boron additions on continuous cast low-carbon steel wire [J].Scandinavian Journal of Metallurgy,1998,27(4):148~158
    [103]硼钢.本溪钢铁公司第一炼钢厂[M].北京:冶金工业出版社,1977.
    [104]刘仲礼,李言祥,陈祥等.高硼铁基合金在不同铸型中凝固的组织与力学性能[J].金属学报,2007,43(5):477~481.
    [105]宗琳.原位自生陶瓷复合堆焊层的组织与耐磨性研究,[博士学位论文].沈阳:沈阳化工大学,2012.
    [106] Ji H K, kang H K, Seung D N, et al. The effect of boron on the abrasive wear behavior ofaustenitic Fe-based hardfacing alloys [J]. Wear,2009,267:1415~1419.
    [107] Hwang K C, Lee S, Lee H C. Effects of alloying elements on microstructure and fractureproperties of cast high speed steel rolls: Part I: microstructural analysis [J]. Materials Science andEngineering: A,1998,254(1):282~295.
    [108] Stevenson A N, Hutchings I M. Wear of hardfacing white cast irons by solid particle erosion [J].Wear,1995,186:150~158.
    [109] Chatterjee S, Pal T K. Wear behavior of hard-facing deposits on cast iron [J].Wear,2003,255:417~425.
    [110] Lin J Y, Cheng T F.Numerical estimation of thermal conductivity from boundary temperaturemeasurements [J]. Numerical Heat Transfer,1997,32(2):187~203.
    [111] Chang C M, Lin C M, Hsieh C C, et al. Effect of carbon content on microstructuralcharacteristics of the hypereutectic Fe–Cr–C claddings [J]. Materials Chemistry and Physics,2009,117(1):257~261.
    [112] Dogan O N. Hawk J A, Laird II G. Solidification structure and abrasion resistance of highchromium white irons [J]. Metallurgical and Materials Transactions A,1997,28(6):1315~1328.
    [113]王智慧,王清宝. Fe-Cr-C耐磨堆焊合金中初生碳化物生长方向的控制[J].焊接学报,2004,25(1):103~110.
    [114] Chang C M, Chen L H, Lin C M, et al. Microstructure and wear characteristics of hypereutecticFe–Cr–C cladding with various carbon contents [J]. Surface and Coatings Technology,2010,205(2):245~250.
    [115] Sapate S G, Rama Rao A V. Effect of carbide volume fraction on erosive wear behaviour ofhardfacing cast irons [J]. Wear,2004,256(7):774~786.
    [116] Petrovic S T. The effect of boron on the stereological characteristics of the structural phasespresent in the structure of the13%Cr white iron [J]. Journal of Materials Science,2003,38:3263~3268.
    [117] Chung R J, Tang X, Li D Y, et al. Effects of titanium addition on microstructure and wearresistance of hypereutectic high chromium cast iron Fe–25wt.%Cr–4wt.%C [J]. Wear,2009,267(1):356~361.
    [118] Xu B S. Development of surface engineering in china [J], Surface Engineering,2010,26,123~125.
    [119] Tasgin Y, Kaplan M, Yaz M. Investigation of effects of boronadditives and heat treatment oncarbides and phase transition ofhighly alloyed duplex cast iron [J].Materials and Design,2009,30:3174~3179.
    [120] Choo S H, Kim C K, Euh K, et al. Correlation of microstructure with the wear resistance andfracture toughness of hardfacing alloys reinforced with complex carbides [J]. Metallurgical andMaterials Transaction A,2000,31(12):3041~3052.
    [121] Bedolla-Jacuinde A, Correa I, Mej′a J G, et al. The effect of titanium on the wear behaviour ofa16%Cr white cast iron under pure sliding [J]. Wear,2007,263(1):808~820.
    [122] Conde RH. Wear resistant coatings [J].Conarco Technical Bulletin Buenos Aires, BuennosAires Argentina,1986,(85):40.
    [123] Robert W, Messler Jr. Principles of welding (processes, physics, chemistry, and metallurgy)[M]. Weinheim: Wiley-VCH,2004.
    [124]梁英教,车荫昌.无机物热力学数据手册[M].沈阳:东北大学出版社,1993.
    [125]曹忠良,王珍云.无机化学反应方程式手册[M].长沙:湖南科学技术出版,1982.
    [126] Emamian A, Corbin S F, Khajepour A. The influence of combined laser parameters on in-situformed TiC morphology during laser cladding [J]. Surface and Coatings Technology,2010,205(1):2007~2015.
    [127] Lampke T, Wielage B, Pokhmurska H, et al. Development of particle-reinforced nanostructurediron-based composite alloys for thermal spraying [J]. Surface and Coatings Technology,2011,205(12):3671~3676.
    [128]Buchanan V E, Shipway P H, McCartney D G. Microstructure and abrasive wear behaviour ofshielded metal arc welding hardfacings used in the sugarcane industry [J]. Wear,2007,263(1):99~110.
    [129] Oh H, Lee S, Jung J Y. Correlation of microstructure with the wear resistance and fracturetoughness of duocast materials composed of high-chromium white cast iron and low-chromiumsteel [J]. Metallurgical and Materials Transactions A,2001,32(3):515~517.
    [130] Zum Gahr K H. Microstructure and wear of materials [M]. New York, Elsevier,1987.
    [131] Coelho G C, Golczewski J A, Fischmeister H F.Thermodynamic calculations for Nb-containinghigh-speed steels and white-cast-iron alloys [J]. Metallurgical and Materials Transactions A,2003,34(9):1749~1751.
    [132] Augus H T.Cast iron: Physical and Engineering properties [M]. London: Butterworths,1976.
    [133] Liu L, Xu Y, Wu H, et al. Preparation of in situ (Fe, Cr)7C3/Fe composite coating by centrifugalcasting [J]. Surface Engineering,2011,27(8):587~590.
    [134] Wang X H,Cheng L, Zhang M, et al. Reaction synthesis of (Ti,V)C carbide reinforced Fe basedsurface composite coating by laser cladding [J].Surface Engineering,2009,25(3):211~217.
    [135]刘力菱.高铬铸铁件热应力场数值模拟研究,[硕士学位论文].成都:四川大学,2000.
    [136]焦玉琴.高铬铸铁件凝固过程温度场数值模拟的研究,[硕士学位论文].成都:四川大学,2000.
    [137]莫春立,钱百年,国旭明等.焊接热源计算模式的研究进展[J].焊接学报,2001,22(3):93~97.
    [138]汪建华,陆皓.预测焊接变形的残余塑变有限元方法[J].上海交通大学学报,1997,31(4):5~56.
    [139]张文钺.焊接冶金学[M].北京:机械工业出版社,2007.
    [140]方洪渊.焊接结构学[M].北京:机械工业出版社,2010.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700