用户名: 密码: 验证码:
药芯焊丝堆焊热作模具耐磨层组织性能试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
模具生产技术水平的高低不仅是衡量一个国家产品制造水平高低的重要标志,而且在很大程度上决定着这个国家产品质量、效益及新产品开发能力。随着我国工业的不断发展,对模具性能要求越来越苛刻,寿命问题日益突出。表面强化技术作为提高模具使用性能和使用寿命的一种重要手段,在模具工业中占有十分重要的地位,得到了国内外的广泛关注。
     金属粉型药芯焊丝是近年来国际发展的新趋势,被称为“代替实芯焊丝的焊接材料”。该焊丝除了具有金属粉型药芯焊丝焊接质量好、无渣、高效率和合金成分可方便调节等固有的优点外,合理的设计粉芯中的合金成分,按通常工序制造与修复轧辊等设备,充分利用必需的消除应力工序的高温回火,堆焊层金属在奥氏体转变为回火马氏体的同时更主要是通过二次硬化析出了大量碳化物导致硬度增加,使得该焊丝还具有焊态硬度低、机加工性能好和时效态硬度高、耐磨性能好等优点,解决了某些高合金实芯焊丝轧制困难的问题,同时克服了现行堆焊材料硬度高、加工性能差或者硬度低、加工性能好、耐磨性差的矛盾,并能克服焊道之间的软化现象,使堆焊表面硬度较为均匀,对耐磨件的堆焊具有重要意义。
     本文选择两种不同药芯焊丝进行自动埋弧堆焊,并对堆焊层合金的组织与硬度进行系统的研究分析。利用光学显微镜、扫描电镜和X-射线衍射对堆焊合金的组织进行了初步分析和探讨,结果表明堆焊合金组织为马氏体+残余奥氏体+碳化物。在消除应力处理时,在回火过程中残余奥氏体发生了相变,增加了马氏体的含量而提高了硬度,同时合金碳化物的析出形成了较多的硬质相,产生了所谓“二次硬化”现象,使得回火后的硬度更加稳定。同时初生碳化物,共晶碳化物与基体结合的更好更牢固,增强相互之间的作用,并相应提高合金的韧性。总结出这种堆焊层组织即马氏体+残余奥氏体+碳化物,既具有高的耐磨性,又具有较高的韧性,通过反复加热和冷却过程的耐热疲劳性实验,分析了不同冷却过程萌生裂纹概率的大小,并分析了在此过程中裂纹产生的机制。
     采用这种“少量多元”的合金体系,即加入少量,多种强碳化物形成元素在堆焊层金属中形成优质,多元和复合的合金强碳化物,利用不同的合金碳化物在不同的温度范围内所具有的良好强化作用,保证了堆焊合金在高温下具有良好的抗回火软化性能和较好的耐磨性能,降低了合金元素的消耗成本。
Mould technique is not only a important symbol of national product manufacture level,but also decide the country's product quality,the benefit and the ability of developing new product to some extent.As the development of the industry,the requirement of the performance of moulds becomes higher and higher,the life question is prominent day by day.Surface strengthening technique plays a very important role in the mould industry,and draws extensive attentions.
     Metal powder-cored wire is the new tendency of the international development in recent years,being considered a welding material instead of solid wire.This welding wire not only has the inherent properties of metal powder-cored wire such as with better welding quality,no-slag,highly efficiency and conveniently adjusting the alloying elements etc.,but also has the advantage of low hardness in as-welded good machinability,high hardness in as-aged and better wear resistance with customary working procedure on making or repairing equipments such as rollers when reasonable designing the alloys content.The author adequately makes use of the high-tempering in the required stress relieving working procedure.During this working procedure,the hardness of overlaying metal increases by the reason of austenite changing into tempered martensite and more chiefly the simultaneous precipitation of a lot of carbide by secondary hardening.This wire can solve the hard rolled problems of some solid wires with higher alloys while it can get over the conflicts of existing overlaying materials what are always possesed high hardness with poor machinability or low hardness,good machinability with poor wear resistance.Further,it also can overcome the interacting phenomena between welding beads and make the external hardness of overlaying metal homogenepus.Be sure it could be found the important significance in the overlaying of wear-resistant equipments.
     In this paper,two different flux-cored wires were selected to automatically hidden arc overlay weld,and the microstructure and hardness of overlaying alloy were analyzed systematically.Optical microscope,SEM and XRD were used to study the microstructure of overlaying alloy.The result shows that the microstructures include martensite,retained austenite and carbide.When dealing with stress relief, there is a phase transition from retained austenite in the tempering process,increase the content of martensite with the hardness increment.At the same time,much more hard phases have been obtained with the precipitation of alloy carbide,which is so-called "secondary hardening" phenomenon,stabilizing the hardness after tempering.Meanwhile,primary carbides and eutectic carbide combine with substrate more firmly,increasing the toughness of alloy accordingly.Results show that this kind of overlaying microstructures has good wear resistance,but also has high toughness.By the thermal fatigue resistance experiments of repeatedly heating and cooling,the probability of initial cracks in different cooling process was analyzed, and the mechanism for cracks initiating in this process was also analyzed.
     Using small amounts and muti-component alloy system,which is adding small amount,various-strong carbide formation elements to form high quality, muti-component and compound alloy strong carbides in overlaying metal.According to different alloy carbides having different effects in different range of temperatures, the adding of such alloy dements ensure overlaying alloy has good anti-temper softening property and good wear resistance,reducing the cost of alloy dements.
引文
[1]曾晓雁,吴懿平.表面工程学[M].北京:机械工业出版社,2001.
    [2]Kim Sun K.Formation of wear-resistant vanadium carbide and nitride layers on tool steels[J].TMS Annual Meeting.Elevated Temperature Coatings,1996,8(9):3-10.
    [3]Shah Swapnil V.Dahotre Narendra B.Laser surface-engineered vanadium carbide coating for extended die life[J].Journal of Materials Processing Technology,2002,124(2):105-112.
    [4]Lange K.Cold Forging Today and Tomorrow[J].Wire,1985,35(5):219-226.
    [5]ANON.Tooling Technology in the 1970's[J].Metal Progr,1970,97(4):68-90.
    [6]Lange K.Cold Forging Today and Tomorrow[J].Wire,1985,35(5):249-255.
    [7]李春范,赵润娴.回顾与瞻望[J].焊接,2001,1(1):6-9.
    [8]吴树雄,尹士科.焊丝选用指南[M].北京:化学工业出版社,2002.
    [9]方建荡.TIG模具堆焊马氏体时效钢金属粉芯焊丝的研制[M].北京工业大学,2000,20(2):12-18.
    [10]李建海,陈邦固.新型金属芯药芯焊丝的开发和应用[J].焊接技术,2001,30(3):47-48.
    [11]栗卓新,陈邦固,张文钺.自保护药芯焊丝的研究进展评述[J].中国机械工程,1996,7(5):60.
    [12]郦振声,杨明安.现代表面工程技术[M].北京:机械工业出版社,2005.
    [13]胡邦喜,莽克伦,王静洁.堆焊技术在国内石化、冶金行业机械设备维修中的应用[J].中国表面工程,2006,3(19):4-8.
    [14]Jyh-WeiLee,Jenq-Gong Duh.Corrosion resistance and microstructural evaluation of the chromized coating process in a dual phase Fe-Mn-Al-Cralloy[J].Surface and Coatings Technology,2002,153(1):59-66.
    [15]李亚江.焊接材料的选用[M].北京:化学工业出版社,2004.
    [16]许勇静,陈俐.焊接规范对药芯焊丝堆焊层耐磨性的影响[J].焊接学报,2001,2(2):14-16.
    [17]李爱农,施雨湘,杜学铭.多头立式泥沙磨损试验机试验研究[J].武汉理工大学学报,2002,6(26):714-717.
    [18]宗亚平,郝士明,李彬.热作模具钢热疲劳性能测定方法的研究[J].安徽工学院学报,1988,7(2):109-118.
    [19]李熙章,施占华,汤继跃.评定模具钢热疲劳性能的Uddeholin法[J].安徽工学院学报,1988,7(2):101-108.
    [20]龚建勋.时效硬化耐磨堆焊焊条的研制[M].湘潭大学,2002.
    [21]胡正前,张文华.稀土对复合表面处理H13钢耐磨性和高温抗氧化性的影响[J].中国稀土学报,1999,17(3):280.
    [22]刘政军,张桂清.合金元素对铁基耐磨堆焊合金性能的影响[J].沈阳工业大学焊接学报,2007,28(3):69-72.
    [23]干勇,田志凌.中国材料工程大典[M].北京:化学工业出版社,2006.
    [24]张清.金属磨损和金属耐磨材料手册[M].北京:冶金工业出版社,2009.
    [25]斯重遥.化学成分对铁-铬-碳系耐磨堆焊材料抗磨蚀性能的影响[J].焊接学报,1986,3(3):1-5.
    [26]HR.D.The Abrasion Resistance of Metals[J].Transaction soft A.S.M.2000,8(41):819-859
    [27]东德林.金属的力学性能[M].北京:机械工业出版社,1987.
    [28]Doege.E,Behrens B,A.Schaefer.Simulation of phase transformation in hot forging dies during a precision forging process by means of finite-element-analysis[J].AlP Conference Proceedings,2004,1(72):572.
    [29]A.B.雷柯芙.热传导理论[M].北京:高等教育出版社,1959.
    [30]张茂勋,郭帅,何福善.深冷处理对440A铸造不锈钢性能的影响[J].机械工程材料,2004,28(9):29-31.
    [31]潘春旭,陈俐.耐磨堆焊层显微组织特征及其与耐磨关系的研究[J].兵器材料科学工程,2000,2(3):12-14.
    [32]谢冰,罗键,李爱农.模具修复梯度耐磨堆焊层组织性能研究[J].中国机械工程,2006,(17)10:338-343.
    [33]D.J.Kotecki,J.S.Ogborn.Abrasion Resistance of Iron-Based Hardfacing Alloys[J].Welding research supplement,1995(8):269-278.
    [34]Tomov BI,Gagov VI,Radev RH.Numerical simulations of hot die forging processes using finite element method[J].JOURNAL OF MATERIALS PROCESSING TECHNOLOGY,2004,10(153):352-358.
    [35]S.L.Semiatin.Determination of the Interface Heat Transfer Coefficient for Nor-Isothermal Bulk-Forming Processing[J].Journal of Engineering for Industy,1987,1(09):49-57.
    [36]Wilson WRD,Schmid SR,Liu JY.Advanced simulations for hot forging:heat transfer model for use with the finite element method[J].JOURNAL OF MATERIALS PROCESSING, 2004,30(155):1912-1917.
    [37]刘仁培,陈文华,施政.模具钢堆焊金属的强度与变形对热疲劳抗力的影响[J].南京航空航天大学学报,2005,5(37):550-556.
    [38]杨东方.奥氏体/贝氏体钢的显微组织和力学性能[J].中国矿业大学学报,1993,1(9):7-12.
    [39]方鸿生.中碳贝氏体冯氏体复相组织强韧性的研究[J].金属热处理学报,1986,1(6):14.
    [40]俞德刚.钢的强韧化理论与设计[M].上海:上海交通大学出版社,1990.
    [41]荣守范等.热处理工艺参数对高碳低合金贝氏体抗磨钢组织与性能的影响[J].热加工工艺,1998,3(3):34-36.
    [42]王小军,徐明纲,陈秋龙.热作模具钢QPO90与8407(H13)回火稳定性对比研究[J].上海金属,1998,2(7):15-24.
    [43]崔方明.成分、组织及冲击功对湿磨衬板用钢冲击腐蚀磨损机理影响的研究[J].合肥工业大学,2004,12(12):26-32.
    [44]Albertin E,Sinatora A.Effect of earbider faction and matrix microstructure On the Wear of eastironball stested inalaboratory ballmill[J].Wear,2001,2(50):492-501.
    [45]李慧芳,萧振荣,沈济万.合金钢及热处理工艺学[M].北京:机械工业出版社,1985.
    [46]廖鸣,谢裕安.高强韧性铸钢的研制[J].矿山机械,1996,6(5):18-21.
    [47]谢敬佩,李卫,宋延沛.耐磨铸钢及熔炼[M].北京:机械工业出版社,2003.
    [48]黄春峰.新型热作模具钢H13的热加工工艺研究[J].锻压技术,1995,10(02):45-47.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700