用户名: 密码: 验证码:
基于势场法和遗传算法的机器人路径规划技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
移动机器人是迅速发展起来的一门综合学科,集成了计算机、电子、自动控制以及人工智能等多学科的最新研究成果,代表了机电一体化的最高成就。近年来,移动机器人路径规划已经成为自动控制、计算机和人工智能等领域的一个研究热点,其发展对国防、社会、经济和科学技术具有重大的影响力,已成为各国高科技领域的战略性研究目标。
     本文研究了基于势场法和遗传算法的移动机器人路径规划技术,在传统方法的基础上,提出了一些改进算法及新的解决方案,以提高算法的计算效率,扩展其使用范围。具体的研究内容包括以下几个方面:
     (1)提出了一种改进的机器人路径规划方法。为了对机器人的复杂工作空间进行预处理,采用二值图像的数学形态学的方法,利用膨胀运算和腐蚀运算两种对偶的基本变换,将离散的障碍物个体融合为完整的障碍物体,使用改进的势场法进行机器人导航,以改善其运动轨迹;另外,通过设置子目标点使陷入局部极小的机器人“逃离”极小状态。
     (2)考虑到动态环境下移动机器人路径规划的各个量都可能在变化,在人工势场算法中引入了有关的位置信息、速度信息和加速度信息。在路径规划过程中当机器人到达或者追上了目标点时,相对加速度值为零。否则,调整参数使相对加速度值为零。又利用人工势场法结合遗传算法进行路径规划,在人工势场算法中引用一种“逃脱力”,当机器人陷入局部最小状态时,使用“逃脱力”来逃脱局部最小的限制。利用遗传算法进行全局搜索和个体优化,保证了最优个体传递到下一代。
     (3)提出了一种改进的遗传算法,在该算法中,设计了一种新的适应性函数,该函数考虑了路径长度信息、碰撞惩罚因素、路径间隙因素;并且设计了一套合理的遗传算子及路径修复机制来优化路径;给出了理想的路径优化参数。该方法能够在起始点和目标点之间搜索一条优化路径。
     (4)以人工势场法和栅格法为基础,考虑到遗传算法的“收敛速度慢”和“早熟收敛”问题,提出了一种基于量子遗传算法的机器人路径规划方法。该方法引入量子遗传算法和势场栅格法进行融合,来求解移动机器人路径规划问题。采用栅格法进行全局路径规划、人工势场法对移动机器人进行控制、量子遗传算法对最优或次优个体进行选择,并且引入双适应度评价函数对进化个体进行评价,为最优或次优个体进入下一代提供了保障。
     (5)由于遗传算法的过早收敛而使一些优秀个体过早地被排除掉,从而导致搜索范围缩小及产生局部最优的缺陷。提出了一种基于改进染色体编码的自适应遗传算法,采用方向和距离对来编码染色体,使用自适应控制交叉概率函数(P(?))和突变概率函数(只,)进行遗传操作。该算法使得过早收敛问题得以缓解,同时又提高了搜索的范围和效率。
     (6)提出了一种基于量子染色体变异的融合算法。首先,对人工势场的斥力场进行改进,然后利用融合的人工势场法和栅格法对路径进行规划,产生初始化种群,最后利用量子比特对染色体编码、利用量子染色体变异对种群个体进行更新,完成最佳路径搜索。提高了种群质量和收敛速度,有效地避开障碍物,稳定地产生最佳规划路径,适合于求解复杂优化问题。
     本文在最后对全文进行了总结,并且对今后进一步的研究方向进行了展望。
Mobile robot system, as an integrative subject with updated research results in mechanical, electronic, computer, automatic control and artificial intelligence, represents is tremendous success of mechatronics. In recent years, mobile robot path planning has become an important research area in automatic control, computer and artificial intelligence. The development of mobile robot path planning has imposing on the defense, society, economy and academy, and becomes the tactic research object of high technology of all countries.
     Mobile robot path planning based on artificial potential field and genetic algorithm has been studied in this paper. Several improved methods and novel solutions are presented in order to improve computational efficiency, and additionally extend application domains. The main content of this dissertation include the following aspects:
     (1) An improved method for moblie robot path planning is proposed for the innate limitations of potential field. In order to pretreat and optimize the workspace of robot, expansion and erosion mathematical operations based on mathematical morphology of binary image are used to integrate discrete obstacles in to complete obstacles, and improved potential field is used to navigate robot to improve trajectory of robot. Furthermore, sub-goal point is set for robot to get rid of local minimization rapidly.
     (2) Each object is probably moving in a dynamic environment for mobile robot path planning, so the position, the velocity and the acceleration are taken into account, the relative factor of the distance and the acceleration is introduced in the repulsive potential function. In path planning when the robot reaches or catches up the goal, the relative acceleration is zero. Otherwise, the parameters are adjusted to reduce the relative acceleration to zero. In addition the potential field method is combined with the genetic algorithm to plan the path for mobile robot, an escape force function is taken into account in potential function, so the local minimas is solved by the escape force function. Genetic algorithm is used for global search to get the optimal path, and guarantees that the best individual is passed to the next generation.
     (3) An improved genetic algorithm is presented for mobile robot path planning in static environment. In this mothod the fitness function is introduced by tacking the path length, the penalty factor of collision and the path clearance into account, a set of suitable genetic operators are designed, the path repair mechanisms are used for a local genetic search and the optimization parameters are given for the desired path. The proposed mothod can accomplish search and find a optimal path from the start to the goal.
     (4) Based on artificial potential field and grid method, in order to solve the prematurity and lower convergence speed in genetic algorithm for robotic path planning, a novel mobile robot path planning method based on quantum genetic algorithm is proposed. In the method the quantum genetic algorithm is combined with artificial potential field and grid method to plan parh. it uses grid method to establish mobile robot work environment model, artificial potential field to control mobile robot, quantum genetic algorithm to select the optimal or sub-optimal path, and double fitness evaluation function to evaluate the path to protect the optimal or sub-optimal path in to the next generation.
     (5) As premature convergence of genetic algorithms can make some outstanding individuals to be excluded prematurely, and lead to narrowing the search range and causing the local optimization. In order to overcome this defect, an improved chromosome encoding based adaptive genetic algorithm is proposed. In this algorithm, pairs of direction and distance used for chromosome encoding is combined with adaptive adjusting probability functions(P and Pm) for genetic operator, the method alleviates the problem of premature convergence and improves the efficiency and range of searching.
     (6) A fusion algorithm based on quantum chromosome mutation is proposed. Firstly, the new repulsive potential function are reformed. Then, the fusion method of artificial potential field and grid is used to establish work environment model for mobile robot and produce initialize population. Finally, quantum bit is used to code chromosome, and quantum chromosome mutation is used to update individual of population for getting the best path. This method increases population quality and convergence rate, avoids safely the obstacles by optimal path, it is fit for the solution of complex optimization problems.
     A summary of the research conclusions and a discussion on the most promising paths of future research work are presented in the last chapter of this dissertation.
引文
[1]王耀南.机器人智能控制工程.北京:科学出版社,2004:1-16.
    [2]蔡自兴,贺汉根,陈虹.未知环境中移动机器人导航控制理论与方法.北京:科学出版社,2009:1-6.
    [3]蔡自兴,贺汉根,陈虹.未知环境中移动机器人导航控制研究的若干问题.2002年中国控制与决策年会特邀大会报告,控制与决策,2002,17(4):385-390.
    [4]陈少斌.自主移动机器人路径规划与车辆跟踪的研究.浙江大学博士论文,2008.
    [5]Jaezkowski J. J. Robotic Teehnology Integration for Army Ground Vehieles. Inthe20th Conf. on Digital Avionies Systems.2001:1-8.
    [6]Sehwartz, I. PRIMUS:Autonomous Driving Robot for Military APPlications. InProc. SPIE on Unmanned Ground Vehiele Teehnology.2000:313-323
    [7]J.C.Latombe. Robot motion plalming. Norwell:Kl uwer Academic Publishers. 1991:11-26.
    [8]WilcoxB., etal. Robotic Vehieles for Planetary Exploration. Proceedings of IEE Iniemational Conference on Robotics and Automation,1992:175-180.
    [9]Crowley J L. Intelligent Robotics System-IRS'93. Robotics and Autonomous Systems 1994(12):109-11.
    [10]邵杰.基于学习分类器的多机器人路径规划关键技术研究.南京理工大学博士论文,2010.
    [11]Asama H. Matsumoto A, Ishida Y. Design of an autonomous and distributed robot system:ACTRESS. IEEE/RSJIROS, Tsukuba,1989:283-290.
    [12]Fukuda T. Cell Structure Roboties System CEBOT:Control, Planning, and Communication Methods. Roboties and Autonomous System,1997:239-248.
    [13]Jin K, Liang P, Beni G.Stability of synehronized distributed control of discrete swarm structures. IEEE ICRA. San Diego,1994:1033-1038.
    [14]Yuehao Wang, Dalong Tan, Shan Huang. MRCAS:a multi-agent based implementation of multi-robot cooperative assembly system.Proeeedings of Asian conference on Roboties And Its Application,1997:97-102.
    [15]Committee on Army Unmanned Ground Vehicle Technology. Technology Development for Ariny Unmanned Ground Vehicles:The National Aeademies Press. 2002.
    [16]石磊.自主式车辆环境感知技术研究.南京理工大学博士论文,2010.
    [17]Brusaglino G. Safe and Effeetive Mobility in EuroPe-the contribution of the PROMETHEUS Program. In IEE Colloquium on Prometheus and Drive,1992: 101-110.
    [18]Broggi, A., et al. Automatic Vehicle Guidance:World Scientific Publishing Company, 1999:22-31.
    [19]BertozZi, M., A. Broggi.A.Fascioli. Vision- based Intelligent Vehicles:State of the Art and perspectives. Robotic and Autonomous Systems,2000(32):1-16.
    [20]徐国华,谭民.移动机器人的发展现状及其趋势.机器人技术与应用,2001,3:7-14.
    [21]欧青立,何克忠.室外智能移动机器人的发展及其相关技术研究.机器人,2000,22(6):519-526.
    [22]国家863计划智能机器人专家组编著.机器人博览.北京:中国科学技术出版社,2001:11-21.
    [23]谈大龙,卢桂章,贾培发.迈向新世纪的中国机器人-863自动化领域智能机器人主题回顾与展望.沈阳:辽宁科学技术出版社,2001:22-36.
    [24]LI Q, N Zheng, H Cheng. Springrobot:a Prototype Autonomous Vehicle and its Algorithms for Lane Deteetion. IEEE Trans. On Intelligent Transportation systems. 2004,5(4):300-308.
    [25]N Nilsson. A mobile automation:An application of artificial intelligence techniques. In Proc IJCAI,1969.
    [26]戴博,肖晓明,蔡自兴.移动机器人路径规划技术的研究现状与展望.控制工程,2005,12(3):198-202.
    [27]冯建农,柳明,吴捷.自主移动机器人智能导航研究进展.机器人,1997,19(6):468-473.
    [28]Howden W E. The sofa problem[J]. The Computer Journal,1968,11(3):299-301.
    [29]成伟明,唐振民,赵春霞,等.移动机器人路径规划中的图方法应用综述.工程图学学报,2008,(4):6-14.
    [30]Araujo R. Prune-able fuzzy ART neural architecture for robot map learning and navigation in dynamic environments. IEEE Trans on Neural Network,2006,17(5): 1235-1249.
    [31]Najjaran H, Goldenberg A. Real-time motion planning of an autonomous mobile manipulator using a fuzzy adaptive Kalman filter. Robotics and Autonomous Systems, 2007,55(2):96-106.
    [32]Luo C, Yang S Y. A bioinspired neural network for realtime concurrent map building and complete coverage robot navigation in unknown environment. IEEE Trans on Neural Network,2008.19(7):1279-1298.
    [33]方华京,魏然.人工势场法在多机器人运动中的研究.控制工程,2007,14(2):115-117.
    [34]Conn R A, Kam M. Robot motion planning on dimensional star worlds among moving obstacles. IEEE Trans on Robotic Automation.1998.14(2):320-325.
    [35]KHATIB O. Real-time obstacle avoidance for manipulators and mobile robots. The International Journal of Robotics Research.1986,5(1):90-98.
    [36]Keron Y. Borenstein J. Potential Field Methods and Their Inherent Limitations for Mobile Robot Navigation. Proc IEEE Int Conf Robot Automation. California,1991: 398-1404.
    [37]HwangYK, AhujaN. Potential field approaeh to Path Planning. IEEE Trans on Robotics & Antomation.1992,8(1):23-32.
    [38]李贻斌,李彩虹.移动机器人导航技术.山东矿业学院学报,1999,18(3):67-71.
    [39]董立志,孙茂相.基于实时障碍物预测的机器人运动规划.机器人,2000,22(1):12-16.
    [40]Fujimura K. Samet H. A hierarchical strategy for path planning among moving obstacles. IEEE Trans on Robotic Automation.1989,5(1):61-69.
    [41]Ko N Y. Lee B H. Avoid ability measure in moving obstacle avoidance problem and its use for robot motion planning. IEEE Int Conf on Intelligent Robots and System.Osaka,1996:1296-1303.
    [42]Bagley J D. The behavior of adaptive system which employ genetic and correlation algorithm. Ph. D. Dissertation, University of Michigan,1967. NO.68-7556.
    [43]Holland J H. Adaptation in Natural and Artificial Systems:An Introductory Analysis with Application to Biology, Control, and Artificial Intelligence.2nd edition. Cambridge, MA:MIT press,1992.
    [44]De Jong K A, An analysisn of behavior of a class of genetic adaptive systems. Ph. D. Dissertation. University of Michigan.1975, NO.76-9381.
    [45]Booker L B. Goldberg D E. Classifier systems and genetic algorithm. Artificial Intelligence.1989.40:235-282.
    [46]Goldberg D E. Genetic Algorithm in Serach. Optimization and Machine Learning. Reading. MA:Addison-Wesley Publish Company.1989.
    [47]Davis L. Handbook of Genetic Algorithms. New York:van Nostrand Reinhold.1991.
    [48]Castillo O.Trujillo L.Multiple objective genetic algorithms for path planning optimization in autonomous mobile robots.Soft Computing.2007.11(1):269-279.
    [49]卢瑾,杨东勇.基于双重遗传算法机制的路径规划.系统仿真报,2008,20(8):2048-2051.
    [50]孟宪权.CGF中基于遗传算法的路径跟踪自学习研究.系统仿真学报,2009,21(10):2925-2929.
    [51]刘国栋,谢宏斌,李春光.动态环境中基于遗传算法的移动机器人协调路径规划的方法.机器人,2003,25(4):327-330.
    [52]周浦城,洪炳镕,杨敬辉.基于混沌遗传算法的移动机器人路径规划方法.哈尔滨工业大学学报,2004,36(7):880-883.
    [53]孙树栋,曲彦宾.遗传算法在机器人路径规划中的应用研究.西北工业大学学报,1998,16(2):79-83.
    [54]陈刚,沈林成.复杂环境下路径规划问题的遗传路径规划方法.机器人,2001,23(1):40-45.
    [55]刘玲,王耀南,况菲,等.基于神经网络和遗传算法的移动机器人路径规划.计算机应用研究,2007,2:265-268.
    [56]王强,姚进,王进戈.基于遗传算法的移动机器人的一种路径规划方法.哈尔滨工业大学学报,2004,36(7):867-870.
    [57]陈华华,郭晔.基于改进型遗传算法的动态避障路径规划方法.传感技术学报,2006,19(2):520-524.
    [58]孔伟,张彦铎.基于遗传算法的自主机器人避障方法研究.武汉工程大学学报,2008,30(3):110-113.
    [59]Yang S X, Meng M. Neural network approaches to dynamic collision-free robot trajectory generation. IEEE Trans on Systems, Man, and Cybernetics, Part B: Cybernetics,2001,31(3):302-318.
    [60]Yang S X, Meng M H. Real-time collision-free motion planning of mobile robots using neural dynamics based approaches. IEEE Trans on Neural Network,2003,14(6): 1541-1552.
    [61]Luo C, Yang S Y. A bioinspired neural network for realtime concurrent map building and complete coverage robot navigation in unknown environment. IEEE Trans on Neural Network,2008,19(7):1279-1298.
    [62]Yang S X, Luo C. A neural network approach to complete coverage path planning. IEEE Trans on Systems. Man, and Cybernetics. Part B:Cybernetics,2004,34(1): 718-725.
    [63]Li H, Yang S X, Seto M L. Neural-network-based path planning for a multirobot system with moving obstacles. IEEE Trans on Systems, Man. and Cybernetics, Part C Applications and Reviews.2009,39(4):410-419.
    [64]Heting. Xu. Motion Planning of Nonholonomic Mobile Robots Using a Neural Dynamics Approaeh. Master of Seience Thesis, the University of Guelph.2002.
    [65]A. Komoda, R. Glasiusand S. Gielen. Neural Network Dynamics for Path Planning and Obstacle Avoidance. Neural Network.1995,8(1):125-133.
    [66]Fierro, R. and Lewis, F. L. Control of a Noliliolonomic Mobile Robot Using Neural Networks. IEEE International Conf. on Intelligent Control, Monterey, CA,1995: 415-421.
    [67]Watanabe, K. Tang, J. Nakamura, M., Koga, S., Fukuda, T. A fuzzy- gaussian Neural Network and Its Applieation to Mobile Robot Control. IEEE Transactions on Control Systems Teelmology. Mareh 1996,4(2):193-199.
    [68]李艳,林廷忻,黄玉美,高峰.基于神经网络的自由度移动机器人跟踪方法研究.西安交通大学学报.2003,37(7):712-714.
    [69]Ghatee M. Mohades A. Motion planning in order to optimize the length and clearance applying a hopfield neural network. Expert Systems with Applications,2009,36: 4688-4695.
    [70]Li H. Yang S X. Seto M L. Neural-network-based path planning for a multirobot system with moving obstacles. IEEE Trans on Systems, Man. and Cybernetics. Part C: Applications and Reviews,2009,39(4):410-419.
    [71]S. M. LaValle. Rapidly- exploring Random Trees:a New Tool for Path Planning. Technical Report TR98-11, Computer Seience DePt, Iowa State University, Oet.1998.
    [72]S.M. LaValle, J. Kuffner. Rapidly-exploring Random Trees:Progress and Prospects.In Proc. Int'1. Workshop on Algorithmic Foundations of Robotics (WAFR),2000: 293-301.
    [73]J. deSmith. Distance and Path:the Development. Interpretation and applieation of Distance Measurement in Mapping and Modeling. PhD Thesis, University of London, 2003.
    [74]Lazano-Perez T. Antomatic Planning of transfer movements. IEEE Trans. On Sys, Man and Cyb,1981,11(10):681-689.
    [75]Perez. Automatic Planning of manipulator movements. IEEE Trans. On Sys, Man and Cyb.1981.11(11):681-698.
    [76]Takahashi O, Schilling R J. Motion planning in a plane using generalized Voronoi diagrams. IEEE Trans on Robotics and Automation,1989,5(2):143-150.
    [77]Avneesh S, Erik A, Sean C, et al. Real-time path planning in dynamic virtual environment using multiagent navigation graphs. IEEE Trans on Visualization and Computer Graphics,2008,14(3):526-538.
    [78]Canny J F. The complexity of robot motion planning. Boston:MIT Press,1988.
    [79]蒋新松.未来机器人技术发展方向的探讨.机器人,1996,18(5):285-291.
    [80]蔡鹤皋.机器人将是21世纪技术发展的热点.中国机械工程,2000,11(1-2):58-60.
    [81]谭民,范永,徐国华.机器人群体协作与控制的研究.机器人,2001,23(2):178-182.
    [82]李磊,叶涛,谭民,陈细军.移动机器人技术研究现状与未来.机器人,2002,24(5):475-480.
    [83]孙华,陈俊风.多传感器信息融合技术及其在机器人中的应用.传感器技术,2003,22(9):1-4.
    [84]王仲民,岳宏,刘继岩.移动机器人多传感器信息融合技术述评.传感器技术,2005,24(4):5-7.
    [85]戈新良,张明路.多传感器信息融合技术研究现状和发展趋势.河北工业大学学报,2003,32(2):30-35.
    [86]王仲民.移动机器人路径规划及轨迹跟踪问题研究.河北工业大学博士论文,2006.
    [87]Yu J L, Zhang Q F, Kroumov V. Path planning algorithm for robot in 3D environment based on neural network. First Int Conf Intelligent Robotics and Applications. Wuhan, 2008:1081-1088.
    [88]Yu J L, Cheng S Y, Sun Z Q, et al. An optimal algorithm of 3D path planning for mobile robots. J of Central South University,2009,40(2):471-477.
    [89]朱大奇,颜明重.移动机器人路径规划技术综述.控制与决策,2010,25(7):961-967.
    [90]Wang X P, Feng Z P. GA-based path planning for multiple AUVs[J]. Int J of Control, 2007,80(7):1180-1185.
    [91]刘利强,于飞,戴运桃.基于蚁群算法的水下潜器全局路径规划技术研究.系统仿真学报,2007,19(18):4174-4177.
    [92]王宏健,伍祥红,施小成.基于蚁群算法的AUV全局路径规划方法.中国造船,2008,49(2):88-93.
    [93]徐玉如,姚耀中.考虑海流影响的水下机器人全局路径规划研究.中国造船,2008,49(4):109-114.
    [94]Zhang C. Li L, Xu F, et al. Evolutionary route planner for unmanned air vehicles[J]. IEEE Trans on Robotics and Automation,2005.21(4):609-620.
    [95]Yoonsoo K, Gu D W, Postlethwaite I. Real-time path planning with limited information for autonomous unmanned air vehicles[J]. Automatica,2008,44(5): 696-712.
    [96]曲道奎,杜振军,徐殿国,徐方.移动机器人路径规划方法研究.机器人,2008,30(2):87-102.
    [97]石鸿雁,孙昌志.非结构环境下移动机器人的运动规划[J].机器人,2004,26(1):27-31.
    [98]樊晓平,李双艳,陈特放.基于新人工势场函数的机器人动态避障规划.控制理论与应用,2005,22(5):703-707.
    [99]刘华军,杨静宇,陆建峰等.移动机器人运动规划研究综述.中国工程科学,2006,8(1):85-94.
    [100]O. Khatib. Real-time obstacle avoidance for manipulators and mobile robots[J]. Int. J. Robot. Res.,1986.5(1):90-98.
    [101]Y. Koren. J. Borenstein. Potential field methods and their inherent limitations for mobile robot navigation[C]. In Proc. IEEE Conf. Robotics and Automation: Sacramento, CA, Apr.7-12,1991:1398-1404.
    [102]董立志,孙茂相.基于实时障碍物预测的机器人路径规划.机器人,2000,22(1):12-16.
    [103]高云峰,黄海.复杂环境下基于势场原理的路径规划方法.机器人,2004,26(2):144-118.
    [104]Ge. S.S., Cui.Y.J. Newpotential functions for mobile robot path planning. IEEE Trans. Robotic. Autom.,2000.16(5):615-620.
    [105]朱毅,张涛,宋靖雁.未知环境下势场法路径规划的局部极小问题研究.自动化学报,2010,36(8):1122-1130.
    [106]Haddad. H.. Khatib, M., Lacroix, S. and Chatila, R. Reactive Navigation in Outdoor Environments Using Potential Fields. IEEE International Conference on Robotics and Automation.1998. Vol.2:1232-1237.
    [107]J. Guldner. V. I. Utkin. Sliding mode control for gradient tracking and robot navigation using artificial potential fields[J]. IEEE Trans. Robot. Automat.,1995. 11(4):247-254.
    [108]C.W.Warren. Global path planning using artificial potential fields[C]. In Proc. IEEE Conf. Robotics and Automation,1989:316-321.
    [109]龚伟,石青云,程民德.数字空间中的数学形态学---理论及应用.北京:科学出版社,1997.
    [110]綮自兴,贺汉根,陈虹.未知环境中移动机器人导航控制理论与方法.北京:科学出版社,2009:296-315.
    [111]B. Faverjon, P. Tournassoud. A Local Approach for Path Planning of Manipulators with a High Number of Degrees of Freedom. Proc. IEEE Int. Conf. Robot. Automation:Raleigh, NC,1987:1152-1159.
    [112]Rimon E, Koditscheck D. Exact robot navigation using artificial potential functions. IEEE Transactions on Robotics and Automation,1992,8(5):501-518.
    [113]Liu C Q, Jr M H A, Krishnan H, Yong L. Virtual obstacle concept for local-minimum-recovery in potential field based navigation. In Proceedings of the IEEE International Conference on Robotics and Automation:San Francisco, USA: IEEE,2000:983-988.
    [114]Yun X, Tan K C. A wall-following method for escaping local minima in potential field based motion planning. In Proceedings of the International Conference on Advanced Robotics:Monterey, USA:IEEE,1997:421-426.
    [115]Mabrouk M H, McInnes C R. Solving the potential field local minimum problem using internal agent states. Robotics and Autonomous Systems,2008,56(12): 1050-1060.
    [116]Borenstein J, Koren Y. Real-time obstacle avoidance for fast mobile robots. IEEE Transactions on Systems, Man, and Cybernetics,1989,19(5):1179-1187
    [117]Janabi-Sharifi F, Vinke D. Integration of the artificial potential field approach with simulated annealing for robot path planning. In Proceedings of the 1993 IEEE International Symposium on Intelligent Control:Chicago, USA:IEEE,1993: 536-541.
    [118]Caselli S, Reggiani M, Rocchi R. Heuristic methods for randomized path planning in potential fields. In Proceedings of the IEEE International Symposium on Computational Intelligence in Robotics and Automation:Ban(?), Canada:IEEE,2001: 426-431.
    [119]ParkMG, JeonJH, LeeMC. Obstacle Avoidance for Mobile Robots Using Artificial Potential Field Approach with Simulated Annealing. ISIE. Pusan, Korea,2001: 1530-1535.
    [120]唐振民,赵春霞,杨静宇,等.地面自主平台的局部路径规划.机器人,2001,23(7):742-745.
    [121]赵春霞,唐振民,陆建峰,等.面向自主车辆的局部路径规划仿真系统.南京理工大学学报,2002,26(6):570-574.
    [122]Fujimura K, Samet H. A hierarchical strategy for path planning among moving obstacles. IEEE Trans on Robotic Automation.1989,5(1):61-69.
    [123]Ko. N.Y. and Lee. B.H. Avoidability measure in moving obstacle avoidance problem and its use for robot motion planning. InProc. IEEE/RSJ Int.Conf. Intell. Robots and Sys..Vol.3. pp.1296-1303,1996.
    [124]S. S. Ge and Y. J. Cui. Dynamic motion planning for mobile robots using potential field method, in Pro. IEEE Int. Conf. Autonmous Robots,2002.13(3):207-222.
    [125]Rimon, E. and Koditschek, D.E. Exact robot navigation using artificial potential functions. IEEE Trans. Robotic. Autom.,1992.8(5):501-518.
    [126]Vadakkepat, P.. K. C. Tan and Wang M.-L.2000. Evolutionary artificial potential fields and their application in real time robot path planning. Congress on Evolutionary Computation. Volume:1, Page(s):256-263.
    [127]孙树栋,曲彦宾.遗传算法在机器人路径规划中的应用研究.西北工业大学学报.1998,16(1):79-84.
    [128]师黎,邵国.改进遗传算法用于移动机器人路径规划.计算机工程与设计,2008.29(24):6330-6331.
    [129]Hu Yan, Yang SX. A knowledge based genetic algorithm for path planning of a mobile robot. New Orleans:Proceedings of the 2004 IEEE international Conference. on Robotics and Automation.2004:4350-4355.
    [130]Li Qing. Zhang Wei. An improved genetic algorithm of optimum path planning for mobile robots. Proceedings of the 2006 IEEE International Conference on Intelligent Systems Design and Applications,2006:637-642.
    [131]吴晓涛,孙增圻.用遗传算法进行路径规划.清华大学学报(自然科学版),1995.35(5):14-19.
    [132]周兰凤,洪炳熔.用基于知识的遗传算法实现移动机器人路径规划.电子学报,2006.34(5):911-914.
    [133]Ashiru I, CzarneckiC,Routen T. Characteristics of a genetic based approach to path planning formobile robots. Journal of Network and Computer Applications.1996. 19(2):149-169.
    [134]Ismail AL-Taharwa. Alaa Sheta and Mohammed Al-Weshah. A Mobile Robot Path Planning Using Genetic Algorithm in Static Environment. Journal of Computer Science.2008,4(4):341-344.
    [135]焦李成,公茂果等.自然计算、机器学习与图像理解前沿.西安:西安电子科技大学出版社,2008:75-89.
    [136]Benioff P. The computer as a physical system:A microscopic quantum mechanical Hamiltonian model of computers as represented by Turning machine. Journal of satistical Physics,1980,22:563-591.
    [137]Feynman R P. Simulating physics with computers. Int J Theor Phys,1982.21(6,7): 467-488.
    [138]Feynman R P. Quantum mechanism computers. Found. Phys,1986,16:507-531.
    [139]knight P. Quantum information processing without entanglement. Science,2000, 287:441-442.
    [140]A. O. Pittenger. An Introducation to Quantum Computing Algorithms, Birkhauser, 2000.
    [141]H. Bhrman. R. Cleve, A. Wgderson. Quantum vs. classical communication and computing. Proc.30th Symp. On Theory of Comp.,1998:63-68.
    [142]Narayanan A. Moore M. Quantum-inspired genetic algorithm. Proc of IEEE International Conference on Evolutionary Computation. Piscataway:IEEE Press, 1996:61-66.
    [143]Han K H, Kim J H. Genetic quantum algorithm and its application to combinatorial optimization problems. Proc of IEEE Conference on Evolutionary Computation. Piscataway:IEEE Press,2000:1354-1360.
    [144]Han KH, Park KH, et al. Parallel quantum-inspired genetic algorithm for combinatorial optimization problems. Proc of the IEEE Conference on Evolutionary Computation. Piscataway:IEEE Press,2001:1442-1429.
    [145]王醒厕,张汝波,顾国昌.基于势场栅格法的机器人全局路径规划.哈尔滨工程大学学报,2003,24(2):170-173.
    [146]Kuk-Hyun Han, Kui-Hong Park, Ci-Ho Lee, Jong-Hwan Kim. Parallel quantum-inspired genetic algorithm for combinatorial optimization problem. Proceedings of the 2001 Congress on Evolutionary Computation. USA:IEEE Press, 2001:1422-1429.
    [147]周远晖等.基于克服过早收敛的自适应并行遗传算法.清华大学学报,1998,38(3):93-95.
    [148]II-Kwon Jeong, Ju-Jang Lee. A self-organizing genetic algorithm for multimodal function optimization, Artificial Life Robotics 2,1998:48-52.
    [149]Oscar Castillo. Leonardo Trujillo. Multiple objective genetic algorithms for path-planning optimization in autonomous mobile robots. Soft Computing.2007, 11(1):269-279.
    [150]Srinivas. M., Pootraik, L. M. Adaptive probabilities of crossover and mutation in genetic algorithms, IEEE Trans. Systems Man Cybernet,1994.24(4):656-667.
    [151]Ge S S, Cui Y J. New potential functions for mobile robot pathplanning. IEEE Transactionson Robotics and Automation,2000.16(5):615-620.
    [152]Sugiara, K. Smith, J. Genetic algorithms for adaptive planning of path and trajectory of a mobile robot in 2D terrains. IEICE Trans. Inf. Syst,1999. E82-D(1):309-316.
    [153]Sakawa, M. and Yauchi, K. Coevolutionary genetic algorithms for nonconvex nonlinear programming problems[J]. Revised genocop III, Cybernet. Systems,1998, 29:885-899.
    [154]LAZANO-PEREZ. Spatial planning:a configuration space approach. IEEE Transaction on Computers,1983,32(2):108-119.
    [155]国海涛,朱庆保,徐守江.基于栅格法的机器人路径规划快速搜索随机树算法.南京师范大学学报,2007,7(2):58-61.
    [156]焦李成,公茂果等.自然计算、机器学习与图像理解前沿.西安:西安电子科技大学出版社,2008:81-84.
    [157]解光军,庄镇泉.量子神经网络.计算机科学,2001,28(7):1-6.
    [158]Narayanan A. Moore M. Quantum-inspired genetic algorithm. Proc. of IEEE International Conference on Evolutionary Computation. Piscataway:IEEE Press. 1996:61-66.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700