用户名: 密码: 验证码:
基于土基耐久性的路基与半刚性基层间的过渡层研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
路基是路面结构的基础,但在长期的运营过程中,受外界水分、荷载等因素的影响,路基土的耐久性会发生变化,主要表现为强度的衰减,从而引起路面结构的破坏。在路基与半刚性基层间设置过渡层,可有效缓解路基病害对路面结构的影响,但目前尚没有系统的设计方法针对过渡层的厚度、材料等进行专门的设计。因此,本文从研究路基土的耐久性特征及其对路面结构的影响出发,基于过渡层的作用机理,对路基与半刚性基层间的过渡层的设计方法进行研究。
     水分是影响路基土耐久性的主要因素,而细粒土具有较强的持水能力,其性质更易受水分的影响。论文首先通过室内试验模拟粉土和粘土内部水分的渗透作用和毛细上升作用,在此基础上,对比分析土质对水分迁移规律的影响,以及不同类型土的耐久性变化特征;其次针对在不同交通量情况下路基含水率较高而诱发的路面病害进行调查,总结出路基土耐久性变化引起的路面病害的主要形式;最后结合路用环境定量分析路基耐久性不足引起的路面结构疲劳寿命的衰减幅度,计算结果与实际情况相符。
     路基土的回弹模量是路面结构设计的重要参数,也是反映路基土耐久性的主要指标。论文首先分析路基土的应力依赖性和水敏感性,并根据土水特征曲线,以基质吸力为媒介,建立路基土回弹模量的应力依赖性和水敏感性耦合模型,且通过室内试验进行验证;其次结合实际环境中外部荷载和路基内部水分的变化,分析运营期间路基土回弹模量的变化趋势;最后将“动态”的交通量与“静态”的轴载进行相互转化,提出我国半刚性基层沥青路面典型结构在不同交通量等级下的容许最小路基强度。
     弹性层状体系理论是我国路面结构设计的基础理论。论文首先结合弹性层状体系的力学响应特征,研究厚度、模量等结构参数变化对各结构层受力的影响,分析影响弹性层状体系内部各结构层受力的直接因素,从理论上提出设置过渡层可以有效改善路基强度衰减对路面结构的影响;其次研究过渡层的作用机理,主要包括对下层结构的补强作用和对上层荷载的削弱作用,并分析过渡层的厚度、模量等结构参数对其作用的影响;最后依据补强作用原理,建立补强后当量模量的预估模型,并提出基于补强递增系数的的最佳补强理论和经济模量,既能满足结构的力学性能要求,又能充分利用过渡层的强度。
     级配碎石既有一定的强度又能适应一定的变形,是作为过渡层的理想材料,合理的级配是保证级配碎石过渡层的路用性能的重要前提。论文首先对目前常用的级配设计方法进行分析,其本质是分形理论的不同应用形式,并提出集料的分形特征;然后对目前各国规范中级配碎石的分形特征进行分析,依据固体体积率、CBR、二次松散系数等路用性能等进行优化,提出适用于过渡层的级配碎石的级配范围,并与我国规范中规定的级配范围进行性能对比,检验级配碎石分形级配范围的合理性。
     论文结合高含水率粉土路基路段的公路大修工程,对级配碎石过渡层的设计及应用进行说明。首先,对路面病害类型及主要成因进行详细分析,认为路基土耐久性衰减是引起路面损坏的主要原因,符合过渡层的设置条件;其次,结合现场交通量条件利用最佳补强理论对级配碎石过渡层的厚度和模量进行设计,并能够满足结构验算的要求;最后,总结出级配碎石的施工工艺及质量检验标准。
Subgrade plays a supporting role to the pavement structure, while the property of subgrade soil changes as the effect of water and bad along the running. And the strength attenuation appears easily, which would result in the damage of pavement. The transition layer between subgrade and semi-rigid base could decrease the influence of subgrade defect on pavement structure. But now there is no systematic design method to guide the design of transition layer. So the durability of subgrade soil and its impact is studied, and then the design method of transition layer is proposed basing on the function of transition layer.
     Water has an important influence on the property of subgrade soil, and the fine-grained soil retains water strongly, so its property is easier to be impacted by water. First, the permeation and capillarity of silt and clay are simulated through laboratory test, and then the influence of soil group on the water migration and the durability are analysed. Second, the disease of pavement caused by subgrade with high water content is summarized by means of field survey. At last, the quantitative analysis of the fatigue life of pavement structure is proceeded combined with the application environment.
     Resilient modulus of subgrade soil is an important parameter in pavement structure design, which reflects the durability of subgrade soil. First, the stress-dependent and water sensitivity of soil are analysed separately, and then the coupling model is built by using matric suction. Second, the variation tendency of resilient modulus is researched based on the change of water conten and vehicle load. At last, the division method fot the grade of traffic volume is converted from vehicle number to axle load, and then the allowable minimum strength of subgrade for the typical asphalt pavement structure with semi-rigid base is suggested under different level of traffic volume.
     The elastic layer system theory is the basic for the design of pavement structure. First, the influence of thickness and modulus on the mechanics characteristic of the layered structure is researched, then the immediate influence factor is found out, thereafter the idea that the transit ion layer could minis h the influence of subgrade strength attenuation on pavement structure effectively is come up. Second, the function of transition layer is researched in terms of mechanical mechanism, which contains reinforcing the understructure and weakening the load, and then the influence of structure parameters such as thickness, modulus on the function is studied. Finally, basing on the reinforcement, the prediction model on equivalent modulus is established, after that the optimum reinforcement theory and the best modulus are put forward, which can meet the structure stress and make use of the strength of transition layer fully.
     Graded aggregate has enough strength and can moderate deformation. It's a good material to construct transition layer, and the perfect graduation is important to the performance of the structure. First, different grading design methods are discussed, and it's found that all these methods are different forms of fractal theory, also the fractal feature of aggregate is presented. Second, fractal features of aggregate in specification of different country are analysed, and then the scope of gradation is optimized by the solid volume rate, CBR and secondary coefficient of volumetric expansion. At last, the rationality of the suggested gradation range is examined by laboratory tests.
     The transition layer is applied in the maintenance works of a highway. First, the disease is examined, and it's showed that the strength attenuation of subgrade is the key factor to destroy the pavement structure, so the transition layer is suitable to use in the engineering. Second, the optimum reinforcement theory is used to design the transition layer basing on the traffic volume, and the result achieves the structure checking. At last, the construction technology and quality inspection standards of graded aggregate are summarized.
引文
[1]交通运输部公路局.2013年度全国公路养护统计年报.2014.
    [2]曾峰.高等级公路沥青路面大中修养护周期及使用性能预测技术研究[R].西安:长安大学.2011.
    [3]Allam Effect of wetting and drying in shear strength [J]. Geotech. Engrg. Div. ASCE.1981,107(4):681-687.
    [4]Koolen A J, Kuiper H. Agricultural Soil Mechanics[M]. Springer. New York, USA.1983.
    [5]Hawkins A B. McConnell B J. Sensitivity of sandstone strength and deformability to changes in moisture content[J]. Engineering Geology.1992,(25):115-130.
    [6]Vasarhelyi B, Van P. Influence of water content on the strength of rock[J]. Engineering Geology.2006,(84):70-74.
    [7]Vasarhelyi B. Statical analysis of the influence of water content on the strength of the Miocene limestone[J]. Rock Mech.Rock Eng.2005,(38):69-76.
    [8]唐芬,叶四桥,陈洪凯.新疆翻浆路基土吸水抗剪强度衰减非线性分析[J].地下空间与工程学报.2006,(2)335-339.
    [9]李兆平,张弥,赵慧丽.含水量的变化对非饱和土强度影响的实验研究[J].西部探矿工程.2001,(4):1-3.
    [10]刘文霞,王莉,邢姣秀.重塑非饱和土抗剪强度指标与含水状态变化的关系[J].黑龙江工程学院学报(自然科学版).2006,(1):29-31.
    [11]熊承仁,刘宝琛,张家生.重塑非饱和粘土抗剪强度参数与饱和度的关系研究[J].岩土力学.2003,(S2):195-198.
    [12]彭丽云,刘建坤,肖军华等.京九线路基击实粉土力学特性的试验[J].北京交通大学学报.2007,31(4):56-60.
    [13]宋修广,张瑜洪,张海忠等.黄泛区粉土路基强度衰减对路面结构的影响分析[J].公路交通科技.2010,27(5):30-35.
    [14]陈晓燕.基于路基强度衰减条件下的路面结构力学分析及典型结构的推荐[D].济南:山东大学.2009.
    [15]时伟.土基回弹模量对沥青路面的影响及加固层设计研究[D].西安:长安大 学.2007.
    [16]张瑜洪.公路路基强度衰减对边坡稳定性的影响及预防性养护措施研究[D].济南:山东大学.2010.
    [17]曹东伟,胡长顺.多年冻土区路基融沉变形的附加应力分析[J].重庆交通学院学报,2001,2(3)57-61.
    [18]张嘉凡,张慧梅.软土地基路基不均匀沉降引起路面结构附加应力[J].长安大学学报(自然科学版),2003,23(3):21-25.
    [19]杨庆刚,黄晓明,廖公云等.软基差异沉降对夹层路面结构的影响分析[J].公路交通科技,2007,2(1):1-5.
    [20]邓卫东,张兴强,陈波等.路基不均匀沉降对沥青路面受力变形影响的有限元分析[J].中国公路学报,2004,17(1):12-15.
    [21]周虎鑫,陈荣生.高等级公路工后不均匀沉降指标研究[J].东南大学学报,1996,26(1)54-56.
    [22]聂鹏,曲向进,刘奉侨等.沈大高速公路改扩建工程路基加宽容许工后不均匀沉降指标研究[J].公路交通科技,2005,22(11):18-20.
    [23]赵岩.基于高速公路舒适性的不均匀沉降标准研究[J].武汉理工大学学报(交通科学与工程版),2011,35(6):1245-1247.
    [24]Kcnnedy T W. Practical use of the indirect tensile test for the characterization of pavement materials[J]. Proc.9th ARRB Conference. Brisbane, Australia. 1978,9(3)36-45.
    [25]沙庆林.高等级道路半刚性路面[M].北京:中国建筑工业出版社,1993.
    [26]黄卫.半刚性路面结构的参数敏感性分析[J].东南大学学报.1994,24(4):101-106.
    [27]梁乃兴.现代路面与材料[M].北京:人民交通出版社,2003.
    [28]HUANG Y H. Pavement Analysis and Design [M].2nd ed. Englewood Cliffs Person Prentice Hall. 2004.
    [29]姚祖康.路面(第三版)[M].北京:人民交通出版社.2006.
    [30]胡龙泉,蒋应军,陈忠达.骨架密实型水泥稳定碎石路用性能[J].交通运输工程学报.2001,1(4):37-40.
    [31]张争奇,胡长顺.纤维加强沥青混凝土几个问题的研究和探讨[J].西安公路交通大学学报.2001,21(1):29-32.
    [32]董苏波,王元纲,吴育琦.玻纤对二灰碎石基层的力学性能影响试验[J].苏州科技学院学报(工程技术版).2004,17(2)30-33.
    [33]徐剑.格网碎片加固水泥稳定土基层材料的应用研究[D].长沙长沙交通学院.2000.
    [34]黄卫.南京机场高速公路半刚性基层特性研究[M].北京:人民交通出版社.1996.
    [35]蒋应军,戴经梁,陈忠达.半刚性基层裂缝产生机理分析及防治措施.重庆交通学院学报[J].2002,21(2):54-57.
    [36]胡龙泉,蒋应军,陈忠达等.骨架密实型水泥稳定碎石路用性能.交通运输工程学报[J].2001,1(4):37-40.
    [37]蒋应军,陈忠达,彭波等.密实骨架结构水泥稳定碎石路面配合比设计方法及抗裂性能[J].长安大学学报(自然科学版).2002,22(4)9-12.
    [38]黄煌镇,吕伟民,徐建达.减缩剂在水泥稳定碎石基层中的应用[J].同济大学学报(自然科学版).2005,33(8):1047-1050.
    [39]黄煌镇,吕伟民,徐建达.减水剂对水泥稳定碎石物理力学性能的影响[J].建筑材料学报.2005,8(3)311-315.
    [40]黄学文,张正锋.HNF-6高效缓凝阻裂剂在水泥稳定碎石基层中的应用研究[J].公路交通科技.2001,18(2):13-15.
    [41]张晓冰.半刚性基层沥青混凝土路面裂缝出现原因分析及防治措施[J].河南交通科技.1999,19(2):13-14.
    [42]张鹏.高等级公路半刚性基层材料的抗裂性能研究[D].大连:大连理工大学.2007.
    [43]汤勇.半刚性基层预切缝防止反射裂缝的试验研究[D].沈阳:东北大学.2003.
    [44]徐江萍,张磊.水泥粉煤灰稳定碎石基层沥青路面防裂措施研究[J].中外公路.2005,25(3):43-46.
    [45]周继业,林绣贤.沥青路面的预锯缝和缝距计算[J].中国公路学报.1994,7(1):14-19.
    [46]蒋应军,薛航,薛辉.半刚性基层预锯缝及铺土工布的路面防裂措施[J].长安大 学学报(自然科学版).2006,26(2):6-9.
    [47]Molenaar A A A, Heerbens J C P, et al. Effects of stress absorbing membrance interlayes[J]. Proc of AAPT.1986,55(1)206-219.
    [48]David Zamora-Barraza, Miguel A Calzada-Perez, Daniel Castro-Fresno, Angel Vega-Zamanilo. Evaluation of anti-reflective cracking systems using geosynthetics in the interlayer zone [J]. Geotextiles and Geomembranes. 2010,(29):130-136.
    [49]R.Kirsehaer. Asphalt-reinforcing polyester grids in airfields[J]. Airport Forum. 1990,(20):8-10.
    [50]Liege, Belgim. Reflective Cracking in Pavements State of the Art and Design Recommendations[J]. Proceedings of the Second International RILEM Conference.March 10-12,1993.
    [51]Hughes J J, Somers E. Geogrid mesh for reflective crack control in bituminous concrete overlays[R]. Pennsylvania Dept of Transportation, Harrisburg. Bureau of Construction and Materials.2000.
    [52]Kidd S Q. Paving fabric and asphalt stress absorbing membrane interlayers (SAMI)[R]. Mississippi State Highway Dept. Jackson Research and Development Div.1990.
    [53]Lytton R L, Shanmugham U. Fabric reinforced overlays to retard reflection cracking[R]. Texas A&M Research Foundation.1983.
    [54]胡长顺,王秉刚.水泥混凝土与沥青混凝土复合式路面研究综述[J].中国公路学报.1994,7(4):33-39.
    [55]胡长顺,曹东伟等.土工织物在PCC-AC结构中应用的理论与实践[R].公路.2000,(9):1-9.
    [56]张肖宁,王绍怀等.广州市北环高速公路加铺层试验段研究[J].中外公路.2002,22(2):1-5.
    [57]符冠华,卢拥军.沥青混凝土加铺层改造旧水泥混凝土路面的5年实验分析[J].公路.2003,(10):100-106.
    [58]AI. The Asphalt Handbook[M]. Manual Series No.4. Asphalt Institute,1989.
    [59]杨斌.旧水泥混凝土路面沥青加铺层结构研究[D].西安长安大学.2005.
    [60]NCHRP. Design and evaluation of large stone asphalt mixes[R]. Transportation Research Board National Research Coucil.1990.
    [61]Paul N K, Glen A M. Use of large atone asphaltic concrete overlays of flexible pavements. Research Project No.23241-94-7.
    [62]Rajib B. Mallick, et al. Design, construction, and performance of new generation open-graded friction courses. National Center of Asphalt Technology NCAT Report No.2000-1.
    [63]王松根,房建果,王林,马世杰.大粒径沥青混合料柔性基层在路面补强中的应用研究[J].中国公路学报.2004,17(3):10--15.
    [64]王松根,毕玉峰.大粒径透水性沥青混合料(LSPM)新型路面结构及工程应用的研究[J].公路交通科技.2009,(4):66-69.
    [65]Hinchberger S D, Rowe R K. Geosynthetic reinforced embankments on soft clay foundations:predicting reinforcement strains at failure[J]. Geotextiles and Geomembranes.2003,(21):151-175.
    [66]Reid J M, Brookes A H. Investigation of lime stabilised contaminated material[J]. Engineering Geology.1999,(53)217-231.
    [67]Rao M R, Rao A S, Baru R D. Efficacy of cement-stablized fly ash cushion in arresting heavy of expansive soils[J]. Geotech Geol Eng.2008, (26):189-197.
    [68]Jagadish Prasad Sahoo, Pradip Kumar Pradhan. Effect of Lime Stabilized Soil Cushion on StrengthBehaviour of Expansive Soil[J]. Geotech Geol Eng.2010, (28).:889-897.
    [69]Ambarish Ghosh, Utpal Dey. Bearing ratio of reinforced fly ash overlying soft soil and deformation modulus of fly ash[J]. Geotextiles and Geomembranes.2009, (27)313-320.
    [70]Robert W S. Use of limited life geotextiles (LLGs) for basal reinforcement of embankments built on soft clay[J]. Geotextiles and Geomembranes.2007, (25)302-310.
    [71]顾欢达,顾熙,嘉门雅史.消石灰稳定土用于路基材料时的耐久性研究[J].公路.2001,(12):84-87.
    [72]虞海珍,李小青,姚建伟.膨胀土化学改良试验研究分析[J].岩土力学.2006,27(11):1941-1944.
    [73]中华人民共和国行业标准.公路沥青路面设计规范[S].北京:人民交通出版社,2006.
    [74]郝晓冬,李洪滔.路面结构中砂砾垫层的作用[J].黑龙江交通科技.2010,(6):69-70.
    [75]王修山.级配碎石基层沥青路面材料与结构特性研究[D].西安长安大学.2010.
    [76]Bonnot J. Semirigid pavements[M].PIARC Technical Committees.1991.
    [77]邓学钧.路基路面工程[M].北京:人民交通出版社.2008.
    [78]张鹏.高速公路沥青路面二灰垫层研究[D].西安长安大学.2007.
    [79]Huabao Zhou, Xuejun Wen. Model studies on geogrid-or geocell-reinforced sand cushion on soft soil[J]. Geotextiles and Geomembranes.2008,(26)231-238.
    [80]林绣贤.柔性路面结构设计方法[M].北京:人民交通出版社.1988.
    [81]Yoder E J, Witczak M W. Princple of pavement design[M]. New York City: Jone Wiely & Sons Inc.1975.
    [82]朱照宏,许志鸿.柔性路面设计理论与方法[M].上海:同济大学出版社.1985.
    [83]Hveem F N. Pavement deflection and fatigue failures[R]. Bulletin 114. Highway Research Board.1995.
    [84]AASHTO. AASHTO Guide for design of pavement structure[R]. Washington D C.1986.
    [85]AASHTO. AASHTO Guide for design of pavement structure[R]. Washington D C.1993.
    [86]Burmister D M. The general theory of stresses and displacements in layered system[J]. Journal of Applied Physics.1945,(15):89-94.
    [87]Valkring C P, Stapel F D R. The shell pavement design method on a personal computer[C]. Proceedings.7th International Conference on Asphalt Pavements. Nottingham.1992.
    [88]姚祖康.公路设计手册—路面[M].北京:人民交通出版社.2006.
    [89]Shell International Petroleum Company, Limited. Addendum to the shell pavement design manual[M].1985.
    [90]Asphalt Institute. Asphalt pavement thickness design[M]. Information Series No.181.1981.
    [91]Asphalt Institute. Research and development of the Aasphalt Institute's thickness design manual (9th ed)[R]. Research Report 82-2.
    [92]Asphalt Institute. Thickness design—Asphalt pavement for highways and streets manual series No.1.1991.
    [93]NCHRP.2002 design guide[S].2003.
    [94]邹维列,王钊,彭元新.长寿沥青路面结构的层厚设计与分析[J].岩土力学.2009,30(3):645-649.
    [95]黄开宇,钟梦武.混合式基层沥青路面结构设计方法的研究[J].公路工程.2010,35(5):56-62.
    [96]李海滨.基于半刚性基层适应性的沥青路面结构研究[D].西安长安大学,201 0.
    [97]马庆伟.基于层位功能考虑的耐久型沥青路面结构研究[D].西安长安大学.2010.
    [98]罗芳艳,孙立军.基于使用性能的沥青路面结构设计方法研究[J].中国公路学报:2001,14(S):35-38.
    [99]陈家强,于康,庄惠平,等.二灰土配合比试验研究及工程应用[J].工程力学.2003,(S):470-473.
    [100]张小平,俞仲泉.粉煤灰掺石灰混合料的工程性质试验研究[J].河海大学学报.1999,27(3)57-62.
    [101]李炜光,申爱琴,张玉斌.二灰碎石抗裂级配及应用[J].长安大学学报(自然科学版).2004,24(6):7-10.
    [102]徐云晴.级配碎石基层级配设计与应用研究[D].重庆重庆交通大学.2010.
    [103]中华人民共和国行业标准.公路路面基层施工技术规范[S].北京:人民交通出版社.2000.
    [104]http://baike.baidu.com/view/456690.htm.
    [105]刘小平.非饱和土路基水作用机理及其迁移特性研究[D].长沙:湖南大学.2008.
    [106]李广信.高等土力学[M].北京:清华大学出版社.2004.
    [107]中华人民共和国行业标准.公路土工试验规程[S].北京:人民交通出版社.2007.
    [108]赵世平,李建生,杨改强等.粒径对土壤水分特征曲线的影响[J].太原科技大学学报.2008,29(4)332-334.
    [109]田湖南,孔令伟.细粒对砂土持水能力影响的试验研究[J].岩土力学.2010,31(1)56-60.
    [110]姚占勇.黄泛区公路土的处置[M].北京:人民交通出版社.2013.
    [111]Erguler Z A,Ulusay R. Water-induced Variations in Mechanical Properties of Clay bearing Rocks [J]. International Journal of Rock Mechanics & Mining Sciences.2009, (46)355-370.
    [112]谢文忠,余叔藩.半刚性基层沥青路面结构疲劳寿命的环道试验研究[J].中国公路学报.1990,3(2):11-20.
    [113]田耀刚,韩庆,田世亮,李炜光,郑涛,布赫.半刚性基层沥青路面层间病害调查与研究[J].武汉理工大学学报,2010,32(4):169-172.
    [114]中华人民共和国行业标准.公路沥青路面设计规范[S].北京:人民交通出版社.2006.
    [115]凌建明,陈声凯,曹长伟.路基土回弹模量影响因素分析[J].建筑材料学报.2007,10(4):446-451.
    [116]Thompson M R, RobneR Q L. Resilient properties of subgrade soils [J]. Transportation Engineering Journal. ASCE,1979,105:71-89.
    [117]Yaw B P, Drumm E C. Hyberbolic model for the resilient modulus response of fin-grained subgrade soil [J]. Geotechnical Special Publication. ASCE,1989,24: 1-14.
    [118]Moosazadeh J, Witczak M W. Prediction of subgrade modului for soil that exhibits nonlinear behavior [M]. Transportation Research Record 810. Washington DC:TRB. National Research Council.1981:9-17.
    [119]Dunlap W A. A report on a mathematical model describing the deformation characteristics of granular materials [R]. Texas Transp Inst, Texas A&M University.1963.
    [120]Seed H B, Mitry E G, Monosmith C L, Chart C K. Prediction of pavement deflection from laboratory repeated load tests [R]. Washington D C:TRB, National Research Council.1967.
    [121]Uzan J. Characterization of granular materials[M]. Transportation Research Record 1022. Washington DC:TRB. National Research Council.1985:52-59.
    [122]Pezo R F. A general method of reporting resilient modulus tests of soils-a pavement engineer's point of view [R]. Washington DC:TRB.1993.
    [123]Witczak M W, Uzan J. The universal airport pavement design system:report of IV:granular material characterization [R]. College Park:College of Engineering, University of Maryland.1988,9.
    [124]李聪,邓卫东,张盛.考虑非饱和土基质吸力影响的路基回弹模量研究[J].公路交通技术.2008,8(4):5-8.
    [125]Witczak M W. Guide for mechanistic-empirical design of new and rehabilitated Pavement structures final report [M]. Washington DC:TRB, National Research Council.2004.
    [126]陈声凯,凌建明,张世洲.路基土动态回弹模量室内试验加载序列的确定[J].公路.2006,11(11):148-152.
    [127]White N F, Duke H R, Sunada D K. Physics of desaturation in porous materials [J]. Journal of Irrigation and Drainage Division. ASCE,1970,96:165-191.
    [128]刘小文,常立君,胡小荣.非饱和红土基质吸力与含水率及密度关系试验研究[J].岩土力学,2009,30(11):3302-3306.
    [129]徐远明,陈宇亮,王新武.路基动态静态回弹模量现场对比试验研究[J].路基工程.2011,(1):87-88.
    [130]中华人民共和国行业标准.公路技术状况评定标准[S].北京:人民交通出版社.2007.
    [131]公路养护技术国家工程研究中心.2012年江苏省干线公路检评与养护分析报告[R].2012.
    [132]郭大智,冯德成.层状弹性体系力学[M].哈尔滨:哈尔滨工业大学出版社.2001.
    [133]赵官胜.重载交通下等级路路基工作区深度的研究[D].济南:山东大学.2009.
    [134]王龙,解晓光,冯德成.级配碎石材料强度及塑性变形特性[J].哈尔滨工业大学 学报.2007,39(6)944-947.
    [135]蒋应军,李頔,马庆伟等.级配碎石力学性能影响因素的试验研究[J].交通科学与工程.2010,26(1):6-13.
    [136]Furnas C C. Flow of gasses through beds of broken solids[J]. Bur. Mines Bul 1929,307:74.
    [137]邓学钧.路基路面工程[M].北京:人民交通出版社.2008.
    [138]陈忠达,袁万杰,郑东启.级配理论应用研究[J].重庆交通学院学报.2005,24(4):44-48.
    [139]Transportation Research Board. Bailey method for gradation selection in HMA mixture design [R]. Washington DC:Transportation Research Board.2002.
    [140]Sanchez-leal F J.Gradation chart for asphalt mixes:Development [J]. Journal of Materials in Civil Engineering.2007,19(2):185-197.
    [141]林鸿溢,李映雪.分形论-奇异性探索[M].北京北京理工大学出版社.1992.
    [142]李水根.分形[M].北京:高等教育出版社.2004.
    [143]Perdomo D, Button J W.Indentifying and correcing rut susceptible asphalt mixture [R].Washington DC. TRR.1991.
    [144]Yeggoni M, Button J W, Zollinger D G. Fractals of aggregates cCorrelated with creep in asphalt concrete [J]. ASCE Journal of Transportation Engineering. 1996,122(1)22-28.
    [145]李国强,邓学钧.集料的分形级配研究[J].重庆交通学院院报.1995,14(2):38-42.
    [146]江巍,潘轶.固体体积率检测方法在机场工程中的应用研究[J].中国水运.2010,10(11):249-251.
    [147]吴爱祥,氶志祥,刘湘平.散体动力学理论及应用[M].北京:冶金工业出版社.2002.
    [148]陈艳琼.级配碎石柔性基层固体体积率指标研究[J].河北工程大学学报.2010,27(4):26-28.
    [149]李福普,严二虎.沥青稳定碎石与级配碎石结构设计与施工技术应用指南[M].北京:人民交通出版社.2009.
    [150]王大鹏,窦文利,傅智等.碎石层缓冲差异沉降模拟试验研究[J].公路交通科技.2008,25(9):23-27.
    [151]胡小弟,孙立军.沥青路面结构在非均布荷载作用下的三维有限元分析[J].长安大学学报:自然科学版.2003,23(5):15-20.
    [152]崔鹏,邵敏华,胡晓等.长寿命沥青路面结构组合的有限元分析[J].同济大学学报:自然科学版.2008,36(10):1388-1394.
    [153]同济大学应用数学系.高等数学:第五版[M].北京:高等教育出版社.2002.
    [154]王锐佳,梁锡三,陈佩林.关于级配碎石抗压回弹模量的探讨[J].广东公路交通.997,(2):10-13.
    [155]林有贵,罗竞.级配碎石基层的回弹模量及沥青路面设计弯沉的研究[J].中南公路工程.2001,26(4):9-11.
    [156]何兆益,黄卫.邓学钧.级配碎石弹性模量的动三轴试验研究[J].东南大学学报.1997,27(3)36-40.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700