用户名: 密码: 验证码:
组蛋白H1和TAT融合蛋白向细胞内转运DNA能力的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
组蛋白H1包括了多个亚型,但这些亚型有相类似的结构域:中心球形结构域、N末端区和C末端区,该家族成员都是富含碱性氨基酸的蛋白质,因而能够与带负电荷的DNA通过静电引力相结合,参与细胞内染色体高级结构的形成。Thomas等长期研究发现,C末端区在染色质凝聚方面比另两个区域更为重要,即,就与DNA作用而言,该区的氨基酸构成非常重要。研究证实,C末端区氨基酸对DNA凝聚起了决定作用。而且经Schwamborn等的研究发现,H1组蛋白的C末端序列(sequence of H1 C terminatio以下统称H1ct)可能含有多个核定位信号。
     蛋白转导(protein transduction)是指蛋白具有自主跨过细胞膜转运蛋白的功能,即蛋白自身及和其携带的一些生物大分子(蛋白质、多肽、DNA、寡核苷酸等)组成的融合蛋白均能在无任何辅助条件介导下(如脂质体、磷酸钙、电转化、病毒载体等)快速、高效、无障碍的穿过多种哺乳动物细胞膜进入细胞内,并可在周围细胞间传递,而且被转入细胞内的外源蛋白保留其原有的生物学活性与功能。这种独特的蛋白转导功能对于高效新型疫苗和药物的开发及基因治疗具有重要意义。最早被发现能跨过细胞膜进入细胞的蛋白是人免疫缺陷病毒(HIV-1)的转录激活蛋白(TAT),即HIV-TAT。研究表明,完整的TAT和截短的TAT蛋白(47~57位氨基酸)均具有蛋白转导功能,从而确定了TAT的蛋白转导结构域。由于TAT为穿膜肽,目前的研究表明穿膜肽可携带多种物质,包括亲水性蛋白、多肽、DNA甚至颗粒性物质等进行细胞间或细胞内的传输,并且不受细胞类型的限制。为了证明TAT在没有靶向的情况下可以携带蛋白进入细胞,我们做了第一个实验作为第二个实验的阳性对照。我们通过PCR重叠延伸技术将HIV-ⅠTat蛋白基因与绿色荧光蛋白(GFP)基因重组获得TAT-GFP融合基因,并通过原核表达系统实现融合基因TAT-GFP(TG)的表达和纯化。通过重组融合蛋白TG作用Hela细胞后荧光强度检测显示TAT有很高的转膜效率
     由于TAT的转膜效率高,我们将TAT基因和HIct蛋白基因融合,构建了基因转运载体。利用大肠杆菌通过基因工程技术表达TAT-H1ct融合蛋白,获得了TAT-H1ct蛋白的高效制备,通过融合表达His-Tag抗原表位标签对TAT-H1ct重组蛋白进行检测和纯化。用已纯化的TAT-H1ct融合蛋白作为DNA转运载体,对Hela细胞和鼠成纤维细胞进行绿色荧光蛋白质粒的转导实验并检测其表达情况。融合蛋白与绿色荧光光蛋白质粒以最佳配比形成复合物后,将其加入培养在24孔板的Hela细胞和鼠成纤维细胞,48小时后在激光共聚焦荧光显微镜下观察到Hela细胞和鼠成纤维细胞内有较强的绿色荧光,表明绿色荧光蛋白基因得到了表达。而对照组Hela细胞和鼠成纤维细胞中没有绿色荧光。这一结果显示TAT-H1ct融合蛋白可以介导DNA进入细胞,有较强的转运DNA的能力,为其发展成为基因导入系统奠定了基础。
Gene Therapy is a new treatment model developed in nineties of the twentieth century. It replaced the mutation pathogenic gene, also by changing the genetic structure of disease cells, or by importing genes of enhance immunity to human body, to control the disease and achieve the purpose of treatment. And compared to traditional drug therapy, if gene therapy as a fundamental method to control disease, the vector which can be injected into the body must be the developed. At present, the gene delivery system is divided into virus carriers and non-viral vector. Virus carriers: Non-targeting, a strong immunogenicity, prone to wild-type virus. Because of the low immunogenicity and the relatively safety of Non-viral vector, it is concerned increaslly.
     Non-viral vectors for potential gene replacement and therapy have been developed in order to overcome the drawbacks of viral vectors. The diversity of non-viral vector resulted in a number of non-viral vector products, they have a flexibility of application, ease of use, low costs of production, and enhanced the safety of gene. Use the strategy of non-viral vector, oligonucleotide (ODNS) can be delivered naked (less efficient) or embedded cationic liposomes, polymers or peptide formed low buffer delivery systems, to achieve the purpose of therapy according to the target of cells. Tissues and cells internalization has been further strengthened by changing of physical or chemical method . There are many kinds of non-viral gene transfer vector, histone belongs to this family, because of their positively charge, DNA with a negative charge, they can be closely integrated through the charge, so that the structure of DNA by the extension is reduced to a relatively small volume of DNA particles.
     The first protein across the cell membrane to enter the cells is of human immunodeficiency virus ,HIV. Studies have shown that exogenous protein conjugated with TAT can be transported to the cells, confirmed the ability of TAT transgenic membrane. N-(47-57) of 11 amino acids of TAT protein is the domain of transduction, sequence is YGRKKRRQRRR.
     Search for efficient gene transfer vector, we constructed histone H1 as the skeleton of the gene delivery system, recombinant histone H1 gene, applied overlap extension PCR technology to recombinant histone gene and TAT trarsmembrane systems, build a fusion protein gene TAT-H1ct and expressed in prokaryotic cells. combinate fusion protein after purificate with pEGFP/C1 plasmid and then transfect Hela cells and fibroblast of mouse , detecte the intensity of green fluorescence to determine the ability to transfer DNA.
     1. Expression and purification of TG fusion gene and detection efficiency of TAT trarsmembrane
     Applied overlap extension PCR technique to recombinant green fluorescent protein gene and TAT gene, acquired recombinant plasmid of the fusion gene: pMD 18-T- TAT-GFP and prokaryotic expression plasmid pET-28a-TAT-GFP, the recombinant plasmid was transformed into receptor BL21 (DE3) to express, and fusion protein was detected by 12% SDS-PAGE electrophoresis, The specific TG fusion protein appeared at 31.5 kDa, conformity with the expected molecular weight, induced conditions is 1 mmol / L of IPTG final concentration, and the recombinant protein is highest expression when induced time is 6h. Fusion protein TG is purified, fusion protein is role in Hela cells. The results showed that compared with the control group, after 6 h , tumor cells with TG fusion protein can be observated high green fluorescence intensity by the laser scanning confocal fluorescence microscope, in the control group did not have green fluorescence.
     2 Expression of prokaryotic expression vector of TAT-H1ct fusion gene and study the ability of transfectedr DNA to the cells
     Applied PCR technology to recombinant H1ct gene and TAT gene, TAT-H1ct recombinant fusion protein gene is acquired, based on the recombinant plasmid pMD18-T-TAT-H1ct of fusion gene, we constructe the recombinant expression plasmid pET-28a-TAT-H1ct successfully, the recombinant plasmid was transformed into receptor BL21 (DE3) to express, and the fusion protein was detected by 12% SDS-PAGE electrophoresis, TAT-H1ct fusion protein is appered at around 32 kDa, conformity with the expected molecular weight. Induced conditions is 1 mmol / L of IPTG final concentration, and the fusion protein is highest expression when induced time is 5h. Fusion protein TAT-H1ct is purified,. After purification, the matching conditions of fusion protein and pEGFP/C1 plasmid is optimized, detecte the ability of the fusion protein binding DNA by observate the electrophores and then transfect Hela cells and fibroblast of mouse, after 48 hours high green fluorescence is observated by laser scanning confocal fluorescence microscopy. However the control group Hela cells and mouse fibroblasts is no green fluorescence. The results show that the fusion protein can carry DNA into the cell membrane with high efficiency, have a stronger ability to transfer DNA, is expected to become a gene transfer vector.
     In this study, through the detection of fluorescence intensity show that TAT-H1ct has high trarsmembrane efficiency, is expected to become a gene transfer vector, and establish foundation for further study of tumor treatment.
引文
[1] A.L. Gomes Dos Santos, A. Bochot, A. Doyle, et al .Sustained release of nanosized complexes of polyethylenimine and anti-TGF-beta2 oligonucleotide improves the outcome of glaucoma surgery. J.Control.Release 2006 (112) :369–381.
    [2]胡育诚.基因治疗的过去与展望.科学发展,2003,12,372.
    [3] E. Garcia-Valenzuela, R. Rayanade, J.C. Perales, et al .Axon-mediated gene transfer of retinal ganglion cells in vivo. J. Neurobiol, 1997 (32) : 111–122.
    [4] Tinkov, S, Bekeredjian.R., Winter, G.,et al .Polyplex-conjugated microbubbles for enhanced ultrasound targeted gene therapy.AAPS Annual Meeting and Exposition, Georgia World Congress Center, Atlanta, GA, USA, 2008,11.
    [5] Dai Y, Roman M, N aviaux RK, et al .Gene therapy via primary myoblasts:long term exp ression of factorⅨprotein following transplantation in vivo .Proc Nat Acad Sci USA,1992,89:10892-10895.
    [6] Cavazzana-Calvo M, Hacein-Bey S, de Saint Basile G , et al.Gene therapy of human severe combined immunodeficiency (SCID)-X1 disease.Science, 2000(5466): 669–72.
    [7] Beardsley T .A tragic death clouds the future of an innovative treatment method . Scientific American ,2000,2.
    [8] McDowell N.New cancer case halts US gene therapy trials.New Scientist, 2003,1,15.
    [9] Gardlik R, Palffy R, Hodosy J, et al. (Apr). Vectors and delivery systems in gene therapy. Med Sci Monit, 2005, 4 (11): 110–121.
    [10] Arai T,Matrsurnoto K,Saitoh L,et al.A new system for antigen:High tilter vesicular stomatits virus G rptein-praeudotyped retrovirus vector induction by introduction of Cre recombinase into stable prepacksging cell linke.J Virol,1998,72(2):1115-1121
    [11] Martin F,Neil S,Kupsch J,et al.Retrovirus targeting by tropism restriction to melanomn cells.J Virol,1999,73(8):6923-6929
    [12] Cattoglio C, Facchini G, Sartori D, et al. Hot spots of retroviral integration in human CD34+ hematopoietic cells. Blood.2007 Sep 15;110(6):1770-1778
    [13] Montini E, Cesana D, Schmidt D, et al. Hematopoietic stem cell gene transfer in a tumor-prone mouse model uncovers low genotoxicity of lentiviral vector integration. Nat Biotechnol. 2006 Jun;24(6):687-696.
    [14] Gross F, Yvon E. Construction of hybrid viruses containing SV40 and lambda phage DNA segments and their propagation in cultured monkey cells. Scientific American
    [15] Belshe, C. Stevens, G. J. Gorse, et al. Safety and immunogenicity of a canarypox-vectored human immunodeficiency virus type 1 vaccine with or without gp120: a phase 2 study in higher- and lower-risk volunteers. J. Infect. Dis. 183:1343-1352.
    [16] Schowalter DB,Himeda CL,Winther BL,et al.Implication of interfering antibody formation and apoptosis as two different menchanism lending to variable durationof adenovirus-mediated transgene express in immune-competent mice.J Virol1999,73(6):4755-4766
    [17] Belyakov, B. Moss, W. Strober,et al. Mucosal vaccination overcomes the barrier to recombinant vaccinia immunization caused by preexisting poxvirus immunity. Proc. Natl. Acad. Sci. USA ,1996:4512-4517
    [18] Sun B, Chen YT, Bird A, Xu F, et al. Packaging of an AAV vector encoding human acid alpha-glucosidase for gene therapy in glycogen storage disease type II with a modified hybrid adenovirus-AAV vector. Mol Ther. 2003 ,4,7(4):467-77
    [19] Allen, J.M., et al . Improved adeno-associated virus vector production with transfection of a single helper adenovirus gene, E4orf6. Mol. Ther. 1: 88–95 doi: 10.1006/mthe.1999.0010.
    [20] Halbert, C. L., et al . Adeno-associated virus type 6 (AAV) vectors mediate efficient transduction of airway epithelial cells in mouse lungs compared to that of AAV2 vectors. J. Virol. 2001(75): 6615–6624.
    [21] Rutledge, E.A., et al. Infectious clones and vectors derived from adeno-associated virus (AAV) serotypes other than AAV type 2. J. Virol. 1998 (72): 309–319.
    [22] Gupta A,Gartner J J,Sethupathy,et al. Anti-apoptotic function of a microRNAencoded by the HSV-1 latency-associated transcript [J]. Nature, 2006, 442 ( 7098) :82- 85.
    [23] Wang Q Y, Zhu C, Johnson K E, et al. Herpes virus latency-associated transcript gene promotes assemby of heterochromatin on viral lytic-gene promoters in latent infection [J]. Proc Natl Acad Sci USA, 2005,102 ( 44) :16055- 16059.
    [24] Field H J, Biswas S, Mohammad I T.Herpesvirus latency and therapy———from a veterinary perspective [J]. Antiviral Res,2006, 71 (2):127- 133.
    [25] Kent J R, Kang W, Miller C G, et al. Herpes simplex virus latency-associated transcript gene function [J]. J Neuro virol, 2003, 9(3):285- 290.
    [26] Perng G C, Maguen B, Jin L, et al. A gene capable of blocking apoptosis can substitute for the herpes simplex virus type 1 latencyassociated transcript gene and restore wildtype reactivation levels [J]. J Virol, 2002,76 ( 3) : 1224- 1235.
    [27] Ahmed M, Lock M, Miller C G, Regions of the herpes simplex virus type 1 latencyassociated transcript that protect cells from apoptosis in vitro and protect neuronal cells in vivo [J]. J Virol, 2002, 76( 2) :717- 729.
    [28] Fischer T,Planz O,Stitz L,et al.Ovel recombinant parapox-virus cectors induce protective humoral and cellular immunity against lethal herpesvirus challenge infection in mice.J Virol,2003,77(17):9312-9323
    [29] Simon RH,Engelhardt JF,Yang Y,et al.Adenovirus–mediated gene transfer of the CFTR gene to the lung of non-human primates:atosicity study.Hum Gene Tuer,1993,4:771-780
    [30] N.Bessis, F.J.GarciaCozar,M.C.Boissier, Immune responses to gene therapy vectors: influence on vector function and effector mechanisms, Gene Ther. (Suppl 1) 2004 (11) :S10–S17.
    [31] Choate, Khavari, et al .Delivery of antisense oligonucleotide to the cornea by iontophoresis, Antisense Nucleic Acid Drug Dev. 2003 (13) :107–114.
    [32] A. Bochot, B. Mashhour, F. Puisieux, P. Couvreur, E. Fattal, Comparison of the ocular distribution of a model oligonucleotide after topical instillation in rabbits of conventional and new dosage forms, J. Drug Target. 1998 (6): 309–313.
    [33] B. Kim, Q. Tang, P.S. Biswas, J. Xu, R.M. Schiffelers, F.Y. Xie, A.M. Ansari, P.V. Scaria, M.C. Woodle, P. Lu, B.T. Rouse, Inhibition of ocular angiogenesis bysiRNA targeting vascular endothelial growth factor pathway genes: therapeutic strategy for herpetic stromal keratitis, Am. J. Pathol. 2004 (165) :2177–2185.
    [34] G.J. Angella, M.B. Sherwood, L. Balasubramanian, J.W. Doyle, M.F. Smith, G. van Setten, M. Goldstein, G.S. Schultz, Enhanced short-term plasmid transfection of filtration surgery tissues, Invest. Ophthalmol. Visual Sci. 2000 (41): 4158–4162.
    [35] X. Mo, A. Yokoyama, T. Oshitari, H. Negishi, M. Dezawa, A. Mizota, E. Adachi-Usami, Rescue of axotomized retinal ganglion cells by BDNF gene electroporation in adult rats, Invest. Ophthalmol. Visual Sci. 2002 (43) :2401–2415.
    [36] S. Kachi, Y. Oshima, N. Esumi, M. Kachi, B. Rogers, D.J. Zack, P.A. Campochiaro, Nonviral ocular gene transfer, Gene Ther. 2005 (12):843–851.
    [37] S. Isenmann, S. Engel, F. Gillardon, M. Bahr, Bax antisense oligonucleotides reduce axotomy-induced retinal ganglion cell death in vivo by reduction of Bax protein expression, Cell Death Differ. 1999 (6) :673–682.
    [38] Safety of intravitreous fomivirsen for treatment of cytomegalovirus retinitis in patients with AIDS, Am. J. Ophthalmol. 2002 (133) :484–498.
    [39] Randomized dose-comparison studies of intravitreous fomivirsen for treatment of cytomegalovirus retinitis that has reactivated or is persistently active despite other therapies in patients with AIDS, Am. J. Ophthalmol. 2002 (133):475–483.
    [40] W.Y. Shen, P.E. Rakoczy, Uptake dynamics and retinal tolerance of phosphorothioate oligonucleotide and its direct delivery into the site of choroidal neovascularization through subretinal administration in the rat, Antisense Nucleic Acid Drug Dev. 2001 (11) :257–264.
    [41] Gottschalk , M.P. Rols, An experimental evaluation of the critical potential difference inducing cell membrane electropermeabilization, Biophys. J. 1993 (65): 409–413.
    [42] J. Gehl, L.M. Mir, Determination of optimal parameters for in vivo gene transfer by electroporation, using a rapid in vivo test for cell permeabilization, Biochem. Biophys. Res. Commun. 1999 (261) :377–380.
    [43] Leaf Huang, M.P. Rols, J. Teissie, 31P NMR analysis of membrane phospholipid organization in viable, reversibly electropermeabilized Chinese hamster ovary cells,Biochemistry 27 :1222–1228.
    [44] J. Gehl, T.H. Sorensen, K. Nielsen, P. Raskmark, S.L. Nielsen, T. Skovsgaard, L.M. Mir, In vivo electroporation of skeletal muscle: threshold, efficacy and relation to electric field distribution, Biochim. Biophys. Acta. 1999 (1428) :233–240.
    [45] J.M.McMahon, D.J.Wells, Electroporation for gene transfer to skeletal muscles: current status, BioDrugs , 2004 (18) :155–165.
    [46] A. Glasser, P.L. Kaufman, Accommodation and presbyopia, in: P.L. Kaufman, A. Alm (Eds.), Physiology of the Eye. Clinical Application, Mosby, Saint Louis, MI, 2003: 197–233.
    [47] M.J. Pikal, The role of electroosmotic flow in transdermal iontophoresis, Adv. Drug Deliv. Rev. 1992 (9) :201–237.
    [48] N.A. Monteiro-Riviere, A.O. Inman, J.E. Riviere, Identification of the pathway of iontophoretic drug delivery: light and ultrastructural studies using mercuric chloride in pigs, Pharm. Res. 1994 (11): 251–256.
    [49]周芬,程时远等.基因治疗中的非病毒载体.化学通报,2005,68.
    [50] VetteseDadeyM, Walter P.Role of the histone amino termini in facilitated binding of a transcription factor[J].Mol Cell Biol, 1994,14: 970-981.
    [51] Hartman PG,Chapman GE.Studies on the role and mode of operation of the very-lysine-rich histone H1 in eukaryote chromatin.The three structural regions of the histone H1 molecule.Eur J Biochem,1977, 77: 45-51.
    [52] ThomasO H, Workman J L.Experimental analysis of chromatin function in transcription control[J].Crit Rev In Eukaryotic Expre,1994,4:403-441.
    [53] Doenecke D, Tonjes R.Differential distribution of lysine and arginine residues in the closely related histones H1 and H5 Analysis of a human H1 gene.J Mol..
    [54] Schwamborn K,Albig W.The histone H10 contains multiple sequence elements for nuclear targeting.Exp Cell Res,1998, 244 (1): 206 -217Biol,1986,187 (3): 461-464.
    [55] Gould H Chromatin[M].England:OxfordUniversity Press,1998:38.
    [56]汪仁,薛绍白,柳惠图.细胞生物学[M].北京:北京师范大学出版社,1998:308-309.
    [57]安丽娜,王树人.组蛋白乙酰化、去乙酰化与染色质结构及基因转录调控的关系[J].国外医学遗传学分册,2005,28(3):133-137.
    [58]周蔚,王世鑫.组蛋白修饰与基因调控[J].国外医学分子生物学分册,2003,25(2):71-73.
    [59]李想,张飞雄.组蛋白甲基化的研究进展[J].遗传,2004,26(2):244-248.
    [60]刘春艳,孙海晶,陆军,等.组蛋白乙酰化与癌症[J].生物化学与生物物理进展,2003,30(1):19-23.
    [61]陈坚,傅继梁.组蛋白脱乙酰化研究进展[J].生命的化学,1998,18(2):7-9.
    [62]罗惠霞,王玉炯.组蛋白乙酰化去乙酰化在真核基因转录调控中的作用[J].中国生物工程杂志,2004,2:19-21.
    [63]殷红,陈子兴.组蛋白去乙酰化异常与恶性肿瘤[J].国外医学-生理、病理科学与临床分册,2003,23(3):238-241.
    [64]卢震,王永潮.组蛋白的乙酰化/脱乙酰化与基因转录的关系[J].科学通报,1998,43: 792-795.
    [65]文建凡,李靖炎.一种简捷有效的组蛋白提取法[J].动物学研究,1994,15(4): 44-84.
    [66] DesaiD D, KrishnanM R, Swindle J T, et al.Antigen 2 specific induction of antibodies against native mammal DNA in nonautoimmunemice [J]. J.Immunol,1993,151:1614.
    [67] Stockl F,Muller S,Batsford S,et al.A role for histones and ubiquitin in lupus nephritis[J] ? Clin Nephrol, 1994 ,41 :10.
    [68] Cole. Int J Pept Protein Res. 1987(30):433-449.
    [69] SOPPE, S. E. J ACOBSEN, et al. The late flowering phenotype of fwa mutants is caused by gain-of-function epigenetic alleles of a homeodomain gene. Mol. Cell , 2000, 6: 791-802.
    [70] KORNBERG, R. D, and Y. LORCH. Twenty-five years of the nucleosome, fundamental particle of the eukaryote chromosome. Cell 1999(98): 285-294.
    [71] JENUWEIN, T., and C.D. A LLIS, Translating the histone code. Science 2002(293): 1074-1080.
    [72] KASINSKY, H. E, J. D. L EWIS, et, al. Origin of H1 linker histones. FASEB J. 2001 (15): 34-41.
    [73] JERZMANOWSKI. The linker histones in Chromatin Structure and Dynamics:State-of-the-Art, edited by J. Z LATANOVA and S. H. L EUBA. Elsevier, Amsterdam/New York. 2004 , 75-102
    [74] ZHOU, Y. B., S. E. G ERCHMAN, et, al. Position and orientation of the globular domain of linker histone H5 on the nucleosome. Nature ,1998(395): 402-405.
    [75] SHEN, X., EIR and M. A. G OROVSKY, Linker histones are not essential and affect chromatin condensation in vivo. Cell, 1995, 82: 47-56.
    [76] BARRA, J. L., L. R HOUNIM, J. L. R OSSIGNOL, et, al. Histone H1 is dispensable for methylation-associated gene silencing in Ascobolus immersus and essential for long life span. Mol. Cell. Biol. 2000, 20: 61-69.
    [77] RAMON, A., M. I. R. G ONZALEZ, et, al. Deletion of the unique gene encoding a typical histone H1 has no apparent phenotype in Aspergillus nidulans. Mol. Microbiol. 2000, 35: 223-233.
    [78] DOWNS, J. A., E. K OSMIDOU, A. M ORGAN, et, al . Suppression of homologous recombination by the Saccharomyces cerevisiae linker histone. Mol. Cell, 2003 ,11: 1685-1692.
    [79] PRYMAKOWSKA, M., M. R. P RZEWLOKA, et al. Linker histones play a role in male meiosis and the development of pollen grains in tobacco. Plant Cell ,1999, 11: 2317-2329.
    [80] J EDRUSIK, M. A., and E. S CHULZE. A single histone H1 isoform (H1.1) is essential for chromatin silencing and germline development in Caenorhabditis elegans. Development , 2001, 128: 1069-1080.
    [81] FAN, Y., A. S IROTKIN, et al. Individual somatic H1 subtypes are dispensable for mouse development even in mice lacking the H1°replacement subtype. Mol. Cell. Biol. 2001 , 21: 7933-7943.
    [82] FAN. Y, T. N IKITINA, et, al. H1 linker histones are essential for mouse development and affect nucleosome spacing in vivo. Mol. Cell. Biol. 2003,13: 4559-4572.
    [83] CHUANG, C.F, et, al. Specific and heritable genetic interference by double-stranded RNA in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA 2000 , 97: 4985-4990.
    [84] Andrzej T, Wierzbicki . Suppression of Histone H1 Genes in Arabidopsis Resultsin Heritable Developmental Defects and Stochastic Changes in DNA Methylation. Academy of Sciences, 2002, 106
    [85] Mackay JA,Li W, Huang Z,et al.Tihan T.HIV-TAT Peptide Modifies the Distribution of DNA Nanolipoparticles Following convection-enhanced Delivery. Mol Ther.2008.Mar 11
    [86] Wallace DC. Mitochondrial diseases in man and mouse. Science , 1999, 283: 1482–1488,
    [87] Frankel AD and Young JA. HIV-1: fifteen proteins and an RNA. Annu Rev Biochem 67: 1–25, 1998.
    [88] Albini A, Barillari G, Benelli R, Gallo RC, and Ensoli B.Angiogenic properties of human immunodeficiency virus type 1 Tat protein. Proc Natl Acad Sci USA 92: 4838–4842, 1995.
    [89] Ensoli B, Barillari G, Salahuddin SZ, Gallo RC, and Wong-Staal F. Tat protein of HIV-1 stimulates growth of cells derived from Kaposi’s sarcoma lesions of AIDS patients. Nature 345:84–86, 1990.
    [90] Dhawan S, Puri RK, Kumar A, Duplan H, Masson JM, and Aggarwal BB. Human immunodeficiency virus-1-tat protein induces the cell surface expression of endothelial leukocyte adhesion molecule-1, vascular cell adhesion molecule-1, and intercellular adhesion molecule-1 in human endothelial cells. Blood 90: 1535–1544, 1997.
    [91] Hofman FM, Wright AD, Dohadwala MM, Wong-Staal F, and Walker SM. Exogenous tat protein activates human endothelial cells. Blood 82: 2774–2780, 1993.
    [92] Barbaro G, Di Lorenzo G, et al . Incidence of dilated cardiomyopathy and detection of HIV in myocardial cells of HIV-positive patients. Gruppo Italiano per lo Studio Cardiologico dei Pazienti Affetti da AIDS. N Engl J Med 339: 1093–1099, 1998.
    [93] Grody WW, Cheng L, and Lewis W. Infection of the heart by the human immunodeficiency virus. Am J Cardiol , 1990, 66: 203–206
    [94] Lipshultz SE, Fox CH, et, al. Identification of human immunodeficiency virus-1 RNA and DNA in the heart of a child with cardiovascular abnormalities and congenital acquired immune deficiency syndrome. Am J Cardiol ,1990, 66:246–250,
    [95] Choi J, Liu RM, et al . Molecular mechanism of decreased glutathione content in human immunodeficiency virus type 1 Tat-transgenic mice. J Biol Chem 275: 3693–3698, 2000.
    [96] Garza HH Jr, Prakash O, et al . Aberrant regulation of cytokines in HIV-1 TAT72-transgenic mice. J Immunol , 1996, 156:3631–3637
    [97] Kundu RK, Sangiorgi F, et al .Expression of the human immunodeficiency virus-Tat gene in lymphoid tissues of transgenic mice is associated with B-cell lymphoma. Blood, 1999, 94: 275–282,
    [98] Prakash O, Teng S, et al. The human immunodeficiency virus type 1 Tat protein potentiates zidovudine-induced cellular toxicity in transgenic mice. Arch Biochem Biophys 343: 173–180, 1997.
    [99] 54. Lange LG, Schreiner GF. Immune mechanisms of cardiac disease. N Engl J Med 1994;330(16):1129–1135.
    [101] Langedijk JP,Olijhoek T,et al. New transport peptides broaden the horizon of applications for peptidicpharmaceuticals.MoI Divers-2004.8(2):101-111
    [102] Prasher D C,Eckenrode V K,WardW W,et al.Primary structure of the A equerea victoria green fluo rescent protein Gene.1992.111:229-233
    [103] G.S. Waldo, B.M. Standish, et al .Rapid protein-folding assay using green fluorescent protein, Nat. Biotechnol. 17 (1999) 691–695.
    [104] Anderson JM, Cormier MJ. Lumisomes, the cellular site of bioluminescence in coelenterates. The Journal of Biological Chemistry 1973, 248:2937-2943.
    [105] Morise H, Shimomura O, et al. Intermolecular energy transfer in the bioluminecent system of Aequorea. Biochemistry 1974, 13:2656-2662.
    [106] Prasher DC, Eckenrode VK, et al . Primary structure of the Aequorea victoria green fluorescent protein. Gene 1992, 111:229-233.
    [107] Bokman SH, Ward WW. Renaturation of Aequorea green fluorescent protein. Biochemical and Biophysical Research Communications 1981, 101:1372-1380.
    [108] Baulcombe DC, Chapman S, et al. Jellyfish green fluorescent protein as a reporter for virus infections. Plant Journal 1995, 7:1045-1053.
    [109] Heinlein M, Epel BL, et al. Interaction of tobamovirus movement proteins withthe plant cytoskeleton. Science 1995, 270:1983-1985.
    [110] Haseloff J, Amos B. GFP in plants Trends in Genetics 1995, 11:328-329.
    [111] Hu W, Cheng CL. Expression of Aequorea green fluorescent protein in plant cells. FEBS Letters 1995, 369:331-334.
    [112] Sheen J, Hwang SB, et al . Green fluorescent protein as a new vital marker in plant cells. Plant Journal 1995, 8:777-78.
    [113] Siemering, K.R. Golbik, R, et al. Mutations that supress the thermosensitivity of green fluorescent protein. Current Biology , 1996, 6:1653-1663,
    [114] Haseloff. J. Siemering, K.R.,et al. Removal of a cryptic intron and subcellular localisation of green fluorescent protein are required to mark transgenic Arabidopsis plants brightly. Proc. Natl. Acad. Sci. USA, in press
    [115] Bouvet P, Dimitrov S, Wolffe A P.Specific regulation of Xenopus chromosomal 5s rRNA gene transcription in vivo by histone H1.Gene Dev,1994,8:1147-1159
    [116]郭尧君.蛋白电泳技术[M].科学出版社,1999.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700