用户名: 密码: 验证码:
基于空间—时间—物质理论和膜世界模型的黑洞研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在20世纪20年代,Kaluza与Klein利用高维空间成功地统一了引力场与电磁场。此后,额外维进入了人们的视野。进入新世纪以后,高维理论在实践与理论方面都有望取得巨大的进展。在实践方面,最令人振奋的是演微缩版的“宇宙大爆炸”大型强子对撞机Large Hadron Collider(LHC)的运行。若果真如人们所预料的那样,额外维在宇宙早期和黑洞视界附近最活跃的话,高维时空效应极有可能在Planck能标的试验中被探测到。一个例子就是,高能粒子碰撞就有可能产生额外维的原初黑洞。在理论方面,两个著名的Arkani-Hamed,Dimopoulos,Dvali(ADD)模型与Randall,Sundrum(RS)模型利用brane与bulk构建了一类新的高维模型——膜世界(brane world),成功地解决了粒子物理当中存在已久的等级问题(Hierarchy problem)。鉴于这些情况,额外维尤其是膜世界理论逐渐成为理论物理研究中的一大研究热点。
     本学位论文研究的对象是Space-Time-Matter(STM)中(等价于膜世界理论)的一类黑洞。在该模型中,时空是由一个(1+3)维的3-brane嵌入到一个更高维的bulk当中,标准模型中的普通物质被限制在膜上,例如fermions、bosons等等。在bulk中只有引力场与不带电的标量场才可以自由传播。如果物质被限制在膜上,则物质由于引力的作用不可避免地遭遇引力塌缩,在膜上自然就形成了黑洞。它的视界由于额外维的作用会在额外维方向上有一个延伸,所以这种塌缩体在膜上看去是一个黑洞(球状),而在整个bulk中看去则为一黑弦(弦状)。此黑弦解为一精确的五维真空解,包含来自于第5维坐标的宇宙学常数∧。由于5维时空是Ricci平坦的,在bulk中是不包含任何的宇宙学常数,所以在膜上时空是呈现Schwarzschild-de Sitter几何性质的。
     具体说来,论文分为七章来阐述的,其中前三章是论文的背景知识:黑洞和宇宙学常数(第一章)、高维理论(第二章)以及膜世界理论(第三章);我们的工作包含在最后四章中:黑洞的辐射(第四章)、黑洞的熵(第五章)、实标量场的演化(第六章)、黑洞的拟正则模式(第七章)。
     在黑洞辐射方面,由于标量场Klein-Gordon方程关于时空的五个分量耦合在一起,我们发现第五维明显影响四维时空的有效辐射。通过研究发现辐射方程的势函数包含一个来自额外维的关键参数,该参数将整个辐射模式分成连续谱型和离散谱型两类。
     在黑洞熵的方面,论文采取改进的薄层砖墙模型与广义测不准原理两种不同的方法来研究。在前一种方法中,通过计算量子场的波相而获得了5维黑弦时空的量子统计熵。沿着第5维的模式被Randall-Sundrum质量关系所半经典量子化。黑洞的熵用一个2维面积来描述,在小质量近似下该熵为内外视界面积的线性和。由于量子化的额外维,熵表达式中的比例系数也成为离散的。值得强调的是小质量近似可以通过将第二张膜外推而得到。在第二种广义测不准原理中,熵可以不通过对bulk的结构作任何的限制,而且没有任何的截断就可以很自然地得到。量子场的发散问题在这里得到了很好的解决,态密度与自由能在视界的附近是收敛的。同样小质量近似可以通过视界附近度规函数的渐进行为很自然地也能得到。
     在实标量场的演化中,论文详细地分析了可解的离散谱情况。由于类Schr(o|¨)dinger方程中包含了两个不同的乌龟坐标与径向坐标,鉴于两者之间复杂的超越函数关系,我们采用切线近似来处理并得到了两种极端情况下(∧_1=0.11与∧_2=10~(-3))波函数的数值解。在内外视界相距很远的情况中(∧_2),由于穿透率变弱,相对于普通的4维情况,波函数在黑洞视界附近变得更加松散,而在宇宙学视界附近发生很明显的堆积;而在内外视界相距很近的情况中(∧_1),波函数则在内视界发生堆积,且堆积密度是很明显大于外视界的堆积。
     在黑洞的拟正则模式方面,论文采用低频条件下的三阶WKB近似来求解,得到了低频下的不同拟正则模式下的频率。通过结果的分析发现:标量场在额外维与宇宙学常数的影响下衰减得更慢,共鸣效应的影响导致第二、三模式高频区的衰减变慢。
Since in 1920s Kaluza and Klein had unified successfully gravity field and electromagnetic field,the higher dimensional gravitational-field theory came within people's range of vision. Recently,with the small-scale Big Bang model—Large Hadron Collider(LHC) being in operation,the extra dimensional small black hole is very likely to be produced by the collision of particles.Meanwhile,there are two famous theoretical models—Arkani-Hamed, Dimopoylos,Dvali(ADD) and Randall-Sundrum(RS) are developed in the turn of the century.So the developments of theory and experiment set off a new wave of researching extra dimension.
     In this thesis,the study object is a kind of extra dimensional black hole in which standard model fields(such as fermions,gauge bosons fields) are confined on a(3+1) dimensional hypersurface(3-brane) without accessing along the transverse dimensions.The branes are embedded in the higher dimensional space(bulk),in which only gravitons and scalar particles without charges could propagate under standard model gauge group.If matter trapped on the brane undergoes gravitational collapse,a black hole will form naturally and its horizons extends into the extra dimension which is transverse to brane.Such higher dimensional object looks like a black hole on the brane is actually a black string in the higher dimensional brane world.Hence a 5D Ricci-flat black string is obtained naturally.On the brane the space gives a SdS geometric construction.
     Specifically,this thesis is organized as follows:the former three chapters are the background knowledge concluding black hole and cosmological constant(chapter 1),higher dimensional gravitational-field theory(chapter 2),brane world(chapter 3);the last four chapters are our work concluding black hole radiation(chapter 4),black hole entropy(chapter 5),real scalar field evolution(chapter 6) and quasi-normal modes(chapter 7).
     In the respect of black hole radiation,as the equations are coupled,it is found that the structure of the fifth dimension(as for membrane and induced-matter theory) affects the nature of the radiation observed in four-dimensional space-time.From these study it is known that the potential function of radiation equation contains a key parameter from extra dimension.This parameter divides the whole radiation into two parts,one is continuous spectrum and the other is discrete one.
     The respect of black hole entropy is studied from two sides:one is Thin-Layer Approach (TLA) and the other is Generalized Uncertainty Principle(GUP).In the TLA case,the statistical-mechanical entropies of 5D Ricci-flat black string is calculated through the wave modes of the quantum field with improved thin-layer brick-wall method.The modes along the fifth dimension are semi-classically quantized by Randall-Sundrum mass relationship.The two-dimensional area is used to describe this black string's entropy which,in the small-mass approximation,is a linear sum of the area of inner and outer horizons.The proportionality coefficients of entropy are discretized with quantized extra dimensional modes.The smallmass approximation is naturally justified by the assumption of far apart two branes.In the GUP case,entropy is obtained without any cutoff and any constraint on the bulk's configuration rather than the usual uncertainty principle.The system's density of state and free energy are convergent in the neighborhood of horizon.The small-mass approximation is determined by the asymptotic behavior of metric function near horizons.
     In the respect of real scalar field evolvement,the tangent approximation is chosen to unite tortoise coordinate and radial coordinate,which have transcendental function relationship, in Schr(o|¨)dinger-type equation.The numerical solutions of two extreme cases(∧_1=10~(-3) and∧_2=0.11) are obtained.In the case of∧_1,the inner and outer horizons are widely separated. Due to the penetrating power is weak,waves are concentrated near cosmological horizon and become much sparser near even horizon than that of 4D case.In the case of∧_2,two horizons are close to each other.Waves are concentrated near black hole even horizon and the stacking density is larger than that of outer cosmological horizon.
     In the respect of quasi-normal modes,by using the classical third-order WKB approximation, the evolution of frequencies is carefully analyzed in two aspects,one is the induced cosmological constant and the other is the quantum number n.The massless scalar field decays more slowly because of the existence of the fifth dimension and the induced cosmological constant.Especially,the effect of resonance slows down the decaying of high-frequency.
引文
[1]约翰-皮尔卢米涅(Jean-Pierre Luminet).黑洞[M].长沙:湖南科学技术出版社,2001.
    [2]Carter B.Axisymmetric Black Hole Has Only Two Degrees of Preedom[J].Phys.Rev.Lett.,1971,26(6):331-333.
    [3]Carter B.Elastic perturbation theory in General Relativity and a variation principle for a rotating solid star[J].Commun.Math.Phys.,1973,30(4):261-286.
    [4]Robinson D C.Classification of black holes with electromagnetic fields[J].Phys.Rev.D,1974,10(2):458-460.
    [5]Robinson D C.Uniqueness of the Kerr Black Hole[J].Phys.Rev.Lett.,1975,34(14):905-906.
    [6]Reissner H.(U|¨)ber die Eigengravitation des elektrischen Feldes nach der Einsteinschen Theorie[J].Ann.Phys.(Leipzig),1916,50(1):106-107.
    [7]Nordstr(o|¨)m G.On the Energy of the Gravitational Field in Einstein's Theory[J].Proc.Kon.Ned.Akad.Wet.,1918,20(6):1238-1240.
    [8]Kerr R P.Gravitational Field of a Spinning Mass as an Example of Algebraically Special Metrics [J].Phys.Rev.Lett.,1963,11(5):237-238.
    [9]Newman E T,Couch E,et al.Metric of a Rotating,Charged Mass[J].J.Math.Phys.,1965,6(6):918-919.
    [10]Hawking S W.Gravitationnally collapsed object of very low mass[J].Mon.Not.R.Astro.Soc.,1971,152(6):75-76.
    [11]Ruiz-Lapuente P,Burkert A and Canal R.Type Ia Supernova Scenarios and the Hubble Sequence [J].Astrophys.J.,1995,447(1):L69-L72.
    [12]Riess A G,et al.Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant[J].Astron.J.,1998,116(3):1009-1038.
    [13]Branch D.Type Ia supernovae and the Hubble constant[J].Ann.Rev.Astron.Astrophys.,1998,36(1):17-55.
    [14]Knop R A,et al.New Constraints on Ω_M,Ω_A,and ω from an Independent Set of Ⅱ High-Redshift Supernovae Observed with the Hubble Space Telescope[J].Astrophys.J.,2003,598(1):102-137.
    [15]Riess A G,et al.Type Ia Supernova Discoveries at z > 1 from the Hubble Space Telescope:Evidence for Past Deceleration and Constraints on Dark Energy Evolution[J].Astrophys.J.,2004,607(2):665-687.
    [16]Miller,A.D.et al.A Measurement of the Angular Power Spectrum of the Cosmic Microwave Background from l = 100 to 400[J].Astrophys.J.Lett.,1999,524(1):L1-L4.
    [17]de Bernardis,P.et al.A flat Universe from high-resolution maps of the cosmic microwave background radiation[J].Nature,2000,404(6781):955-959.
    [18]Hanany S,et al.MAXIMA-1:A Measurement of the Cosmic Microwave Background Anisotropy on Angular Scales of 10′ - 5b[J].Astrophys.J.Lett.,2000,545(1):L5-Lg.
    [19]Halverson N W,et al.Degree Angular Scale Interferometer First Results:A Measurement of the Cosmic Microwave Background Angular Power Spectrum[J].Astrophys.J.,2002,568(1):38-45.
    [20]Miller M C,Colbert E J M.Intermediate-Mass black holes[J].Int.J.Mod.Phys.,2004,13(1):1-64.
    [21]Wald R M,General Relativity[M].Chiago and London:the university of Chicago press,1984.
    [22]温伯格S,引力论和宇宙论[M].北京:科学出版社,1980.
    [23]刘辽,广义相对论[M].北京:高等教育出版社,1987.
    [24]Hawking S W.Gravitational Radiation from Colliding Black Holes[J].Phys.Rev.Lett.,1971,26(21):1344-1346.
    [25]Bardeen J M,Carter B and Hawking S W.The four laws of black hole mechanics[J].Commun.Math.Phys.,1973,31(2):161-170.
    [26]赵峥.黑洞与弯曲的时空[M].太原:山西科学技术出版社,2000.
    [27]赵峥.黑洞的热性质与时空奇异性[M].北京:北京师范大学出版社,1999.
    [28]Hawking S W.Black holes explosions[J].Nature,1974,248(1):30-31.
    [29]Hawking S W.Particle Creation by Black Holes[J].Comm.Math.Phys.,1975,43(2):199-220.
    [30]霍金S W,时间简史[M].长沙:湖南科学技术出版社,1994.
    [31]Hawking S W and Ellis G F R.The large Scale Structure of Space-time[M].Cambridge:Cambridge University Press,1973.
    [32]卢炬甫.黑洞吸积盘理论进展[J].天文学进展,2001,19(3):365-374.
    [33]Weinberg S.The cosmological constant problem[J].Rev.Mod.Phys.,1989,61(1):1-23.
    [34]Padmanabhan T.Cosmological constant—the weight of the vacuum[J].Phys.Rept.,2003,380(5):235-320.
    [35]Peebles P J E and Ratra B.The cosmological constant and dark energy[J].Rev.Mod.Phys.,2003,75(2):559-606.
    [36]Carroll S M.The Cosmological Constant[J].Living Rev.Rel.,2001,3(1):1(1-61).
    [37]Kaluza T.On the unification problem in physics[J].Sitz.Preuss.Akad.Wiss.,1921,33(8):966-967.
    [38]Klein O.Quantum theory and five-dimensional theory of relativity[J].Z.Phys.1926,37(7):895-906.
    [39]Sabbata de V,Schmutzer E,Unified Field Theories of More Than 4 Dimensions[C],proc.international school of cosmology and gravitation,Erice,World Scientific,Singapore,1983.
    [40]Lee H C,An Introduction to Kaluza-Klein Theories[C].proc.Chalk River workshop on Kaluza-Klein theories,Singapore:World Scientific,1984.
    [41]Appelquist T,Chodos A,Freund P G O,Modern Kaluza-Klein Theories[MI.Menlo Park:Addison-Wesley,1987.
    [42]Collins P D B,Martin A D,and Squires E H,Particle Physics and Cosmology[M].New York:Wiley,1989.
    [43]Overduin J M,Wesson P S,Kaluza-Klein Gravity[J].Phys.Rept.1997,283:303-379.
    [44]Weyl H.Eine neue Erweiterung tier Relativit(a|¨)tstheorie[J].Ann.Phys.,1919,59:101-103.
    [45]Jordan P.Erweiterung der Projektiven Relativitatstheorie[J].Ann.Phys.(Leipzig),1947,1:219-228.
    [46]Bergmann P.Unified Field Theory with Fifteen Field Variables[J].Ann.Math.(Princeton),1948,49:255-264.
    [47]Lessner G.Unified field theory on the basis of the projective theory of relativity[J].Phys.Rev.D,1982,25(25):3202-3217.
    [48]Liu H,Wesson P S.The physical properties of charged five-dimensional black hole[J].Class.Quant.Gray.,1997,14(7):1651-1663.
    [49]Brans C and Dicke R H.Mach's principle and a relativistic theory of gravitation[J].Phys.Rev.,1961,124(3):925-935.
    [50]Mach E.The Science of Mechanics[M],trans,by McCormack T J,Open Court Publishing Co.,1893.
    [51]Wesson P S,Space-Time-Matter[M],Singapore:World Scientific,1999.
    [52]Nahm W.Supersymmetries and their representations[J].Nucl.Phys.B,1978,135(2):149-166.
    [53]Cremmer E,Julia B.The N = 8 supergravity theory.I.The lagrangian[J].Phys.Lett.B,1978,80(1):48-51.
    [54]Freund P G O,Rubin M A.Dynamics of dimensional reduction[J].Phys.Lett.B,1980,97(2):233-235.
    [55]Witten E.Search for a realistic Kaluza-Klein theory[J].Nucl.Phys.B,1981,186(2):412-428.
    [56]Witten E.String theory dynamics in various dimensions[J].Nucl.Phys.B,1995,443(1):85-126.
    [57]Li M.Introduction to M Theory[C/OL].hep-th/9811019,P18,1998.
    [58]Wetterich C.Dimensional reduction of fermions in generalized gravity[J].Nucl.Phys.B,1984,242(2):473-502.
    [59]Wetterich C.The cosmological constant and non-compact internal spaces in Kaluza-Klein theories [J].Nucl.Phys.B,1985,255(4):480-494.
    [60]Gell-Mann M and Zwiebach B.Curling up two spatial dimensions with SU(1,1)/U(1)[J].Phys.Lett.B,1984,147(1):111-114.
    [61]Gell-Mann M and Zwiebach B.Dimensional reduction of spacrtime induced by nonlinear scalar dynamics and noncompact extra dimensions[J].Nucl.Phys.B,1985,260(4):569-592.
    [62]Randjbar-Daemi S and Wetterich C.Kaluza-Klein solutions with non-compact internal spaces[J].Phys.Lett.B,1986,166(1):65-68.
    [63]Mashhoon B and Wesson P S.Gauge-Dependent Cosmological "Constant"[J].Class.Quant.Gray.,2004,21(14):3611-3620.
    [64]Horava P and Witten E.Heterotic and Type I String Dynamics from Eleven Dimensions[J].Nucl.Phys.B,1996,460(5):506-524.
    [65]Horava P and Witten E.Eleven-Dimensional Supergravity on a Manifold with Boundary[J].Nucl.Phys.B,1996,475(1):94-114.
    [66]Witten E.Strong Coupling Expansion Of Calabi-Yau Compactification[J].Nucl.Phys.B,1996,471(1):135-158.
    [67]Arkani-Hamed N,Dimopoulos S and Dvali G.The Hierarchy Problem and New Dimensions at a Millimeter[J].Phys.Lett.B,1998,429(3):263-272.
    [68]Arkani-Hamed N,Dimopoulos S and Dvali G.Phenomenology,Astrophysics and Cosmology of Theories with Sub-Millimeter Dimensions and TeVScale Quantum Gravity[J].Phys.Rev.D,1999,59(8):086004(1-21).
    [69]Antoniadis I,Arkani-Hamed N,Dimopoulos S and Dvali G.New Dimensions at a Millimeter to a Fermi and Superstrings at a TeV[J].Phys.Lett.B,1998,436(2):257-263.
    [70]Randall L and Sundrum R.Large Mass Hierarchy from a Small Extra Dimension[J].Phys.Rev.Lett.,1999,83(17):3370-3373.
    [71]Randall L and Sundrum R.An Alternative to Compactification[J].Phys.Rev.Lett.,1999,83(23):4690-4693.
    [72]Mannheim P D,Brane-localized gravity[M].Singapore:World Scientific,2005.
    [73]Shiromizu T,Maeda K,Sasaki M.The Einstein equations on the 3-brane world[J].Phys.Rev.D,2000,62(2):024012(1-6).
    [74]Maartens R.Cosmological dynamics on the brane[J].Phys.Rev.D,2000,62(8):084023(1-14).
    [75]Binetruy P,Deffayet C and Langlois D.Non-conventional cosmology from a brane universe[J].Nucl.Phys.B,2000,565(2):269-287.
    [76]Csaki C,Graesser M,Kold C,and Terning J.Cosmology of one extra dimension with localized gravity[J].Phys.Lett.B,1999,462(1):34-40.
    [77]Cline J M,Grojean C and Servant G.Cosmological Expansion in the Presence of an Extra Dimension[J].Phys.Rev.Lett.,1999,83(21):4245-4248.
    [78]Maeda K,Wands D.Dilaton gravity on the brane[J].Phys.Rev.D,2000,62(12):124009(1-9).
    [79]Wesson P S.The effective properties of matter of Kaluza-Klein solitons[J].Phys.Lett.B,1992,276(3):299-302.
    [80]Wesson P S.The properties of matter in Kaluza-Klein cosmologgy[J].Mod.Phys.Lett.A,1992,7(11):921-926.
    [81]Wesson P S and Ponce de Leon J.Kaluza-Klein equations,Einstein's equations,and an effective energy-momentum tensor[J].J.Math.Phys.,1992,33(11):3883-3887.
    [82]Mashhoon B,Liu H Y,Wesson P S.Particle masses and the cosmological constant in Kaluza-Klein theory[J].Phys.Lett.B,1994,331(3):305-312.
    [83]Mashhoon B,Directions in General Relativity-Festschrift Brill[M].edited by Hu B L and Jacobson T A.Cambridge:Cambridge University Press,1993.
    [84]Wesson P S.Cosmology and Geophysics[M].Oxford:Oxford University Press,1978.
    [85]Will C M.The confrontation between general relativity and experiment:A 1992 update[J].Int.J.Mod.Phys.D,1992,1(1):13-68.
    [86]Landau L D and Lifshitz E M.The Classical Theory of Fields[M].Oxford:Pergamon Press,1975.
    [87]Mashhoon B,Wesson P S and Liu H.Dynamics in Kaluza-Klein Gravity and a Fifth[J].Gen.Rel.Grav.,1998,30(5):555-571.
    [88]Wesson P S,Mashhoon B,Liu H and Sajko W N.Fifth force from fifth dimension[J].Phys.Lett.B,1999,456(1):34-37.
    [89]Liu H and Mashhoon B.Spacetime measurements in Kaluza - Klein gravity[J].Phys.Lett.A,2000,272(1):26-31.
    [90]Youm D.Extra force in brane worlds[J].Phys.Rev.D,2000,62(8):084002(1-10).
    [91]Youm D.Null geodesics in brane world universe[J].Mod.Phys.Lett.A,16(37):2371-2380.
    [92]Ponce de Leon J.Equivalence between Space-Time-Matter and brane-world theories[J].Mod.Phys.Lett.A,2001,16(35):2291-2303.
    [93]Liu M L,Liu H Y,Xu L X,Wesson P S.Radiation and Potential Barriers of a 5D Black String Solution[J].Mod.Phys.Left.A,2006,21(39):2937-2946.
    [94]Chamblin A,Hawking S W,Reall H S.Brahe-world black holes[J].Phys.Rev.D,2000,61(6):065007(1-6).
    [95]Liu H Y.Five-dimensional Kaluza-Klein Black Holes Coupled to Massive Scalar Particles[J].Gen.Rel.Gray.,1991,23(8):759-765.
    [96]Damour T and Ruffini R.Black-hole evaporation in the Klein-Sauter-Heisenberg-Euler formalism [J].Phys.Rev.D,1976,14(2):332-334.
    [97]Bekenstain J D.Black Holes and Entropy[J].Phys.Rev.D,1973,7(8):2333-2346.
    [98]Bekenstain J D.Generalized second law of thermodynamics in black-hole physics[J].Phys.Rev.D,1974,9(12):3294-3300.
    [99]俞允强.广义相对论引论[M].北京:北京大学出版社,1997.
    [100]Bekenstein J D.Do We Understand Black Hole Entropy:report of Seventh Marcel Grossman meeting[R/OL].Stanford University:SMG http://xxx.itp.ac.cn/abs/gr-qc/9409015.
    [101]Wald R M.The Thermodynamics of Black Holes[J].Living Rev.Rel.,2001,4(6):6-50.
    [102]Jacobson T and Parentani R.Horizon Entropy[J].Found.Phys.,2003,33(2):323-348.
    [103]Damour T.The entropy of black holes:a primer[J].2004:hep-th/0401160.
    [104]Das S.Black Hole Thermodynamics:Entropy,Information and Beyond[J].Pramana,2004,63(6):797-816.
    [105]Page D.Hawking Radiation and Black Hole Thermodynamics[J].New J.Phys.,2005,7(2):203(1-32).
    [106]'t Hooft G.On the quantum structure of a black hole[J].Nucl.Phys.B,1985,256:727-745.
    [107]Li X and Zhao Z.Entropy of a Vaidya black hole[J].Phys.Rev.D,2000,62(10):104001(1-4).
    [108]Liu M L,Liu H Y.The Dynamic Behavior of Quantum Statistical Entropy in 5D Ricci-fiat Black String with Thin-layer Approach[J].Phys.Lett.B,2008,661(5):365-369.
    [109]Liu M L,Gui Y X,Liu H Y.Quantum Statistical Entropy and Minimal Length of 5D Ricci-flat Black String with Generalized Uncertainty Principle[J].Phys.Rev.D,2008,78(12):124003(1-7).
    [110]Kim W,Oh J J and Park Y J.Entropy of the Randall- Sundrum black brahe world in the brick-wall method[J].Phys.Lett.B,2001,512(2):131-136.
    [111]Kim W,Kim Y W and Park Y J.Entropy of the Randall-Sundrum brahe world with the generalized uncertainty principle[J].Phys.Rev.D,2006,74(10):104001(1-5).
    [112]刘文彪.用brick-wall方法计算黑洞熵及其相关问题的研究[D].北京:北京师范大学物理系,2000.
    [113]Li X.Black hole entropy without brick walls[J].Phys.Lett.B,2002,540(1):9-13.
    [114]Gross D J and Mende P F.String theory beyond the Planck scale[J].Nucl.Phys.B,1988,303(3):407-454.
    [115]Gross D J and Mende P F.The high-energy behavior of string scattering amplitudes[J].Phys.Lett.B,1987,197(2):129-134.
    [116]Amati D,Ciafaloni M and Veneziano G.Can spacetime be probed below the string size?[J].Phys.Lett.B,1989,216(1):41-47.
    [117]Amati D,Ciafaloni M and Veneziano G.Classical and quantum gravity effects from planckian energy superstring collisions[J].Int.J.Mod.Phys.A,1988,3(7):1615-1661.
    [118]Amati D,Ciafaloni M and Veneziano G.Superstring collisions at planckian energies[J].Phys.Lett.B,1987,197(1):81-88.
    [119]Witten E.Reflections on the fate of space-time[J].Phys.Today,1996,49(1):24-30.
    [120]Sun X and Liu W.Improved black hole entropy calculation without cutoff[J].Mod.Phys.Lett.A,2004,19(9):677-680.
    [121]Liu C,Li X and Zhao Z.Letter:Quantum Entropy of the Garfinkle-Horowitz-Strominger Dilaton Black Hole[J].Gen.Relativ.Gravit.,2004,36(5):1135-1142.
    [122]Liu C Z.Black Hole Entropies of the Thin Film Model and the Membrane Model Without Cutoffs [J].Int.J.Theor.Phys.,2005,44(4):567-579.
    [123]Liu W B.Reissner-Nordstrom Black Hole Entropy Inside and Outside the Brick Wall[J].Chin.Phys.Lett.,2003,20(4):440-443.
    [124]Yoon M,Ha J and Kim W.Entropy of Reissner-Nordstrom black holes with minimal length revisited[J].Phys.Rev.D,2007,76(4):047501(1-3).
    [125]Susskind L.Some Speculations about Black Hole Entropy in String Theory[J].1993:hepth /9309145.
    [126]Halyo E,Rajaraman A,Susskind L.Braneless black holes[J].Phys.Lett.B,1997,392(3):319-322.
    [127]Horowitz G T,Polchinski J.Correspondence principle for black holes and strings[J].Phys.Rev.D,1997,55(10):6189-6197.
    [128]Nollert H P.Quasinormal modes:the characteristic 'sound' of black holes and neutron stars[J].Class.Quantum Gray.,1999,16(12):R159-R216.
    [129]Kokkotas K D and Schmidt B G.Quasi-Normal Modes of Stars and Black Holes[J].Living Rev.Rel.,1999,2(1):2(1-72).
    [130]陈松柏.黑洞时空中的似正规模和幂率拖尾[D].湖南长沙:湖南师范大学博士学位论文,2006.
    [131]常加峰.半经典近似与黑洞低频似正规模[D].上海:中国科学院研究生院博士学位论文,2006.
    [132]Vishveshawara C V.Scattering of Gravitational Radiation by a Schwarzschild Black-hole[J].Nature,1970,227:936-938.
    [133]Chandrasekhar S and Detweiler S.The Quasi-Normal Modes of the Schwarzschild Black Hole S.Chandrasekhar and S.Detweiler[J].Proc.R.Soc.London,A,1975,344(3):441-452.
    [134]Schutz B F and Will C M.Black hole normal modes - A semianalytic approach[J].Astrophys.J.Lett.,1985,291(1):L33-L36.
    [135]Iyer S and Will C M.Black-hole normal modes:A WKB approach.I.Foundations and application of a higher-order WKB analysis of potential-barrier scattering[J].Phys.Rev.D,1987,35(12):3621-3631.
    [136]Iyer S.Black-hole normal modes:A WKB approach.Ⅱ.Schwarzschild black holes[J].Phys.Rev.D,1987,35(12),3632-3636.
    [137]Leaver E.An analytic representation for quasi-normal modes of Kerr black holes[J].Proc.R.Soc.London A,1985,402(2):285-298.
    [138]Messiah A.著,苏汝铿汤家镛译,量子力学(卷Ⅰ)[M].北京:中国科学出版社,1986.
    [139]吴双清.动态黑洞的霍金辐射与标量场方程的精确解[D].武汉:华中科技大学博士学位论文,2002.
    [140]Chandrasekhar S.The solution of Dirac's equation in Kerr geometry[J].Proc.R.Soc.Lond.A,1976,349(4):571-575.
    [141]Higuchi A,Matsas G E A and Sudarsky D.Interaction of Hawking radiation with static sources outside a Schwarzschild black hole[J].Phys.Rev.D,1998,58(10):104021(1-10).
    [142]Crispino L C B,Higuchi A,Matsas G E A.Scalar radiation emitted from a source rotating around a black hole[J].Class.Quant.Gray.,2000,17(1):19-32.
    [143]Brady P R,Chambers C M,Laarakkers W G,Poission E.Radiative falloff in Schwarzschild - de Sitter spacetime[J].Phys.Rev.D,1999,60(6):064003(1-10).
    [144]Brevik I,Simonsen B.The Scalar Field Equation in Schwarzschild-de Sitter Space[J].Gen.Rel.Grav.,2001,33(11):1839-1861.
    [145]Tian J X,et al.The Real Scalar Field in Schwarzschild-de Sitter Spacetime[J].Gen.Rel.Grav.,2003,35(6):1473-1480.
    [146]Guo G H,Gui Y X,Tian J X.The scalar field in extreme Reissner-Nordstr(o|¨)m-de sitter space[J].Int.J.Mod.Phys.A.,2003,18(26):4829-4836.
    [147]Kanti P,March-Russell J.Calculable corrections to brahe black hole decay:The scalar case[J].Phys.Rev.D,2002,66(2):024023(1-9).
    [148]Frolov V P and Stojkovic D.Black hole radiation in the brane world and the recoil effect[J].Phys.Rev.D,2002,66(8):084002(1-12).
    [149]Kanti P and March-Russell J.Calculable corrections to brahe black hole decay.Ⅱ.Greybody factors for spin 1/2 and 1[J].Phys.Rev.D,2003,67(10):104019(1-11).
    [150]Harris C M and Kanti P.Hawking Radiation from a(4+n)-dimensional Black Hole:Exact Results for the Schwarzschild Phase[J].JHEP,2003,10(1):014(1-35).
    [151]Liu M L,Liu H Y,Luo F,Xu L X.The Real Solution to Scalar Field Equation in 5D Black String Space[J].Gen.Rel.Grav.,2007,39(7):1389-1402.
    [152]Liu M L,Liu H Y,Wang C X,Ping Y L.The Real Scalar Field Equation for Nariai Black Hole in the 5D Schwarzschild-de Sitter Black String Space[J].Int.J.Mod.Phys.A,2007,22(24):4451-4465.
    [153]Nariai H.On some static solutions to Einstein' s gravitational field equations in a spherically symmetric case[J].Sci.Rep.Tohoku Univ.,1950,34(2):160-161.
    [154]Nariai H.On a new cosmological solution of Einstein' s field equations of gravitation[J].Sci.Rep.Tohoku Univ.,1951,35(1):62-63.
    [155]Nojiri S and Odintsov S D.De Sitter space versus Nariai black hole:stability in D5 higher derivative gravity[J].Phys.Lett.B,2001,523(2):165-170.
    [156]Dadhich N and Shtanov Y.Brane corresponding to the Nariai bulk[J].2001:gr-qc/0212007.
    [157]Dadhich N.Nariai metric is the first example of the singularity free model[J].2001:gr-qc/0106023.
    [158]Dias (?) J and Lemons J P.Extremal limits of the C metric:Nariai,Bertotti-Robinson,and anti-Nariai C metrics[J].Phys.Rev.D,2003,68(10):104010(1-19).
    [159]Setare M R and Mansouri R.Holographic thermodynamics on the brane in topological Reissner-Nordstrom-de Sitter space[J].Int.J.Mod.Phys.A,2003,18(24):4443-4450.
    [160]Konoplya R A.Quasinormal behavior of the D-dimensional Schwarzschild black hole and the higher order WKB approach[J].Phys.Rev.D,2003,68(2):024018(1-8).
    [161]Konoplya R A.Quasinormal modes of the electrically charged dilaton black hole[J].Gen.Rel.Grav.,2002,34(2):329-335.
    [162]Zaslavskii O B.Black-hole normal modes and quantum anharmonic oscillator[J].Phys.Rev.D,1991,43(2):605-608.
    [163]Simone L E and Will C M.Massive scalar quasi-normal modes of Schwarzschild and Kerr black holes[J].Class.Quant.Grav.,1992,9(4):963-977.
    [164]Kokkotas K and Schutz B F.Black-hole normal modes:A WKB approach.Ⅲ.The Reissner-Nordstrom black hole[J].Phys.Rev.D,1988,37(12):3378-3387.
    [165]Berti E and Kokkotas K.Quasinormal modes of Reissner-Nordstrom-anti-de Sitter black holes:Scalar,electromagnetic,and gravitational perturbations[J].Phys.Rev.D,2003,67(6):064020(1-10).
    [166]Liu M L,Gui Y X,Liu H Y.Quasi-Normal Modes of Massless Scalar Field around the 5D Ricci-flat Black String[J].Class.Quant.Grav.,2008,25(10):105001(1-11).
    [167]Zhidenko A.Quasi-normal modes of Schwarzschild-de Sitter black holes[J].Class.Quantum Grav.,2004,21(2):273-280.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700