用户名: 密码: 验证码:
天文观测对宇宙学的限制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在过去的10-20年间,宇宙学从一门对观测数据非常渴望的学科逐渐成为了一门依靠观测数据来推动其发展的学科。对许多关键的参数(例如,物质密度分数Ωm,0,宇宙膨胀的减速因子q0)的测量精度可以控制在10%以内。在1998年之前,人们一直认为宇宙膨胀的速度是减小的,令人感到非常惊奇的是,Ia型超新星的观测结果却表明现今的宇宙正经历着一个加速膨胀的过程。基于这样的观测事实,人们推断宇宙中存在一种能产生负压强的物质能量组分,即暗能量,并得出其占到宇宙总物质能量的2/3左右。理解和认识暗能量的性质是现代物理学所面临的最大挑战之一。为了避开理解暗能量的奇异特性所带来的挑战,人们认为现有的爱因斯坦引力理论在宇宙的尺度上可能不再成立,而是需要对其进行适当的修正,这些理论可以在不引入暗能量的情况下解释宇宙的加速膨胀。
     迄今为止,大量的宇宙学模型被建立。同时,不同的天文观测所得到的数据样本越来越大,精度越来越高。这些数据将为我们揭开暗能量的神秘面纱,或者理解大尺度时的引力规律提供有力依据。因此,将理论模型和实验观测结果联系起来是非常必要的。本文前一部分讨论了最新的观测数据对一些主流的宇宙学模型的限制。我们发现,真空暗能量模型(ACDM)还是最被观测(SNLS3la型超新星,宙微波背景辐射和重子声学振荡的数据,以及哈勃参数的数据)所支持的候选者。然而,当只考虑SNLS3la型超新星数据时,DGP(膜世界理论)最被实验观测所支持。
     其次,借助于暗能量状态方程参数化的理论,我们利用观测数据讨论了宇宙膨胀加速度的演化,发现宇宙加速度有可能在过去的某时刻开始减小,甚至我们今天的宇宙已经进入了减速膨胀的阶段。但这些结果一定程度上依赖于状态方程的参数化形式和观测数据的选择。
     最后,我们用来自于超新星和星系团的观测数据,对宇宙学中联系两种重要距离的关系距离对偶关系,进行了不依赖宇宙学模型的检测,发现这个关系在实际观测中存在一定程度的偏离,且星系团样本的选择和X-射线的Chandra校准方法对检测结果有一定的影响。除此之外,我们利用距离对偶关系讨论了宇宙不透明度,发现现今观测还是支持一个完全透明的宇宙,并且支持宇宙学常数A>0的情况。
During the last ten to twenty years, cosmology has grown into a data-driven from a data-starved science. Several key pa-rameters of the universe(such as matter density parameter Ωm,0and decelerate parameter q0), have now been measured more ac-curately than10%. Amazingly, the observations of Type la su-pernovae (SNe Ia) revealed that, instead of slowing down, the ex-pansion of the universe goes on at an ever increasing rate. On the basis of observations, people infer that there is an exotic matter-energy component with negative pressure, named dark energy, which makes up more than two thirds of the total matter-energy content of our universe. It is generally agreed that comprehend-ing the nature of the dark energy is one of the biggest challenges for the modern theoretical physics. In order to avoid this exotic component, the idea that the existing laws of gravity do not hold any more in large scale has been proposed. The theories which modify the Einstein gravity law can also explain the accelerating expansion of universe without dark energy.
     So far, large numbers of cosmological models have been proposed. Meanwhile, more and more datasets with high qual-itv have been obtained from astronomical observations. These datasets hold the promise for unveiling many properties of the mysterious dark energy component, or understanding the gravity laws in large scale. Therefore, it is necessary to connect the mod- els with observations. In this paper, we first study the constraints on several popular models with latest observations. We find that the ACDM is preferred by most observations (SNe Ia, the data derived from the combination of cosmic microwave background and baryon acoustic oscillation, and the Hubble parameters ver-sus redshift data). Howeve the DGP model is most favored when only the latest SNe la are considered.
     Secondly, with the help of parameterizations of equation of state (EoS), we probe the cosmic acceleration using observations. We find that the cosmic acceleration may be slowing down, or even our universe may have already entered a decelerating ex-panding stage. However, these are somewhat dependent on the parametric forms and the observations.
     Finally, we test the cosmic distance-duality (DD) relation with data from SNe la and galaxy clusters in a cosmological-model-independent way. We find that the DD relation is gener-ally consistent with observations, and both the sample of galaxy cluster and the Chandra calibration exert influences on the DD relation test. Besides, we study the cosmic opacity with the help of the DD relation and find that the observations favor a trans-parent universe with cosmological constant Λ﹥0.
引文
[1]E. Komatsu et al., Seven-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations:Cosmological Interpretation, ApJS,18,192 (2011).
    [2]J. M. H. Etherington, On the Definition of Distance in General Relativity, Philos. Mag.15,761 (1933).
    [3]A. G. Riess et al., Observational Evidence from. Supernovae for an Accelerating Universe and a Cosmological Constant, AJ,116,1009 (1998).
    [4]S. Perlmutter et al., Measurements of Omega and Lambda from 42 High-Redshift Supernovae, ApJ,517,565 (1999).
    [5]W. M. Wood-Vasey et al., Observational Constraints On The Nature Of Dark Energy: First Cosmological Results From The ESSENCE Supernovae Survey, ApJ,666,694 (2007).
    [6]R. Kessler et al., First-Year Sloan Digital Sky Survey-Ⅱ (SDSS-Ⅱ) Supernovae Results: Hubble Diagram And Cosmological Parameters, ApJS,185,32 (2009).
    [7]M. Hicken et al., Improved Dark Energy Constraints From-100 New CfA Supernova Type la Light Curves, ApJ,700,1097 (2009).
    [8]R. Amanullah et al., Spectra And HST Light Curves of Six Type la Supernovae at 0.511< z < 1.12 And The Union2, ApJ.,716,712 (2010).
    [9]A. Conley, Supernova Constraints And Systematic Uncertainties From The First Three Years Of The Supernova Legacy Survey, ApJS,192,1 (2011).
    [10]N. Suzuki et al., The Hubble Space Telescope Cluster Supernova Survey: V. Improving the Dark Energy Constraints Above z(?)1 and Building an Early-Type-Hosted Supernova Sample 2012, ApJ,746,85
    [11]S. Jha, A. G. Riess,& R. P. Kirshner, Improved Distances to Type la Super-novae with Multicolor Light-Curve Shapes: MLCS2k2, ApJ,659,122 (2007).
    [12]P. Astier, The Supernova Legacy Survey: measurement ofΩM, ΩA and w fron the first year data set, A & A,447,31 (2006).
    [13]M..M. Phillips, The Absolute Magnitudes Of Type la Supernovae, ApJ,413. L105 (1993).
    [14]A. G. Riess, W. H. Press,& R. P. Kirshner, Using SN la Light Curve Shapes to Measure The Hubble Constant, ApJ,438, L17 (1995)
    [15]Jha, S.2002, PhD thesis, University of Washington
    [16]J. Guy, P. Astier, S. Nobili, N. Regnault,& R. Pain, SALT: A Spectral Adaptive Light Curve Template For Type la Supernovae, A & A,443,781 (2005).
    [17]J. Guy et al., SALT2: Using Distant Supernovae To Improve The Use Of Type la Supernovae As Distance Indcators, A&A,466.11 (2007).
    [18]S. Rydbeck, M. Fairbairn,& A. Goobar, Testing the DGP model with ESSENCE, JCAP,003,0705 (2007).
    [19]J. C. Bueno Sancheza, S. Nesserisb,& L. Perivolaropoulos, Comparison of Recent SnⅠα datasets, arXiv:0908.2636 (2009).
    [20]J. Sollerman et al., First-Year Sloan Digital Sky Survey-Ⅱ (SDSS-Ⅱ) Super-novae Results: Constraints On Non-Standard Cosmological Models, ApJ,703, 1374 (2009).
    [21]G. R. Bengochea, Supernova Light-Curve Fitters And Dark Energy, Phys. Lett. B,696,5 (2011).
    [22]A. A. Penzias,& R. W. Wilson, A measurement of Excess Antenna Temperature at 4080-Mc/s, ApJ,142,419 (1965).
    [23]D. J. Fixen et al., The COBE Mission-Its Design And Performance Two Years After Launch, ApJ,397,420B (1992).
    [24]D. J. Fixen et al., Cosmic Microwave Background Dipole Spectrum Measured By The COBE FIR AS Instrument, ApJ 420,445F (1994).
    [25]T. J. Sodroski et al., Large-scale Characteristics of Interstellar Dust From COBE DIRBE Observations, ApJ,428,638S (1994).
    [26]W. J. Spiesman et al.,Near-and Far-Infrared Observations of Interplanetary Dust Bands from The COBE Diffuse Infrared Background Experiment, ApJ, 442,662S (1995).
    [27]E. Dwek et al., The COBE Diffuse Infrared Background Experiment Search for the Cosmic Infrared Background. Ⅳ. Cosmological Implications, ApJ,508,106 (1998).
    [28]C. L. Bennett et al., First-Year Wilkinson Microwave Anisotropy Probe (WMAP)* Observations: Foreground Emission, ApJS,148,97 (2003).
    [29]D. N. Spergel et al., First-Year Wilkinson Microwave Anisotropy Probe (WMAP)* Observations:Determination of Cosmological Parameters, ApJS, 148,175 (2003).
    [30]G. Hinshaw et al., Three-Year Wilkinson Microwave Anisotropy Probe (WMAP*) Observations: Temperature Analysis, ApJS,170,288 (2007).
    [31]D. N. Spergel et al., Three-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations:Implications for Cosmology, ApJS,170,377 (2007).
    [32]G. Hinshaw et al., Five-Year Wilkinson Microwave Anisotropy Probe (WMAP)* Observations: Data Processing, Sky Maps. And Basic Results, ApJS,180,225 (2009).
    [33]E. Komatsu et al., Five-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Cosmological Interpretation, ApJS,180,330 (2009).
    [34]A. Kosowsky, The Atacama Cosmology Telescope, New Astron. Rev.47,939 (2003).
    [35]J. W. Fowler et al., The Atacama Cosmology Telescope: A Measurement of the 600i ell i8000 Cosmic Microwave Background Power Spectrum at 148 GHz, ApJ,722,1148 (2010).
    [36]B. D. Sherwin et al., Evidence For Dark Energy From The Cosmic Microwave Background Alone Using The Atacama Cosmology Telescope Lensing Measure-ments, Phys. Rev. Lett.107,021302 (2011).
    [37]S. Das et al., Detection of the Power Spectrum of Cosmic Microwave Back-ground Lensing by the. Atacama Cosmology Telescope, Phys. Rev. Lett.107, 021301 (2011).
    [38]J.A. Peacock et al., A measurement of The Cosmological Mass Density from Clustering In the 2dF Galaxy Redshift Survey, Nature 410,169 (2001).
    [39]W. J. Percival et al., The 2dF Galaxy Redshift Survey: The Power Spectrum and The Matter Content of The Universe, MNRAS,327,1297 (2001).
    [40]I. K. Baldry et al., The 2dF Galaxy Redshift Survey: Constraints on Cosmic Star-Formation History from The Cosmic Spectrum, ApJ,569,58 (2002).
    [41]L. Verde et al., The 2dF Galaxy Redshift Survey: The Bias of Galaxies and The Density of The Universe, MNRAS,335,432 (2002).
    [42]O. Lahav et al., The 2dF Galaxy Redshift Survey: The Amplitudes of Fluctu-ations in The 2dFGRS and The CMB. and Implications for Galaxy Biasing, MNRAS,333,961 (2002).
    [43]Y.P. Jing,& G. Boerner, The Three-point Correlation Function of Galaxies Determined from the 2dF Galaxy Redshift Survey. ApJ,607,140 (2004).
    [44]E. Hawkins et al., The 2dF Galaxy Redshift Survey: Correlation Functions, Peculiar Velocities and The Matter Density of the Universe, MNRAS,346,78 (2003).
    [45]S. Cole et al., The 2dF Galaxy Redshift Survey: Power-Spectrum Analysis of The Final Dataset and Cosmological Implications, MNRAS,362,505 (2005).
    [46]K. Abazajian et al., The First Data Release of the Sloan Digital Sky Survey, AJ,126,2081 (2003).
    [47]K. Abazajian et al., The Second Data Release of the Sloan Digital Sky Survey, AJ,128,502 (2004).
    [48]K. Abazajian et al., The Third Data Release of the Sloan Digital Sky Survey, AJ,129,1755 (2005).
    [49]J. K. Adelman-McCarthyThe et al., The Fourth Data Release of the. Sloan Digital Sky Survey, ApJS,162,38 (2006).
    [50]J. K. Adelman-McCarthyThe et al., The Fifth Data Release of the Sloan Digital Sky Survey, ApJS,172,634 (2007).
    [51]J. K. Adelman-McCarthyThe et al., The Sixth Data Release of the Sloan Digital Sky Survey, ApJS,175,297 (2008).
    [52]K. Abazajian et al., The Seventh Data Release of the Sloan Digital Sky Survey, ApJS,182,543 (2009).
    [53]W. J. Percival et al., Baryon Acoustic Oscillations in the Sloan Digital Sky Survey Data Release 7 Galaxy Sample, MNRAS,381,1053 (2007).
    [54]G. Dvali, G. Gabadadze,& M. Porrati, Metastable Gravitons and Infinite Vol-ume Extra Dimensions. Phys. Lett. B,484,112 (2000).
    [55]Y. Wang, K. Freese, P. Gondolo,& M. Lewis, Future Type la Supernova Data As Tests Of Dark Energy From Modified Friedmann Equations, ApJ,594,25 (2003).
    [56]J. Simon, L. Verde,& J. Jimenez, Constraints On The Redshift Dependence Of The Dark Energy Potential. Phys. Rev. D,71,123001 (2005).
    [57]D. Stern et al., Cosmic. Chronometers: Constraining The Equation Of State Of Dark Energy.l:H(z) Measurements, JCAP.02.008 (2010).
    [58]E. Gaztanaga. A. Cabre.& L. Hui, Clustering Of Luminous Red Galaxies IV Baryon Acoustic Peak In The Line-of-Sight Direction And A Direct Measure-ment Of H(z), MNRAS; 399,1663 (2009).
    [59]T. M. Davis et al., Scrutinizing Exotic Cosmological Models Using ESSENCE Supernova Data Combined With Other Cosmological Probes,2007, ApJ,666, 716 (2007).
    [60]Y. Gong,& Y. Zhang, Probing The Curvature And Dark Energy, Phys. Rev. D 72,043518 (2005).
    [61]D. Hutter,& M. S. Turner, Probing Dark Energy: Methods And Strategies, Phys. Rev. D 64, 123527 (2001).
    [62]J. Weller,& A. Albrecht, Future Supernovae Observations As a Probe of Dark Energy, Phys. Rev. D 65,103512 (2002).
    [63]H. K. Jassal, J. S. Bagla,& T. Padmanabhan, WMAP Constraints On Low Redshift Evolution Of Dark Energy, MNRAS,356, L11 (2005).
    [64]T. Roy Choudhary,& T. Padmanabhan, Cosmological Parameters From Su-pernova Observations:A critical Comparison Of Three Data Sets, A&A,429, 807 (2005).
    [65]A. Upadhye, M. Ishak,& P. Steinhardt, Dynamical Dark Energy: Current Constraints And Forecasts, Phys. Rev. D 72,063501 (2005).
    [66]C. Wetterich, it Phenomenological Parameterization of Quintessence, Phys. Lett. B 594.17 (2004).
    [67]S. Hannestad,& E. Mortell, Cosmological Constraints on The Dark Energy Equation of State And Its Evolution, JCAP,09,001, (2009).
    [68]S. Lee, Constraints on The Dark Energy Equation of State From The Separation of CMB Peaks And The Evolution of a, Phys. Rev. D 71,123528 (2005).
    [69]M. Chevallier.& D. Polarski. Accelerating Universes With Scaling Dark Matter, IJMPD,10.213 (2001)
    [70]Linder, E. V. Exploring the Expansion History Of The Universe, Phys. Rev. Lett.,90,091301 (2003).
    [71]Sullivan, M., SNLS3: Constraints On Dark Energy Combining The Supernova Legacy Survey Three-Year Data With Other Probes, ApJ,737,102 (2011).
    [72]L. Xu, Y. Wang. Cosmic Constraint To DGP Brane Model: Geometrical And Dynamical Perspectives, Phys. Rev. D,82,043503 (2010).
    [73]N. Liang.& Z. Zhu. Cosmological Constraints On The DGP Braneworld Model With Gamma-Ray Bursts, RAA,11,497 (2010).
    [74]K. Freese,& M. Lewis, Cardassian Expansion: A Model In Which the Universe Is Flat, Matter Dominated, And Accelerating, Phys. Lett. B,540,1 (2002).
    [75]T. Wang,& P. Wu, Latest Observational Constraints On Cardassian Mod-elsPhys. Lett, B,678,32 (2009).
    [76]A. Kamenshchik, U. Moschella,& V. Pasquier, Phys. Lett. B,511,265 (2001).
    [77]M. C. Bento, O. Bertolami,& A. A. Sen, Generalized Chaplygin Gas, Ac-celerated Expansion, And Dark-Energy-Matter Unification, Phys. Rev. D,66, 043507 (2002).
    [78]A. G. Riess et al., A 3% Solution: Determination Of The Hubble Constant With the Hubble Space Telescope And Wide Field Camera 3, ApJ,730,119 (2011).
    [79]N. Liang, L. Xu,& Z. Zhu, Constraints On The Generalized Chaplygin Gas Model Including Gamma-Ray Bursts Via A Markov Chain Monte Carlo Ap-proach, A&A,57,11 (2011).
    [80]J. Lu, Y. Gui,& L. Xu, Observational Constraint On Generalized Chaplygin Gas Model, EPJC,63,349 (2009).
    [81]P. Wu,& H. Yu, Generalized Chaplygin Gas Model: Constraints From Hubble Parameter Versus Redshift Data, Phys. Lett. B,644,16 (2007).
    [82]P. Wu, k H. Yu. Constraints On The Generalized Chaplygin Gas Model From Recent Supernova Data And Baryonic Acoustic Oscillations, ApJ,658,663 (2007).
    [83]H. Akaike, A New Look At The Statistical Model Identification, IEEE Trans. Automatic Control,19.716 (1974).
    [84]G. Schwarz, Estimating The Dimension Of A Model, Ann. Stat.,6,461 (1978).
    [85]Szydlowski, M., and Kurek, A. AIC, BIC, Bayesian Evidence And A Notion On Simplicity Of Cosmological Model, arXiv: 0801.0638, (2008).
    [86]A. R. Liddle, How Many Cosmological Parameters? MNRAS,351, L49 (2004).
    [87]D. Parkinson, S. Tsujikawa, B. A. Bassett,& L. Amendola, Testing For Double Inflation With WMAP, Phys. Rev. D,71,063524 (2005).
    [88]J. S. Dunlop et al., A 3.5-Gyr-old galaxy at redshift 1.55, Nature 381,581 (1996).
    [89]J.S. Dunlop, in " The Most Distant Radio Galaxies ", Eds. H. J. A. Rttgering, P. N. Best, and M. D. Lehneri, p.71, (1999).
    [90]L. A. Nolan, J. S. Dunlop. R. Jimenez, The Sun, Stellar-Population Models, and the Age Estimation of High-redshift Galaxies, MNRAS,323,385 (2001).
    [91]R. G. Abraham et al., The Gemini Deep Deep Survey: I. Introduction to the Survey; Catalogs arid Composite Spectra, ApJ,127,2455 (2004).
    [92]P. J. McCarthy et al., Evolved Galaxies at z (?)1.5 from the Gemini Deep Deep Survey: The Formation Epoch of Massive Stellar Systems, ApJ,614, L9 (2004).
    [93]L. Samushia, A. Dev. D. Jain & B. Ratra, Constraints on Dark Energy from the Lookback time versus Redshifi Test, arXiv: 0906.2734.
    [94]S. Capozziello, V.F. Cardone, M. Funaro and S. Andreon, Constraining Dark Energy Models Using the Lookback time to Galaxy Clusters and the Age of the Universe, Phys. Rev. D 70,123501 (2004).
    [95]Z.-L. Yi & T.-J. Zhang, Constraints on Holographic Dark Energy Models Using the Differential Ages of Passively Evolving Galaxies, Mod. Phys. Lett. A 22, 41 (2007).
    [96]M.A. Dantas and J.S. Alcaniz, Current Lookback time-redshift Bounds on Dark Energy, arXiv:0901.2327.
    [97]N. Pires, Zong-Hong Zhu,& J. S. Alcaniz, Lookback time as a Test For Brone Cosmology, Phys. Rev. D,73,123530 (2006).
    [98]M.A. Dantas, J.S. Alcaniz, D. Jain,& A. Dev, Age Constraints On The Cosmic Equation of State, A&A,467,421 (2007).
    [99]P. Wu & H. W. Yu, Constraints on the Generalized Chaplygin Gas Model from Recent Supernova Data and Baryonic Acoustic Oscillations, ApJ,658,663 (2007).
    [100]J. C. Fabris, S.V.B. Goncalves & P. E. de Souza, Fitting the Supernova Type la Data with the Chaplygin Gas, astro-ph/0207430.
    [101]M. Makler, S. Quinet de Oliveira & I. Waga, Constraints on the Generalized Chaplygin Gas from Supernovae Observations, Phys. Lett. B 555,1 (2003).
    [102]J. Colistete. Roberto, J. C. Fabris, S. V. B. Goncalves & P. E. de Souza, Bayesian Analysis of the Chaplygin Gas and Cosmological Constant Models Using the SNe la Data, Int. J. Mod. Phys. D 13,669 (2004).
    [103]O. Bertolami, A. A. Sen, S. Sen & P. T. Silva, Latest Supernova Data in the Framework of Generalized Chaplygin Gas model, MNRAS,353,329 (2004).
    [104]X. Zhang, F.-Q. Wu & J. Zhang, A new Generalized Chaplygin Gas as a Scheme for Unification of Dark Energy and Dark Matter, JCAP 01,003 (2006).
    [105]M. C. Bento, O. Bertolami. M.J. Rebouas & P. T. Silva, Generalized Chaplygin Gas Model, Supernovae and Cosmic Topology, Phys. Rev. D 73,043504 (2006).
    [106]J. V. Cunha, J. S. Alcaniz & J. A. S. Lima, Cosmological Constraints on Chaplygin Gas Dark Energy from Galaxy Clusters X-ray and Supernova Data, Phys. Rev. D 69,083501 (2004).
    [107]M. Makler, S. Q. Oliveira & I. Waga, Observational Constraints on Chaplygin Quartessence: Background Results, Phys. Rev. D 68,12 (2003).
    [108]Z.-H. Zhu, Generalized Chaplygin Gas as a Unified Scenario of Dark Mat-ter/Energy: Observational Constraints. A&A,423,421 (2004).
    [109]P. T. Silva & O. Bertolami, Expected Constraints on the Generalized Chap-lygin Equation of State from, Future Supernova Experiments and Gravitational Lensing Statistics, ApJ,599,829 (2003).
    [110]R. Bean & O. Dore, Are Chaplygin Gases Serious Contenders to the Dark Energy Throne?, Phys. Rev. D 68,023515 (2003).
    [111]M. D. C. Bento,O. Bertolami & A. A. Sen, WMAP Constraints on the Gen-eralized Chaplygin Gas Model, Phys. Lett. B 575,172 (2003).
    [112]L. Amendola, F. Finelli, C. Burigana & D. Carturan, WMAP and the Gener-alized Chaplygin Gas, JCAP,07,005 (2003).
    [113]M. D. C. Bento, O. Bertolami & A. A. Sen, Generalized Chaplygin Gas and CMBR Constraints, Phys. Rev. D 67,063003 (2003).
    [114]O. Bertolami & P.T. Silva, Gamma-ray Bursts as Dark Energy-Matter Probes in the Context of the Generalized Chaplygin Gas Model, MNRAS,365,1149 (2006).
    [115]A. Dev, D. Jain & J. S. Alcaniz, Cosmological Consequences of a Chaplygin Gas Dark Energy, Phys. Rev. D 67,023515 (2003).
    [116]N. Bilic, G. B. Tupper & R. D. Viollier, Unification of Dark Matter and Dark Energy: the Inhomogeneous Chaplygin Gas, Phys. Lett. B 535,17 (2002).
    [117]T. Multamaki, M. Manera & E. Gaztanaga, Large Scale structure and the Generalised Chaplygin Gas as Dark Energy, Phys. Rev. D 69,023004 (2004).
    [118]J. S. Alcaniz, D. Jain & A. Dev, High-redshift Objects and the Generalized Chaplygin Gas, Phys. Rev. D 67,043514 (2003).
    [119]P. Wu & H. W. Yu, Generalized Chaplygin Gas Model: Constraints from Hub-ble Parameter versus redshift Data, Phys. Lett. B 644,16 (2007).
    [120]D. J. Eisenstein, et al.,Detection of the Bar yon Acoustic Peak in the Large-Scale Correlation Function of SDSS Luminous Red Galaxies, ApJ,633,560 (2005).
    [121]WMAP collaboration, J. Dunkley et al., Five-year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Likelihoods And Parameters From The WMAP Data, ApJS,180,306 (2009).
    [122]A.G. Riess et al., A Redetermination of The Hubble Constant With The Hubble Space Telescope From A Differential Distance Ladder, ApJ,699539 (2009).
    [123]A. Shafieloo, V. Salmi,& A. A. Starobinsky, Is Cosmic Acceleration Slowing Down? Phys. Rev. D 80,101301 (2009).
    [124]V. Sahni, A. Shafieloo,& A. A. Starobinsky, Two New Diagnostics Of Dark Energy, Phys. Rev. D 78,103502 (2008).
    [125]H. K. Jassal, J. S. Bagla,& T. Padmanabhan, Observational Constraints On Low Redshift Evolution Of Dark Energy: How Consistent Are Different Obser-vations? Phys. Rev. D 72,103503 (2005).
    [126]H. K. Jassal, J. S. Bagla,& T. Padmanabhan, Understanding The Origin Of CMB Constraints On Dark Energy, MNRAS, bf 405,2639(2010).
    [127]S. Nesseris & L. Perivolaropoulos, Comparison Of The Legacy And Gold Type la Supernovae Dataset Constraints On Dark Energy Models, Phys. Rev. D 72, 123519 (2005).
    [128]M. Hicken et al., CfA3:185 Type la Supernova Light Curves From The CfA, ApJ,700,331 (2009).
    [129]M. Hamuy et al., The Morphology Of Type la Supernovae Light Curves, AJ. 112,2398 (1996).
    [130]K. Krisciunas et al., Hubble Space Telescope Observations Of Nine High-Redshift ESSENCE Supernovaea, AJ,130,2453 (2005).
    [131]A. G. Riess et al., BVRI Light Curves For 22 Type la Supernovae, AJ,117, 707 (1999).
    [132]S. Jha et al.m UBVRI Light Curves Of 44 Type la Supernovae, AJ,131,527 (2006).
    [133]M. Kowalski et al., Improved Cosmological Constraints From New, Old, And Combined Supernova Data Sets, ApJ,686,749 (2008).
    [134]J. A. Holtzman et al., The Sloan Digital Sky Survey-II: Photometry And Su-pernova IA Light Curves From The 2005 Data, AJ.136,2306 (2008).
    [135]B. J. Barris et al., Twenty-Three High-Redshift Supernovae From. The Institute For Astronomy Deep Survey: Doubling The Supernova Sample At z(?) 0.7, ApJ. 602,571 (2004).
    [136]R. Amanullah et al., Light Curves Of Five Type la Supernovae At Intermediate Redshift, A&A,486,375 (2008).
    [137]R. A. Knop et al., New Constraints On ΩM, ΩA, Andw From An Independent Set Of 11 High-Redshift Supernovae Observed With The Hubble Space Telescope , ApJ,598,102 (2003).
    [138]P. Astier et al., The Supernova Legacy Survey: Measurement Of ΩM,ΩA And w From The First Year Data Set, A&A,447,31 (2006).
    [139]G. Miknaitis et al., The ESSENCE Supernova Survey: Survey Optimization, Observations, And Supernova Photometry, ApJ,666,674 (2007).
    [140]J. L. Tonry et al., Diversity of Decline Rate-Corrected Type la Supernova Rise Times: One Mode or Two?, ApJ,671,1084 (2003).
    [141]A. G. Riess et al., New Hubble Space Telescope Discoveries Of Type la Su-pernovae At Z≥ 1: Narrowing Constraints On The Early Behavior Of Dark Energy, ApJ,659,98 (2007).
    [142]S. Nesseris,& L. Perivolaropoulos, Tension and Systematics in the Gold06 Snla Dataset, JCAP,0702,025 (2007).
    [143]Y. G. Gong, B. Wang, R. G. Cai, Probing The Cosmic Acceleration From Combination Of Different Data Sets, JCAP,04,019 (2010).
    [144]C. Wetterich, Phenomenological Parameterization Of Quintessence, Phys. Lett. B,594,17 (2004).
    [145]P. Schneider, J. Ehlers,& E. E. Falco, Gravitational lenses, (New York: Springer) (1999).
    [146]J. V. Cunha, L. Marassi,& J. A. S. Lima, Constraining Ho From Sunyaev-Zel'dovich Effect, Galaxy Clusters X-Ray Data, And Baryon Oscillations, MN-RAS; 379, L1 (2007).
    [147]A. Mantz et al., The Observed Growth Of Massive Galaxy Clusters II: X-Ray Scaling Relations, MNRAS,406,1773 (2010).
    [148]J. P. Uzan, N. Aghanim,& Y. Mellier, Distance Duality Relation From X-Ray And Sunyaev-Zel'dovich Observations Of Clusters, Phys. Rev. D 70,083533 (2004)
    [149]R. A. Sunyaev,& Ya. B. Zel'dovich, Small-Scale Fluctuations Of Relic Radi-ation, Comm. Astrophys. Space Phys.,4,173 (1972).
    [150]A. Cavaliere,& R. Fusco-Fermiano, The Distribution of Hot Gas in Clusters of Galaxies, A&A,70,677 (1978).
    [151]E. D. Reese et al., Determining The Cosmic Distance Scale From Interfero-metric Measurements Of The Sunyaev-Zeldovich Effect, ApJ,581,53 (2002).
    [152]M. Bonamente et al., Determination Of The Distance Scale From Sunyaev-Zel'Dovich Effect And Chandra X-Ray Measurements Of High-Redshift Galaxy Clusters, ApJ,647.25 (2006).
    [153]F. De Bernardis, E. Giusarma, A. Melchiorri, Constraints On Dark Energy And Distance Duality From Sunyaev-Zel'Dovicli Effect And Chandra X-Ray Measurements, IJMPD 15,759 (2006).
    [154]A. Avgoustidis, C. Burrage, J. Redondo, L. Verde,& R. Jimenez, Constraints On Cosmic Opacity And, Beyond The Standard Model Physics From Cosmolog-ical Distance Measurements, JCAP,1010,024 (2010).
    [155]R. F. Holanda, J. A. S. Lima,& M. B. Ribeiro. Cosmic Distance Duality Relation And The Shape Of Galaxy Clusters, A&A,528, L14 (2011).
    [156]E. De Filippis, M. SerenoM, W. Bautz, G. Longo, Measuring The Three-Dimensional Structure Of Galaxy Clusters. I. Application To A Sample Of 25 Clusters, ApJ,625,108 (2005)
    [157]A. G. Riess et al., Type Ⅰα Supernova Discoveries At z (?) 1 From The Hubble Space Telescope:Evidence For Past Deceleration And Constraints On Dark Energy Evolution, ApJ,607,665 (2004).
    [158]R. F. Holanda, J. A. S. Lima, M. B. Ribeiro, Testing The Distance-Duality Relation With Galaxy Clusters And Type la Supernovae, ApJ,722, L233 (2010).
    [159]X. Meng, T. Zhang, H. Zhan,& X. Wang, Morphology Of Galaxy Clusters: A Cosmological Model-Independent Test Of The Cosmic Distance -Duality Rela-tion, ApJ,745,98 (2011).
    [160]N. Liang, S. Cao, K. Liao,& Z. Zhu, A Consistent Test Of The Distance-Duality Relation With Galaxy Clusters And Type Ⅰα Supernave, arXiv: 1104.2497 (2011).
    [161]X. Fu, P. Wu, H. Yu,& Z. Li, Testing The Distance-Duality Relation With Data From Galaxy Clusters And Type Ⅰα Supernovae, RAA,11,8
    [162]S. Cao,& N. Liang, Testing The Distance-Duality Relation With A Combina-tion Of Cosmological Distance Observations, RAA,11,1199 (2011).
    [163]R. Nair, S. Jhingan,& D. Jain, Observational Cosmology And The Cosmic Distance Duality Relation, JCAP,05,023 (2011).
    [164]R. F. Holanda, J. A. S. Lima,& M. B. Ribeiro,2011, Probing the Cosmic Dis-tance Duality Relation with the Sunyaev-Zeldovich Effect, Ⅹ-Tays Observations and Supernovae Ⅰα, A&A,538, A131 (2012).
    [165]R. S. Goncalves, R. F. L. Holanda,& J. S. Alcaniz, Testing the Cosmic Dis-tance Duality with X-ray Gas Mass Fraction and Supernovae Data, MNRAS, 420, L43 (2012).
    [166]S. Khedekar, & S. Chakraborti, A New Tolman Test of a Cosmic Distance Duality Relation at 21 cm, Phys. Rev. Lett.106,221301 (2011).
    [167]E. D.Reese et al., Impact Of Chandra Calibration Uncertainties On Galaxy Cluster Tempretures:Application To The Hubble Constant, ApJ,721,653 (2010)
    [168]P. R. Bevington, & D. K. Robinson,2003, Data reduction and error analysis for the physical sciences,3rd ed., by Philip R. Bevington, and Keith D. Robinson. Boston, MA: McGraw-Hill, ISBN 0-07-247227-8
    [169]M. Birkinshaw, The Sunyaev-Zel'dovich Effect, Phys. Rep.,310,97 (1999).
    [170]J. E. Carlstrom, G. P. Holder, k E. D. Reese, Cosmology With The Sunyaev-Zel'dovich Effect, ARAf&A,40,643 (2002).
    [171]B. S. Mason, S. T. Myers,& A. C. S. Readhead, A Measurement Of Ho From The Sunyaev-Zeldovich Effect, ApJ,555, L11 (2001).
    [172]W. L. Freedman et al., Final Results From The Hubble Space Telescope Key Project To Measure The Hubble Constant, ApJ,553,47 (2001).
    [173]Y.-G. Wang, & Z.-H.Fan, Systematic Errors In The Determination Of Hub-ble Constant Due To The Asphericity And Nonisothermality Of Clusters Of Galaxies, ApJ,643,630 (2006)
    [174]A. Aguirre, Intergalactic Dust And Observations Of Type Ia Supernovae. ApJ 525,583 (1999).
    [175]C. Csaki, N. Kaloper, k J. Terning, Dimming Supernovae Without Cosmic Acceleration, Phys. Rev. Lett.88,161302 (2002).
    [176]B. A. Bassett, & M. Kunz, Cosmic Acceleration Versus Axion-Photon Mixing, ApJ,607,661 (2004).
    [177]S. More, J. Bovy, k D. W. Hogg, Cosmic Transparency: A Test With The Baryon Acoustic Feature And Type la Supernova, ApJ,696,1727 (2009).
    [178]B. Chen, k R. Kantowski, Including Absorption In Gordon's Optical Metric Phys. Rev. D,79,104007 (2009).
    [179]B. Chen,& R. Kantowski, Distance Redshift From. A Optical Metric That Includes Absorption, Phys. Rev. D,80,044019 (2009).
    [180]J. A. S. Lima, J. V. Cunha, k V. T. Zanchin, Deformed Distance Duality Relation And Supernova Dimming, ApJ,742, L26 (2011).
    [181]W. H. Press et al., Numerical Recipes (Second Edition), Cambridge University Press (1994).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700