用户名: 密码: 验证码:
1. 兔骨髓间充质干细胞对VX2膀胱肿瘤生长及间质重构的影响 2. 钬激光治疗非肌层浸润性膀胱肿瘤的疗效与安全性评价
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景
     骨髓间充质干细胞(mesenchymal stem cells,MSCs)是骨髓非造血组织中的一类多潜能成体干细胞,其具有高度的可塑性和多向分化潜能,在体外具有高度的扩增能力,并可被诱导分化为骨、软骨、肌肉、脂肪和神经等组织细胞,由于避免了胚胎干细胞在伦理、道德、法律等方面的限制,目前MSCs成为组织工程和再生医学中理想的供体细胞。而且,MSCs易于外源基因的转染和表达、极好的迁移能力(migratory ability)和肿瘤趋向性(tropism)、低免疫原性的特点,使其成为肿瘤基因治疗和靶向治疗的理想载体细胞。然而随着近年来对MSCs生理特性和肿瘤研究的不断深入,有研究发现MSCs本身可能与肿瘤发生、发展之间存在着密切的关系,提示MSCs应用的生物安全性问题值得关注。我们在前期的工作中,已经初步观察到将培养的自体MSCs回输到已经发生的VX2膀胱肿瘤组织后,能够促进肿瘤的生长,并发现MSCs在体外、体内肿瘤局部微环境可以分化为肌纤维母细胞。因此,MSCs来源的肌纤维母细胞或其他间质细胞可能参与了肿瘤间质重构,而肿瘤间质重构(remodeling)是肿瘤生长发展与侵袭的关键步骤。本部分研究我们拟通过体外扩增新西兰兔MSCs后,膀胱粘膜下接种不同比例的自体MSCs和VX2肿瘤细胞混合液,观察不同数量的MSCs对膀胱VX2肿瘤发生、发展的影响,进一步研究MSCs与VX2膀胱肿瘤发生发展的关系;同时,监测MSCs对肿瘤组织某些生长因子和间质重构蛋白的表达的影响,藉此研究MSCs来源的间质细胞与肿瘤细胞间相互作用的具体信号机制。
     目的
     探讨MSCs对VX2膀胱肿瘤发生、发展的影响;研究MSCs对肿瘤组织某些生长因子和间质重构蛋白的表达的影响,证实MSCs是否参与了实体肿瘤的间质重构。
     方法
     1.兔骨髓间充质干细胞的分离、培养和鉴定:雄性新西兰大白兔30只,每只动物均行胫骨近端骨髓穿刺抽取骨髓MSCs,体外密度梯度离心法联合细胞贴壁法分离培养扩增新西兰兔MSCs,形态学、流式细胞技术检测表面抗原等方法鉴定扩增的MSCs。
     2.兔VX2膀胱肿瘤模型的建立及监测:MSCs培养成功后,制备VX2肿瘤细胞悬液,将DAPI标记的自体骨髓MSCs细胞悬液和VX2肿瘤细胞细胞悬液混合,制备一总体积为介质为300μl PBS的混合细胞悬液,行膀胱粘膜下接种,按照两种细胞比例的不同,30只新西兰大白兔按照随机原则分为3组,每组10只,具体如下:A组(10~6VX2),B组[(VX2/MSCs=1:1):10~6VX2+10~6 MSCs],C组[(VX2/MSC=1:10):10~6VX2+10~7 MSCs]。细胞膀胱粘膜下接种建立膀胱肿瘤模型,于第3、4、5、6、7、14、21、28d分别行膀胱超声多切面扫查一次,记录肿瘤最长最短直径,建立生长曲线,比较各组生长速率差异。第4周处死所有动物,取出膀胱肿瘤标本,同时记录各组远处转移情况。
     3.免疫组织化学(IHC)测定各组肿瘤组织中的间质重构因子和蛋白:IHC测定各组肿瘤组织生长因子(TGFβ1、bFGF、HGF)和基质重构蛋白酶(MMP2、MMP9)的表达差异,应用Image Pro Plus 5.0数字图像分析软件计算平均积分光密度(intergrated optical density,IOD),对免疫组化(IHC)强度进行半定量分析,以IOD值代表蛋白的表达水平。从而探讨MSCs对肿瘤组织生长因子和MMPs表达的影响。
     4.实时荧光定量PCR监测上述生长因子和基质重构蛋白酶mRNA:应用SYBRGreenⅠ法Real-time PCR测定各组肿瘤组织上述生长因子和基质蛋白酶,数据分析采用2~(-ΔCtΔCt)法。
     结果
     1.体外培养的MSCs形态均匀,生长曲线显示增长能力强,经鉴定为兔MSCs,而非造血系细胞。
     2.MSCs对VX2膀胱肿瘤发生发展的影响:细胞接种后第5天,A、B、C组分别有2(2/10)、2(2/10)、6(6/10)只动物超声检查能够监测到接种部位肿瘤生长。接种第6天三组分别有6(6/10)、7(7/10)、8(8/10)只能够监测到肿瘤生长。在第一、二、三周时间点时三组动物肿瘤体积A组<B组<C组,差异有统计学意义(P均<0.001),生长曲线提示,MSCs能够促进VX2膀胱肿瘤的发展。第四周时A、B、C三组生成膀胱肿瘤的质量分别为4.0±1.2g、11.3±3.5g、12.8±3.9g,B、C组大于A组,差异均有统计学意义(P<0.05)。A组实验动物前三周均未出现腹股沟淋巴结转移,第四周时有3只(3/10)新西兰兔出现腹股沟淋巴结转移的情况;B组实验动物前两周未出现腹股沟淋巴结转移,第三周时3只(3/10)动物出现沟淋巴结转移,而第四周时共7只(7/10)出现淋巴结转移;C组实验动物第三周5只(5/10)动物出现腹股沟淋巴结,第四周时共8(8/10)只出现淋巴结转移。三组动物第四周处死解剖后均能发现膀胱肿瘤存在,生成的肿瘤大致呈圆形,形态较规则,无明显子灶形成。病理HE染色显示符合移植性VX2肿瘤的一般特点。
     3.肿瘤组织中生长因子和间质重构蛋白酶IHC测定结果:生长因子:间质细胞(成纤维细胞、内皮细胞、炎性细胞等)和肿瘤细胞(胞核、胞浆)均有阳性表达。B组TGFβ1、bFGF、HGF免疫组化IOD值水平(依次为15396.10±3230.57、9280.66±3754.99、13203.17±3990.86)显著高于A组(依次为8948.70±2462.91、5632.70±1943.18、7824.43±4077.94),P均<0.05;C组TGFβ1、bFGF、HGF免疫组化IOD值水平依次为20875.40±6737.11、13811.14±4311.62、14523.69±3865.41,分别高于A组,P均<0.05,且其中TGFβ1、bFGF的IOD值高于B组,差异有统计学意义(P<0.05);基质金属蛋白酶:阳性表达主要分布于间质细胞(成纤维细胞、内皮细胞、炎性细胞等)和肿瘤细胞胞膜、胞浆,尤其以肿瘤浸润活跃处为著。MMP2免疫组化IOD值在A、B、C三组依次为25337.20±8151.51、51507.50±17679.55、61535.66±19449.11,B、C组高于A组,差异有统计学意义(P<0.05),B、C组差异无统计学意义(P=0.231):MMP9免疫组化IOD值在A、B、C三组依次为34172.91±5243.75、60582.28±22975.45、90287.45±31362.21,B、C组高于A组,差异有统计学意义(P<0.05),C组高于B组,差异有统计学意义(P=0.024)。
     4.肿瘤组织中生长因子和间质重构蛋白酶mRNA水平:生长因子:B组TGFβ1、bFGF、HGF mRNA表达水平(依次为3.250±0.587、2.970±0.490、2.101±0.527)显著高于A组(依次为为1.087±0.194、1.134±0.165、1.185±0.247),P均<0.05;C组TGFβ1、bFGF、HGF mRNA表达水平依次为3.620±0.670、3.651±0.744、3.052±0.438,分别高于A组,P均<0.05,其中C组bFGF、HGF mRNA表达高于B组,且差异有统计学意义(P<0.05)。基质金属蛋白酶:MMP2 mRNA表达水平在A、B、C三组依次为1.134±0.243、3.67±0.945、3.845±1.159,B、C高于A组,差异有统计学意义(P<0.05):MMP9mRNA表达水平在A、B、C三组依次为0.955±0.166、3.360±0.628、4.045±1.084,依次升高,各组间差异均有统计学意义,P均<0.05。
     结论
     1.VX2肿瘤细胞悬液膀胱粘膜下接种建立膀胱肿瘤模型具有量化、均一、稳定的特点,并且能够反映膀胱肿瘤的发生发展过程。
     2.骨髓MSCs在体内膀胱微环境下能够促进VX2实体肿瘤的发生发展。
     3.骨髓MSCs能够诱导肿瘤微环境高表达某些生长因子,并且可能是MSCs在肿瘤局部促进肿瘤生长的基础机制。
     4.骨髓MSCs胞能够促进肿瘤间质某些基质蛋白酶(MMPs)表达,可能是其促进肿瘤间质重构和侵袭转移的机制之一。
     目的以标准的经尿道膀胱肿瘤电切(Transurethral Electroresection of BladderTumor,TURBT)作为对照,对钬激光治疗非肌层浸润性膀胱肿瘤(Holmium LaserResection of Bladder Tumor,HOLRBT)的临床治疗效果与安全性进行评价。
     方法收集212例原发性非肌层浸润性膀胱肿瘤的患者资料,按照所接受的手术方式不同将其分为两组(HOLRBT组和TURBT组)。同时,将每组患者按照复发风险(EAU 2002)的不同,分为低、中、高危非浸润性膀胱肿瘤三个亚组。总结两组患者临床及病理资料,对两组手术时间、闭孔神经反射及膀胱穿孔发生率、术后需要膀胱冲洗的患者比例、留置导尿管时间、术后住院时间等指标进行比较,从而对其手术安全性进行评价;通过Kaplan-Meier分析和Log-rank检验比较两组患者整体上及各个亚组间的无复发生存情况(Recurrence-Free Survival,RFS),基于与TURBT的比较,评价HOLRBT的临床治疗效果。
     结果两组患者的一般资料与病理特点差异无统计学意义(P>0.05),HOLRBT组与TURBT组的手术时间分别为30.69 min±16.10 min、24.90 min±14.44 min。HOLRBT组无闭孔神经反射发生,而TURBT组7(7/111)例发生闭孔神经反射,术后需要膀胱冲洗的患者比例(P=0.038)、留置尿管时间和术后住院时间均小于TURBT组(P<0.01)。平均随访时间34 mon,Kaplan-Meier统计分析揭示HOLRBT组与TURBT整体相比,RFS差异无统计学意义(P=0.283)。经过复发危险度分层校正后,低危、中危、高危亚组内,两种手术方式的RFS相比,差异均无统计学意义,三个亚组内相关的P值依次为0.816、0.352、0.592(P>0.05)。
     结论钬激光切除治疗非肌层浸润性膀胱肿瘤的近期复发率(100%-RFS)与经尿道膀胱肿瘤电切相近,但在控制术中出血及闭孔神经反射,缩短术后留置尿管时间和膀胱冲洗时间方面更有优势。
BACKGROUD
     Bone marrow-derived mesenchymal stem cells(MSCs) come from bone marrow non-hematopoietic tissue,which are a kind of pluripotent adult stem cells,have high degree of plasticity,and are capable of developing into diverse functional cell lineages, including bone,cartilage,myoblasts,fat and neural cells cells.Instead of embryonic stem cells,MSCs avoid the ethical,moral and legal constraints,and have been considered to represent ideal cell sources of regenerative medicine and tissue engineering currently.As a consequence,MSCs has aroused widespread interest. Moreover,MSCs can be readily transfected,allowing for easy ex vivo modification., have excellent migratory ability,the tumor tropism and low immunogenicity of the characteristics,which make them ideal vector cells in tumor gene therapy and targeted therapy.However,with the increasing apprehension of physiological characteristics regarding MSCs and the deepening of tumor research in recent years.Some scholars have found that MSCs themselves might be associated with tumorigenesis closely, suggesting that long-term biosafety of MSCs for clinical applications deserves further assessment.In previous work,We have initially observed that cultured autologous MSCs transfusion into VX2 bladder tumor tissue could promote tumor growth,and found that MSCs could be differentiated into myofibroblast in vitro and in vivo tumor micro-environment,which is regarded as an important cancer-associated fibroblast in tumor stroma.Therefore,MSCs derived myofibroblast or other stroma cells may be involved in tumor stroma remodeling.And activated tumor micro-environment or stroma remodeling plays a key role in tumor growth and infiltration.In this section, we intend to amplify of MSCs in vitro first,then establish tumor model through bladder submucosal innoculation of different proportions of autologous MSCs and VX2 tumor cells,observing the effect of different numbers of MSCs on VX2 bladder tumor occurrence and development in New Zealand rabbit.In this way,we try to study the relationship accurately between MSCs and VX2 bladder tumor occurrence and development;Meanwhile,by monitoring the tumor tissue growth factors and some stromal remodeling enzyme,we try to disclose the concrete signaling mechanism of MSCs induced stroma remodeling and the interaction between tumor cells and stroma cells.
     OBJECTIVE
     To investigate the effect of MSCs on the VX2 bladder tumor occurrence and development,to explore tumor tissue growth factor and stromal remodeling enzyme expression change induced by MSCs and whether MSCs are involved in the tumor stroma remodeling.
     METHODS
     1.Isolation,culture and identification of rabbit MSCs in vitro:A total of 30 male New Zealand rabbits were used.Marrow aspirates were obtained from the proximal tibia of each animal,and density gradient centrifugation followed by repeated adherence in plastic bottle were applied in MSCs isolation and amplification.Morphology and flow cytometry detection of surface antigen were used to identify and confirmation cultured MSCs.
     2.Rabbit VX2 bladder tumor model establishment and monitoring:After successful MSCs cultivation,VX2 tumor cell suspension was prepared and mixed with DAPI labeled autologous MSCs in a total volume for 300μl PBS.The mixed cell suspension was transplanted by bladder submucosal innoculation.Based on the ratio of two different cells,30 New Zealand rabbits were randomly divided into 3 groups with 10 in each group,as follows:Group A(10~6 VX2),Group B [(VX2/MSCs=1:1):10~6 VX2 + 10~6 MSCs]and Group C[(VX2/MSC=1:10): 10~6 VX2 + 10~7 MSCs].Multisection ultrasound scanning was conducted 3,4,5,6, 7,14,21,28d respectively after cell innoculation to monitor tumor occurrence and growth.The tumor growth curve was set up and inguinal lymph nodes metastasis was observed to compare tumor progression in 3 groups.All animals were sacrificed at 4 weeks point.Bladder tumor specimens were obtained to make frozen and paraffin section,and distant organ metastasis was recorded.
     3.Immunohistochemistry(IHC) assay of tumor growth factors and remodeling enzymes:growth factors(TGFβ1,bFGF,HGF) and matrix remodeling proteases (MMP2,MMP9) expression was detected in developed tumor,and Image Pro Plus 5.0 Software was used to analyze IHC intensity semi-quantitatively.Integral optical density(IOD) value represents the level of protein expression and was applied to compare the difference in 3 groups.
     4.Real-time quantitative PCR assay of the above-mentioned growth factors and matrix remodeling protease mRNA:SYBR Green I method was used technically, and data analysis using 2~(ΔCtΔCt) method was conducted.
     RESULTS
     1.Cultured MSCs in vitro present uniform morphology and its growth curve showed strong amplification ability,and were identified as rabbit MSCs,rather than hematopoietic cells.
     2.The effect of MSCs on tumor development:on 5~(th) day after cell inoculation,2 (2/10),2(2/10),6(6/10) animals in Group A,B,C respectively could be found by ultrasound in the bladder injection site,and 6(6/10)、7(7/10)、8(8/10) animals could be monitored in Group A,B,C respectively on 6~(th) day.At the 1~(st),2~(nd) and 3~(rd) week time point,tumor volume in group A<group B<group C,and the difference has statistical significance(P all<0.001).Tumor growth curve showed that MSCs could promote VX2 bladder tumor growth.The weight of bladder tumor at 4~(th) week was 4.0±1.2 g,11.3±3.5 g,12.8±3.9g in Group A,B,C respectively.Animals in Group A did not present inguinal lymph node metastasis(ILNM) in first 3 weeks,ILNM appeared in 3(3/10) rabbits at the 4~(th) week point.Animals in Group B did not present ILNM in first 2 weeks,and 3(3/10) rabbits showed ILNM at 3~(rd) week point,and a total of 7(7/10) at 4~(th) week point.5(5/10) rabbits in Group C appeared ILNM at 3~(rd) week point and a total of 8(8/10) at 4~(th) week point.Bladder tumor could be found in all animals when they were sacrificed at 4~(th) week point,and generated tumor approximately were regular and most are round in shape.No obvious satellite focus was found.HE staining showed that tumor pathology was in line with the general characteristics of transplanted VX2 tumor.
     3.Tumor tissue growth factors and stromal remodeling protease IHC results:growth factors:Stroma cells(fibroblasts,endothelial cells and inflammatory cells,etc.) and tumor cells(nucleus,cytoplasm) have positive expression.TGFβ1,bFGF and HGF IOD value in Group B(15396.10±3230.57,9280.66±3754.99 and 13203.17±3990.86,respectvely) were significantly higher than Group A (8948.70±2462.91,5632.70±1943.18 and 7824.43±4077.94,respectvely),P all<0.05;TGFβ1,bFGF and HGF IOD value in Group C were 20875.40±6737.11,13811.14±4311.62 and 14523.69±3865.41,respectively,which was higher than in Group A,P all<0.05,and TGFβ1,bFGF IOD value is higher than Group B,the difference has statistical significance(P<0.05);Matrix metalloproteinases:The positive expression was mainly located in stromal cells (fibroblasts,endothelial cells,inflammatory cells,etc.) and tumor cell membrane, cytoplasm,particularly in active tumor infiltrating area.MMP2 IOD values in Group A,B,C were 25337.20±8151.51,51507.50±17679.55 and 61535.66±19449.11,respectvely.Levels in Group B,C was higher than in Group A,and the difference has statistical significance(P<0.05);MMP9 IOD values in group A,B, C were 34172.91±5243.75,60582.28±22975.45 and 90287.45±31362.21, respectvely.Group B,C was higher than Group A(P<0.05),Group C was higher than Group B(P = 0.024).
     4.Tissue tumor growth factor and stromal remodeling protease mRNA levels: growth factors:TGFβ1,bFGF and HGF mRNA levels in Group B(3.250±0.587, 2.970±0.490 and 2.101±0.527,respectvely.) was significantly higher than Group A(1.087±0.194,1.134±0.165 and1.185±0.247,respectvely)(both P<0.05);TGFβ1,bFGF and HGF mRNA levels in Group C were 3.620±0.670, 3.651±0.744 and 3.052±0.438,respectively,higher than the Group A(all P<0.05),and bFGF,HGF mRNA levels were higher than Group B(P<0.05).Matrix MetaUoproteinases:MMP2 mRNA levels in Group A,B,C were 1.134±0.243, 3.67±0.945 and 3.845±1.159,and levels in Group B,C is higher than group A, (both P<0.05);MMP9 mRNA levels in Group A,B,C were 0.955±0.166,3.360±0.628 and 4.045±1.084,respectively,and differences among all groups were statistically significant(all P<0.05).
     CONCLUSIONS
     1.VX2 tumor cell suspension submucosal injection is a homogeneous and stable method to establish bladder tumor model,and can better reflect the pathogenesis of bladder tumor.
     2.Bone marrow derived MSCs can promote the bladder VX2 tumor growth and development in vivo.
     3.MSCs can induce high expression of certain growth factors in tumor micro-environment,which presumebly is the basic mechanism to promote tumor growth.
     4.MSCs can stimulate matrix protease(MMPs) expression,which is probably one of the pathway to promote stromal remodeling and tumor invasion and metastasis.
     OBJECTIVES
     To assess the safety and efficacy of holmium laser resection for primary clinically non-muscle invasive bladder cancer(HOLRBT) compared with standard transurethral resection(TURBT).
     METHODS
     Data of a total of 212 patients with primary non-muscle invasive bladder cancer (NMIBC) was collected in this study.These patients treated by holmium laser resection(HOLRBT group) or transurethral electroresection(TURBT group) were divided into 2 groups.Patients in each group were stratified into 3 risk subgroups (low,intermediate and high risk) according to prognostic factors for recurrence,based on EAU guideline.Patient demographics and tumor characteristics regarding each group were summarized and compared.Then,HOLRBT and TURBT groups were compared,concerning intraoperative complications and postoperative characteristics, including obturator nerve reflex and bladder perforation incidence,the proportion needing postoperative bladder irrigation,as well as postoperative catheter drainage period and hospital stay.Efficacy indicated by recurrence-free survival in overall group and stratified subgroup was meanwhile analyzed and compared by Kaplan-Meier technique,as well as log-rank test.
     RESULTS
     Patient demographics and tumor characteristics in the 2 groups were comparable, and no statistical significance was found between the 2 groups.HOLRBT is superior to TURBT in terms of intraoperative complications such as obturator nerve reflex and postoperative catheterization time and hospital stay(P<0.001).The mean follow-up after surgey was 34 months.Recurrence-free survival after HOLRBT treatment is similar with that of TURBT(P = 0.283).P values in low,intermediate and high risk subgroups were 0.816,0.352,and 0.592,respectively.
     CONCLUSIONS
     Our results have indicated that HOLRBT is a feasible,safe and effective alternative for the management of primary clinically NMIBC when compared to TURBT,with similar recurrence-free survival and less perioperative complications, meanwhile providing sufficient material for pathology evaluation.
引文
1. Bosnakovski D, Mizuno M, Kim G, Takagi S, Okumura M, Fujinaga T. Isolation and multilineage differentiation of bovine bone marrow mesenchymal stem cells. Cell Tissue Res. 2005 Feb; 319(2): 243-253.
    2. Lee HS, Huang GT, Chiang H, Chiou LL, Chen MH, Hsieh CH, Jiang CC. Multipotential mesenchymal stem cells from femoral bone marrow near the site of osteonecrosis. Stem Cells. 2003; 21(2): 190-199.
    3. Suzdal'tseva YG, Burunova W, Vakhrushev IV, Yarygin VN, Yarygin KN. Capability of human mesenchymal cells isolated from different sources to differentiation into tissues of mesodermal origin. Bull Exp Biol Med. 2007 Jan; 143(1): 114-121.
    4. Meier K, Lehr CM, Daum N. Differentiation potential of human pancreatic stem cells for epithelial- and endothelial-like cell types. Ann Anat. 2009; 191(1): 70-82.
    5. Khoo ML, Shen B, Tao H, Ma DD. Long-term serial passage and neuronal differentiation capability of human bone marrow mesenchymal stem cells. Stem Cells Dev. 2008 Oct; 17(5): 883-896.
    6. Chen Y, Teng FY, Tang BL. Coaxing bone marrow stromal mesenchymal stem cells towards neuroal differentiation: progress and uncertainties. Cell Mol Life Sci. 2006 Jul; 63(14): 1649-1657.
    7. Kassem M, Abdallah BM. Human bone-marrow-derived mesenchymal stem cells: biological characteristics and potential role in therapy of degenerative diseases. Cell Tissue Res. 2008 Jan; 331(1): 157-163.
    8. Studeny M, Marini FC, Dembinski JL, Zompetta C, Cabreira-Hansen M, Bekele BN, Champlin RE, Andreeff M. Mesenchymal stem cells: potential precursors for tumor stroma and targeted-delivery vehicles for anticancer agents. J Natl Cancer Inst. 2004 Nov 3; 96(21): 1593-1603.
    9. Hung SC, Deng WP, Yang WK, Liu RS, Lee CC, Su TC, Lin RJ, Yang DM, Chang CW, Chen WH, Wei HJ, Gelovani JG. Mesenchymal stem cell targeting of microscopic tumors and tumor stroma development monitored by noninvasive in vivo positron emission tomography imaging. Clin Cancer Res. 2005 Nov 1; 11(21): 7749-7756.
    10. Fritz V, Jorgensen C. Mesenchymal stem cells: an emerging tool for cancer targeting and therapy. Curr Stem Cell Res Ther. 2008 Jan; 3(1): 32-42.
    11. Sonabend AM, Ulasov IV, Tyler MA, Rivera AA, Mathis JM, Lesniak MS. Mesenchymal stem cells effectively deliver an oncolytic adenovirus to intracranial glioma. Stem Cells. 2008 Mar; 26(3): 831-841.
    12. Ren C, Kumar S, Chanda D, Kallman L, Chen J, Mountz JD, Ponnazhagan S. Cancer gene therapy using mesenchymal stem cells expressing interferon-beta in a mouse prostate cancer lung metastasis model. Gene Ther. 2008 Nov; 15(21): 1446-1453.
    13. Beckermann BM, Kallifatidis G, Groth A, Frommhold D, Apel A, Mattern J, Salnikov AV, Moldenhauer G, Wagner W, Diehlmann A, Saffrich R, Schubert M, Ho AD, Giese N, Buchler MW, Friess H, Buchler P, Herr I. VEGF expression by mesenchymal stem cells contributes to angiogenesis in pancreatic carcinoma. Br J Cancer. 2008 Aug 19; 99(4): 622-631.
    14. Yu JM, Jun ES, Bae YC, Jung JS. Mesenchymal stem cells derived from human adipose tissues favor tumor cell growth in vivo. Stem Cells Dev. 2008 Jun; 17(3): 463-473.
    15. Roorda BD, Ter Elst A, Kamps WA, de Bont ES. Bone marrow-derived cells and tumor growth: Contribution of bone marrow-derived cells to tumor micro-environments with special focus on mesenchymal stem cells. Crit Rev Oncol Hematol. 2008 Jul 31. (Folkman J. Tumor angiogenesis: therapeutic implications. N Engl J Med. 1971; 285 (21): 1182-1186.
    16. Hanahan D, Folkman J. Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell. 1996; 86(3): 353-364.
    17. Yamaguchi J, Kusano KF, Masuo O, Kawamoto A, Silver M, Murasawa S, Bosch-Marce M, Masuda H, Losordo DW, Isner JM, Asahara T. Stromal cell-derived factor-1 effects on ex vivo expanded endothelial progenitor cell recruitment for ischemic neovascularization. Circulation. 2003; 107(9): 1322-1328.
    18. Kawada H, Fujita J, Kinjo K, Matsuzaki Y, Tsuma M, Miyatake H, Muguruma Y, Tsuboi K, Itabashi Y, Ikeda Y, Ogawa S, Okano H, Hotta T, Ando K, Fukuda K. Nonhematopoietic mesenchymal stem cells can be mobilized and differentiate into cardiomyocytes after myocardial infarction. Blood. 2004; 104(12): 3581-3587.
    19. Djouad F, Bony C, Apparailly F, Louis-Plence P, Jorgensen C, Noel D. Earlier onset of syngeneic tumors in the presence of mesenchymal stem cells.Transplantation. 2006; 82 (8): 1060-1066.
    20. Ramasamy R, Lam EW, Soeiro I, Tisato V, Bonnet D, Dazzi F. Mesenchymal stem cells inhibit proliferation and apoptosis of tumor cells: impact on in vivo tumor growth. Leukemia. 2007; 21 (2): 304-310.
    21. Gruber R, Kandler B, Holzmann P, et al. Bone marrow stromal cells can provide a local environment that favors migration and formation of tubular structures of endothelial cells. Tissue Eng. 2005; 11 (5-6): 896-903.
    22. Djouad F, Plence P, Bony C, Tropel P, Apparailly F, Sany J, Noel D, Jorgensen C. Immunosuppressive effect of mesenchymal stem cells favors tumor growth in allogeneic animals. Blood. 2003 Nov 15; 102(10): 3837-3844.
    23. Al-Hajj M, Clarke MF. Self renewal and solid tumorstem ceils. Oncogene. 2004; 23(43): 7274-7282.
    24. Sarmadi VH, Heng FS, Ramasamy R. The effect of human mesenchymal stem cells on tumour cell proliferation. Med J Malaysia. 2008 Jul; 63 Suppl A: 63-64.
    25. Ohlsson LB, Varas L, Kjellman C, et al. Mesenchymal progenitor cell-mediated inhibition of tumor growth in vivo and in vitro in gelatin matrix. Exp Mol Pathol. 2003, 75(3): 248-255.
    26. Khakoo AY, PatiS, Anderson SA, et al. Human mesenchymal stem cells exert potent antitumorigenic effects in a model of Kaposi's sarcoma. J Exp Med. 2006; 203(5): 1235-1247.
    27. Amatangelo MD, Bassi DE, Klein-Szanto AJ, Cukierman E. Stroma-derived three-dimensional matrices are necessary and sufficient to promote desmoplastic differentiation of normal fibroblasts.Am J Pathol 2005;167:475-488.
    28.Liotta LA,Kohn EC.The microenvironment of the tumour-host inter-face.Nature.2001;411:375-379.
    29.Matrisian LM,Cunha GR,Mohla S.Epithelial-stromal interactions and tumor progression:meeting summary and future directions.Cancer Res.2001;61:3844-3846.
    30.Hanahan D,Weinberg RA.The hallmarks of cancer.Cell.2000;100:57-70.
    31.Liotta LA,Steeg PS,Stetler-Stevenson WG.Cancer metastasis and angiogenesis:an imbalance of positive and negative regulation.Cell.1991 Jan 25;64(2):327-336.
    32.Kohn,E.C.Liotta,L.A.Molecular insights into cancer invasion:strategies for prevention and intervention.Cancer Res.1995;55,1856-862.
    33.陈军,徐祗顺,赵海峰,董德鑫.骨髓间充质干细胞在兔肿瘤组织中的分布与分化.中华医学杂志.2007:87:2361-2364.
    34.De Wever O,Marcel M.Role of tissue stroma in cancer cell invasion.J Pathol.2003 Jul;200(4):429-447.
    35.Tuxhorn JA,Ayala GE,Smith MJ,Smith VC,Dang TD,Rowley DR.Reactive stroma in human prostate cancer:induction of myofibroblast phenotype and extracellular matrix remodeling.Clin Cancer Res.2002 Sep;8(9):2912-2923.
    36.Condon MS.The role of the stromal microenvironment in prostate cancer.Semin Cancer Biol.2005;15:132-137.
    37.Bhowmick NA,Neilson EG,Moses HL.Stromal fibroblasts in cancer initiation and progression.Nature.2004;432:332-337.
    38.De Wever O,Demetter P,Marcel M,Bracke M.Stromal myofibroblasts are drivers of invasive cancer growth.Int J Cancer.2008 Nov 15;123(10):2229-2238.
    39.Powell DW,Adegboyega PA,Di Mari JF,et al.Epithelial cells and their neighbors Ⅰ.Role of intestinal myofibroblasts in development,repair,and cancer.Am J Physiol Gastrointest Liver Physiol,2005,289:G2-7.
    40.Galie M,Sorrentino C,Montani M,et al.Mammary carcinoma provides highly tumourigenic and invasive reactive stromal cells.Carcinogenesis.2005;26:1868-1878.
    41.吴刚,靳凤烁,李黔生,杨光永,王智彪等.可移植兔原位高转移性膀胱癌模型的建立.中华实验外科杂志,2001,18:466-467.
    42.Harada T,Koh D,Kigure T,Tsuchida S,Issa MM.Microwave coagulation therapy on VX-2 carcinoma implanted in rabbit urinary bladders.Urol Int.1992;49(2):104-109.
    43.Hoshi S,Mao H,Takahashi T,Suzuld K,Nose M,Orikasa S.Internal iliac arterial infusion chemotherapy for rabbit invasive bladder cancer.Int J Urol.1997 Sep;4(5):493-499.
    44.Yang WH,Liebert M,Price RE,Cromeens DM,Lin JS,Grossman HB.Extravesical cryosurgical approach for VX2 bladder tumor in rabbits.Urol Res.2001;29(5):345-349.
    45.Zhu W,Xu W,Jiang R,et al.Mesenchymal stem cells derived from bone marrow favor tumor cell growth in vivo.Exp Mol Pathol,2006;80:267-274.
    46.Karnoub AE,Dash AB,Vo AP,Sullivan A,Brooks MW,Bell GW,Richardson AL,Polyak K,Tubo R,Weinberg RA.Mesenchymal stem cells within tumour stroma promote breast cancer metastasis.Nature.2007 Oct 4;449(7162):557-563.
    47.Nakamizo A,Marini F,Amano T,Khan A,Studeny M,Gumin J,Chen J,Hentschel S,Vecil G,Dembinski J,Andreeff M,Lang FF.Human bone marrow-derived mesenchymal stem cells in the treatment of gliomas.Cancer Res.2005 Apr 15;65(8):3307-3318.
    48.Fazel SS,Angoulvant D,Butany J,Weisel RD,Li RK.Mesenchymal stem cells engineered to overexpress stem cell factor improve cardiac function but have malignant potential.J Thorac Cardiovasc Surg.2008 Nov;136(5):1388-1389.
    49.Djouad F,Plence P,Bony C,Tropel P,Apparailly F,Sany J,No(e|¨)l D,Jorgensen C.Immunosuppressive effect of mesenchymal stem cells favors tumor growth in allogeneie animals.Blood.2003 Nov 15;102(10):3837-3844.
    50.Sarmadi VH,Heng FS,Ramasamy R.The effect of human mesenchymal stem cells on tumour cell proliferation. Med J Malaysia. 2008 Jul; 63 Suppl A: 63-64.
    51. Ohlsson LB, Varas L, Kjellman C, et al. Mesenchyma progenitor cell-mediated inhibition of tumor growth in vivo and in vitro in gelatin matrix. Exp Mol Pathol,2003; 75(3): 248-255.
    52. Matrisian, L. M., Cunha, G. R., and Mohla, S. Epithelial-stromal interactions and tumor progression: meeting summary and future directions. Cancer Res. 2001; 61: 3844-3846.
    53. Park, C. C, Bissell, M. J., and Barcellos-Hoff, M. H. The influence of the microenvironment on the malignant phenotype. Mol Med Today. 2000; 6: 324-329.
    54. Frazier KS, Grotendorst GR. Expression of connective tissue growth factor mRNA in the fibrous stroma of mammary tumors. Int J Biochem Cell Biol, 1997; 29: 153-161.
    55. Shimo T, Nakanishi T, Nishida T, et al. Connective tissue growth factor induces the proliferation, migration, and tube formation of vascular endothelial cells in vitro, and angiogenesis in vivo. J Biochem. 1999; 126: 137-145.
    56. Hung SC, Deng WP, Yang WK, Liu RS, Lee CC, Su TC, Lin RJ, Yang DM, Chang CW, Chen WH, Wei HJ, Gelovani JG. Mesenchymal stem cell targeting of microscopic tumors and tumor stroma development monitored by noninvasive in vivo positron emission tomography imaging. Clin Cancer Res. 2005 Nov 1; 11(21): 7749-7756.
    57. Dvorak HF. Tumors: wounds that do not heal. Similarities between tumor stroma generation and wound healing. N Engl J Med. 1986 Dec 25; 315(26): 1650-1659.
    58. Massague J. The transforming growth factor-beta family. Annu Rev Cell Biol. 1990; 6: 597-641.
    59. Friess H, Yamanaka Y, Buchler M, Ebert M, Beger HG, Gold LI, Korc M. Enhanced expression of transforming growth factor beta isoforms in pancreatic cancer correlates with decreased survival. Gastroenterology. 1993 Dec; 105(6): 1846-1856.
    60. Gold LI. The role for transforming growth factor-beta (TGF-beta) in human cancer. Crit Rev Oncog. 1999; 10(4): 303-360.
    61. Gorelik L, Flavell RA. Immune-mediated eradication of tumors through the blockade of transforming growth factor-beta signaling in T cells. Nat Med. 2001 Oct; 7(10): 1118-1122.
    62. Thomas DA, Massague J. TGF-beta directly targets cytotoxic T cell functions during tumor evasion of immune surveillance. Cancer Cell. 2005 Nov; 8(5): 369-380.
    63. Tuxhorn JA, McAlhany SJ, Yang F, Dang TD, Rowley DR. Inhibition of transforming growth factor-beta activity decreases angiogenesis in a human prostate cancer-reactive stroma xenograft model. Cancer Res. 2002 Nov 1; 62(21): 6021-6025.
    64. Comijn J, Berx G, Vermassen P, Verschueren K, van Grunsven L, Bruyneel E, Mareel M, Huylebroeck D, van Roy F. The two-handed E box binding zinc finger protein SIP1 downregulates E-cadherin and induces invasion. Mol Cell. 2001 Jun; 7(6): 1267-1278.
    65. Abraham JA, Mergia A, Whang JL, Tumolo A, Friedman J, Hjerrild KA, Gospodarowicz D, Fiddes JC. Nucleotide sequence of a bovine clone encoding the angiogenic protein, basic fibroblast growth factor. Science. 1986 Aug 1; 233(4763): 545-548.
    66. Dow JK, deVere White RW. Fibroblast growth factor 2: its structure and property, paracrine function, tumor angiogenesis, and prostate-related mitogenic and oncogenic functions. Urology. 2000 Jun; 55(6): 800-806.
    67. Polnaszek N, Kwabi-Addo B, Peterson LE, Ozen M, Greenberg NM, Ortega S, Basilico C, Ittmann M. Fibroblast growth factor 2 promotes tumor progression in an autochthonous mouse model of prostate cancer. Cancer Res. 2003 Sep 15; 63(18): 5754-5760.
    68. Ghoussoub RA, Dillon DA, D'Aquila T, Rimm EB, Fearon ER, Rimm DL. Expression of c-met is a strong independent prognostic factor in breast carcinoma. Cancer. 1998 Apr 15; 82(8): 1513-1520.
    69. Greenberg R, Schwartz I, Skornick Y, Kaplan O. Detection of hepatocyte growth factor/scatter factor receptor (c-Met) in axillary drainage after operations for breast cancer using reverse transcriptase-polymerase chain reaction. Breast Cancer Res. 2003; 5(3): R71-76.
    70. Arvelo F, Cotte C. Metalloproteinases in tumor progression. Review. Invest Clin. 2006 Jun; 47(2): 185-205.
    71. Mahadevan D, Von Hoff DD. Tumor-stroma interactions in pancreatic ductal adenocarcinoma. Mol Cancer Ther. 2007 Apr; 6(4): 1186-1197.
    72. Stetler-Stevenson WG. The tumor microenvironment: regulation by MMP-independent effects of tissue inhibitor of metalloproteinases-2. Cancer Metastasis Rev. 2008 Mar; 27(1): 57-66.
    73. Orlichenko LS, Radisky DC. Matrix metalloproteinases stimulate epithelial-mesenchymal transition during tumor development. Clin Exp Metastasis. 2008; 25(6): 593-600.
    74. Johansson N, Ahonen M, Kahari VM. Matrix metalloproteinases in tumor invasion. Cell Mol Life Sci. 2000 Jan 20; 57(1): 5-15.
    75. Johansson N, Kahari VM. Matrix metalloproteinases in squamous cell carcinoma. Histol Histopathol. 2000 Jan; 15(1): 225-237.
    76. Deryugina EI, Quigley JP. Matrix metalloproteinases and tumor metastasis. Cancer Metastasis Rev. 2006 Mar; 25(1): 9-34.
    77. Parikka V, Vaananen A, Risteli J, Salo T, Sorsa T, Vaananen HK, Lehenkari P. Human mesenchymal stem cell derived osteoblasts degrade organic bone matrix in vitro by matrix metalloproteinases. Matrix Biol. 2005 Sep; 24(6): 438-447.
    78. Visse R, Nagase H. Matrixmetallo-proteinase and tissue inhibitors of metalloproteinase: structure, function, and biochemistry. Circ Res, 2003: 92 (8): 27-39.
    79. Kato K, Hara A, Kuno T, Kitaori N, Huilan Z, Mori H, Toida M, Shibata T. Matrix metalloproteinases 2 and 9 in oral squamous cell carcinomas: manifestation and localization of their activity. J Cancer Res Clin Oncol. 2005 Jun; 131(6): 340-346.
    80. de Vicente JC, Fresno MF, Villalain L, Vega JA, Hernandez Vallejo G. Expression and clinical significance of matrix metalloproteinase-2 and matrix metalloproteinase-9 in oral squamous cell carcinoma. Oral Oncol. 2005 Mar; 41(3): 283-293.
    81. Braundmeier AG, Nowak RA. Cytokines regulate matrix metalloproteinases in human uterine endometrial fibroblast cells through a mechanism that does not involve increases in extracellular matrix metalloproteinase inducer. Am J Reprod Immunol. 2006 Sep; 56(3): 201-214.
    82. Kindler V, Suva D, Soulas C, Chapuis B. Haematopoietic stem cells and mesenchymal stem cells as tools for present and future cellular therapies. Swiss Med Wkly. 2006 May 27; 136(21-22): 333-337.
    83. Hall B, Dembinski J, Sasser AK, Studeny M, Andreeff M, Marini F. Mesenchymal stem cells in cancer: tumor-associated fibroblasts and cell-based delivery vehicles. Int J Hematol. 2007 Jul; 86(1): 8-16.
    84. Hall B, Andreeff M, Marini F. The participation of mesenchymal stem cells in tumor stroma formation and their application as targeted-gene delivery vehicles. Handb Exp Pharmacol. 2007; (180): 263-283.
    85. Ozawa K, Sato K, Oh I, Ozaki K, Uchibori R, Obara Y, Kikuchi Y, Ito T, Okada T, Urabe M, Mizukami H, Kume A. Cell and gene therapy using mesenchymal stem cells (MSCs). J Autoimmun. 2008 May; 30(3): 121-127.
    86. Kumar S, Chanda D, Ponnazhagan S. Therapeutic potential of genetically modified mesenchymal stem cells. Gene Ther. 2008 May; 15(10): 711-715.
    87. Whiteside TL. The tumor microenvironment and its role in promoting tumor growth. Oncogene. 2008 Oct 6; 27(45): 5904-5912.
    88. Li S, Tu Q, Zhang J, Stein G, Lian J, Yang PS, Chen J. Systemically transplanted bone marrow stromal cells contributing to bone tissue regeneration. J Cell Physiol. 2008 Apr; 215(1): 204-209.
    89. Kumagai K, Vasanji A, Drazba JA, Butler RS, Muschler GF. Circulating cells with osteogenic potential are physiologically mobilized into the fracture healing site in the parabiotic mice model. J Orthop Res. 2008 Feb; 26(2): 165-175.
    90. Bissell MJ, Radisky D. Putting tumours in context. Nat Rev Cancer, 2001; 1(1): 46-54.
    91. Kamei N, Tanaka N, Oishi Y, Ishikawa M, Hamasaki T, Nishida K, Nakanishi K, Sakai N, Ochi M. Bone marrow stromal cells promoting corticospinal axon growth through the release of humoral factors in organotypic cocultures in neonatal rats. J Neurosurg Spine. 2007 May; 6(5): 412-419.
    92. Xu G, Zhang L, Ren G, Yuan Z, Zhang Y, Zhao RC, Shi Y. Immunosuppressive properties of cloned bone marrow mesenchymal stem cells. Cell Res. 2007 Mar; 17(3): 240-248.
    93. Djouad F, Plence P, Bony C, Tropel P, Apparailly F, Sany J, Noel D, Jorgensen C. Immunosuppressive effect of mesenchymal stem cells favors tumor growth in allogeneic animals. Blood. 2003 Nov 15; 102(10): 3837-3844.
    94. Okuyama H, Krishnamachary B, Zhou YF, Nagasawa H, Bosch-Marce M, Semenza GL. Expression of vascular endothelial growth factor receptor 1 in bone marrow-derived mesenchymal cells is dependent on hypoxia-inducible factor 1. J Biol Chem. 2006 Jun 2; 281(22): 15554-15563.
    95. Beckermann BM, Kallifatidis G, Groth A, Frommhold D, Apel A, Mattern J, Salnikov AV, Moldenhauer G, Wagner W, Diehlmann A, Saffrich R, Schubert M, Ho AD, Giese N, Buchler MW, Friess H, Buchler P, Herr I. VEGF expression by mesenchymal stem cells contributes to angiogenesis in pancreatic carcinoma. Br J Cancer. 2008 Aug 19; 99(4): 622-631.
    96. Mishra PJ, Mishra PJ, Humeniuk R, Medina DJ, Alexe G, Mesirov JP, Ganesan S, Glod JW, Banerjee D. Carcinoma-associated fibroblast-like differentiation of human mesenchymal stem cells. Cancer Res. 2008 Jun 1; 68(11): 4331-4339.
    97. Ohlsson LB, Varas L, Kjellman C, Edvardsen K, Lindvall M. Mesenchyma progenitor cell-mediated inhibition of tumor growth in vivo and in vitro in gelatin matrix. Exp Mol Pathol,2003; 75(3): 248-255.
    98. Khakoo AY, Pati S, Anderson SA, Reid W, Elshal MF, Rovira II, Nguyen AT, Malide D, Combs CA, Hall G, Zhang J, Raffeld M, Rogers TB, Stetler-Stevenson W, Frank JA, Reitz M, Finkel T. Human mesenchymal stem cells exert potent antitumorigenic effects in a model of Kaposi's sarcoma. J Exp Med, 2006; 203(5): 1235-1247.
    99. Rubio D, Garcia-Castro J, Martin MC, de la Fuente R, Cigudosa JC, Lloyd AC, Bernad A. Spontaneous human adult stem cell transformation. Cancer Res. 2005 Apr 15; 65(8): 3035-3039.
    100.Miura M, Miura Y, Padilla-Nash HM, Molinolo AA, Fu B, Patel V, Seo BM, Sonoyama W, Zheng JJ, Baker CC, Chen W, Ried T, Shi S. Accumulated chromosomal instability in murine bone marrow mesenchymal stem cells leads to malignant transformation. Stem Cells. 2006 Apr; 24(4): 1095-1103.
    101.Wang Y, Huso DL, Harrington J, Kellner J, Jeong DK, Turney J, McNiece IK. Outgrowth of a transformed cell population derived from normal human BM mesenchymal stem cell culture. Cytotherapy. 2005; 7(6): 509-519.
    102.Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001 Dec; 25(4): 402-408.
    1.Parkin MD,Bray F,Ferlay J,et al.Global Cancer Statistics,2002;CA Cancer J Clin,2005,55:74-108.
    2.中国泌尿外科疾病诊断治疗指南,2007版,p95.
    3.虞颂庭,臧美孚,夏溟.尿路上皮肿瘤概论.见:吴阶平.吴阶平泌尿外科学.济南:山东科学技术出版社,2004;919-942.
    4.魏矿荣,陈振雄,梁智恒,等.中山市1970-1999年膀胱癌发病趋势分析.中国肿瘤,2004;14:235-237.
    5.张薇,项永兵,刘振伟,等.1973-1999年上海市区老年人恶性肿瘤发病趋势分析.中华老年医学杂志,2005;24:701-704.
    6.Waters WB.Invasive bladder cancer-where do we go from here? Editorial.J Urol,1996;155:1910-1911.
    7.Messing EM,Catalona W.Bladder cancer,ln:Walsh PC,Retick AB,Vanghan ED,et al.Campbell's Urology.7th ed.Philadelphia:Saunders,1998;2329-2377.
    8.孔良,叶敏,陈建华.经尿道电汽化术治疗浅表性膀胱癌.中华泌尿外科杂志,2001;22:671-673.
    9.王伟明,叶敏,陈建华等.浅表性膀胱肿瘤的腔内手术治疗.中华肿瘤杂志,2003;25(3):292-294.
    10.Hossain MZ,Khan SA,Salam MA,Hossain S,Islam R.Holmium YAG laser treatment of superficial bladder carcinoma.Mymensingh Med J.2005 Jan;14(1):13-15.
    11.Muraro GB,Grifoni R,Spazzafumo L.Endoscopic therapy of superficial bladder cancer in high-risk patients:Holmium laser versus transurethral resection.Surg Technol Int.2005;14:222-226.
    12.Jonler M,Lund L,Bisballe S.Holmium:YAG laser vaporization of recurrent papillary tumours of the bladder unader local anaesthesia.BJU Int.2004 Aug;94(3):322-325.
    13.孙颖浩,许传亮,温晓飞,廖国强,王林辉.高旭钬激光联合膀胱灌注治疗浅 表性膀胱肿瘤(附30例报告).中华泌尿外科杂志.2003;24(6):380-382.
    14.沈肖曹,杜传军,史时芳,陈继民,经宵.经尿道钬激光切除与经尿道电切治疗浅表性膀胱肿瘤的疗效比较.中华泌尿外科杂志.2005;26(1):30-32.
    15.Collado A,Chechile GE,Salvador J,Vicente J.Early complications of endoscopic treatment for superficial bladder tumors.J Urol.2000 Nov;164(5):1529-1532.
    16.Balbay MD,Cimentepe E,Unsal A,Bayrak O,Ko(?) A,Akbulut Z.The actual incidence of bladder perforation following transurethral bladder surgery.J Urol.2005 Dec;174(6):2260-2262,discussion 2262-2263.
    17.Chopin DK,Gattegno B.Superficial bladder tumors.Eur Urol.2002 Dec;42(6):533-541.
    18.Parsons RL,Campbell JL,Thomley MW,Butt CG,Gordon TE Jr.The effect of the laser of dog bladders:a preliminary report.J Urol.1966 May;95(5):716-717.
    19.Lopez-Beltran A,Luque RJ,Mazzucchelli R,Scarpelli M,Montironi R.Changes produced in the urothelium by traditional and newer therapeutic procedures for bladder cancer.J Clin Pathol.2002;55:641-647.
    20.ERHARD MJ,BAGLEY DH.Urologic application of the holmium laser:preliminary experience.J Endourol.1995:9(5):383-386.
    21.RAZVI HA,DENSTEDT JD,CHUN SS,et al.Intracorporeal lithotripsy with the holmium:YAG laser.J Urol.1996;156(3):912-914.
    22.Saito S.Transurethral en bloc resection of bladder tumors.J Urol.2001 Dec;166(6):2148-2150.
    23.Syed HA,Biyani CS,Bryan N,Brough SJ,Powell CS.Holmium:YAG laser treatment of recurrent superficial bladder carcinoma:initial clinical experience.J Endourol.2001 Aug;15(6):625-627.
    24.Das A,Gilling P,Fraundorfer M.Holmium laser resection of bladder tumors (HoLRBT).Tech Urol.1998 Mar;4(1):12-14.
    25.Mazo EB,Chepurov AK.The holmium laser in the treatment of bladder cancer patients.Urol Nefrol(Mosk).1996 Jul-Aug;(4):34-35.
    26.Johnson DE.Use of the holmium:YAG(Ho:YAG) laser for treatment of superficial bladder carcinoma.Lasers Surg Med.1994;14(3):213-218.
    27.Schulze M,Stotz N,Rassweiler J.Retrospective analysis of transurethral resection,second-look resection,and long-term chemo-metaphylaxis for superficial bladder cancer:indications and efficacy of a differentiated approach.J Endourol.2007Dec;21(12):1533-1541.
    28.Pu XY,Wang HP,Wu YL,Wang XH.Use of bipolar energy for transurethral resection of superficial bladder tumors:long-term results.J Endourol.2008 Mar;22(3):545-549.
    29.Frazier HA,Robertson JE,Dodge RK,Paulson DF.The value of pathologic factors in predicting cancer-specific survival among patients treated with radical cystectomy for transitional cell carcinoma of the bladder and prostate.Cancer.1993 Jun 15;71(12):3993-4001.
    30.T(u|¨)rk(o|¨)lmez K,Tokg(o|¨)z H,Re(?)orlu B,K(o|¨)se K,Bed(u|¨)k Y.Muscle-invasive bladder cancer:predictive factors and prognostic difference between primary and progressive tumors.Urology.2007 Sep;70(3):477-481.
    31.Honma I,Masumori N,Sato E,Takayanagi A,Takahashi A,Itoh N,Tamagawa M,Sato MA,Tsukamoto T.Local recurrence after radical cystectomy for invasive bladder cancer:an analysis of predictive factors.Urology.2004 Oct;64(4):744-748.
    32.夏术阶,孙晓文,朱江,鲁军,凡杰,朱轶勇.经尿道钬激光局部膀胱壁切除治疗肌层浸润膀胱肿瘤.中华泌尿外科杂志.2005;26(5):352.
    33.陈山,郑宇朋,张光银,刘跃新,毕维琪,乔庐东,张波.钬激光治疗输尿管开口旁浅表膀胱肿瘤14例报告.中华泌尿外科杂志.2003;24(4):228.
    34.杨增悦,保庭毅,巨生产,邱建新,张鸿毅,包全凯.膀胱镜盲区膀胱肿瘤腔内钬激光治疗.中国内镜杂志.2003;9(3):4-5.
    35.BEER M,JOCHAM D,BEER A,et al.Adjuvant laser treatment of bladder cancer:8 years' experience with the Nd:YAG laser 1064nm.Br J Urol.1989;63(5): 476-478.
    36. Malloy TR, Wein AL, Shanherg A. Superficia [transitional cell carcinoma of the bladder treated with neodymium:YAG laser: A study of the recurrence rate within the first year. J Urol. 1984; 131: 251-254.
    1. Jiang Y, Jahagirdar BN, Reinhardt RL, Schwartz RE, Keene CD, Ortiz-Gonzalez XR, Reyes M, Lenvik T, Lund T, Blackstad M, Du J, Aldrich S, Lisberg A, Low WC, Largaespada DA, Verfaillie CM. Pluripotency of mesenchymal stem cells derived from adult marrow. Nature. 2002; 418(6893): 41-49.
    2. De Bari C, Dell'Accio F, Tylzanowski P, Luyten FP. Multipotent mesenchymal stem cells from adult human synovial membrane. Arthritis Rheum. 2001; 44(8): 1928-1942.
    3. Bajada S, Mazakova I, Richardson JB, Ashammakhi N. Updates on stem cells and their applications in regenerative medicine. J Tissue Eng Regen Med. 2008; 2(4): 169-183.
    4. Tae SK, Lee SH, Park JS, Im GI. Mesenchymal stem cells for tissue engineering and regenerative medicine. Biomed Mater. 2006; 1(2): 63-71.
    5. Hall B, Dembinski J, Sasser AK, Studeny M, Andreeff M, Marini F. Mesenchymal stem cells in cancer: tumor-associated fibroblasts and cell-based delivery vehicles. Int J Hematol. 2007; 86(1): 8-16.
    6. Ozawa K, Sato K, Oh I, Ozaki K, Uchibori R, Obara Y, Kikuchi Y, Ito T, Okada T, Urabe M, Mizukami H, Kume A. Cell and gene therapy using mesenchymal stem cells (MSCs). J Autoimmun. 2008; 30(3): 121-127.
    7. Stagg J. Mesenchymal stem cells in cancer. Stem Cell Rev. 2008; 4(2): 119-124.
    8. Chen J, Xu ZS, Zhao HF, Dong DX. Distribution and differentiation of marrow mesenchymal cells in tumor tissue: experimental with rabbits. Zhonghua Yi Xue Za Zhi. 2007; 87(33): 2361-2364.
    9. Tuxhorn JA, Ayala GE, Smith MJ, Smith VC, Dang TD, Rowley DR. Reactive stroma in human prostate cancer: induction of myofibroblast phenotype and extracellular matrix remodeling. Clin Cancer Res. 2002; 8(9): 2912-2923.
    10. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001 Dec; 25(4): 402-408.
    11. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR. Multilineage potential of adult human mesenchymal stem cells. Science. 1999 Apr 2; 284(5411): 143-147.
    12. De Bari C, Dell'Accio F, Tylzanowski P, Luyten FP. Multipotent mesenchymal stem cells from adult human synovial membrane. Arthritis Rheum. 2001; 44(8): 1928-1942.
    13. Zuk PA, Zhu M, Mizuno H, Huang J, Futrell JW, Katz AJ, Benhaim P, Lorenz HP, Hedrick MH. Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng. 2001 Apr; 7(2): 211-228.
    14. Tsai RY, Kittappa R, McKay RD. Plasticity, niches, and the use of stem cells. Dev Cell. 2002; 2(6): 707-712.
    15. Atsma DE, Fibbe WE, Rabelink TJ. Opportunities and challenges for mesenchymal stem cell-mediated heart repair. Curr Opin Lipidol. 2007 Dec; 18(6): 645-649.
    16. Psaltis PJ, Zannettino AC, Worthley SG, Gronthos S. Concise review: mesenchymal stromal cells: potential for cardiovascular repair. Stem Cells. 2008 Sep; 26(9): 2201-2210.
    17. Reiser J, Zhang XY, Hemenway CS, Mondal D, Pradhan L, La Russa VF. Potential of mesenchymal stem cells in gene therapy approaches for inherited and acquired diseases. Expert Opin Biol Ther. 2005 Dec; 5(12): 1571-1784.
    18. Djouad F, Bony C, Apparailly F, Louis-Plence P, Jorgensen C, Noel D. Earlier onset of syngeneic tumors in the presence of mesenchymal stem cells. Transplantation. 2006 Oct 27; 82(8): 1060-1066.
    19. Djouad F, Plence P, Bony C, Tropel P, Apparailly F, Sany J, Noel D, Jorgensen C. Immunosuppressive effect of mesenchymal stem cells favors tumor growth in allogeneic animals. Blood. 2003 Nov 15; 102(10): 3837-3844.
    20. Liu JW, Dunoyer-Geindre S, Serre-Beinier V, Mai G, Lambert JF, Fish RJ, Pernod G, Buehler L, Bounameaux H, Kruithof EK. Characterization of endothelial-like cells derived from human mesenchymal stem cells. J Thromb Haemost. 2007 Apr; 5(4): 826-834.
    21. Nishimura H, Asahara T. Bone marrow-derived endothelial progenitor cells for neovascular formation. EXS. 2005; (94): 147-154.
    22. Majumdar MK, Thiede MA, Mosca JD, Moorman M, Gerson SL. Phenotypic and functional comparison of cultures of marrow-derived mesenchymal stem cells (MSCs) and stromal cells. J Cell Physiol. 1998 Jul; 176(1): 57-66.
    23. Beckermann BM, Kallifatidis G, Groth A, Frommhold D, Apel A, Mattern J, Salnikov AV, Moldenhauer G, Wagner W, Diehlmann A, Saffrich R, Schubert M, Ho AD, Giese N, Buchler MW, Friess H, Buchler P, Herr I. VEGF expression by mesenchymal stem cells contributes to angiogenesis in pancreatic carcinoma. Br J Cancer. 2008 Aug 19; 99(4): 622-631.
    24. Molloy AP, Martin FT, Dwyer RM, Griffin TP, Murphy M, Barry FP, O'Brien T, Kerin MJ. Mesenchymal stem cell secretion of chemokines during differentiation into osteoblasts, and their potential role in mediating interactions with breast cancer cells. Int J Cancer. 2009 Jan 15; 124(2): 326-332.
    25. Orlichenko LS, Radisky DC. Matrix metalloproteinases stimulate epithelial-mesenchymal transition during tumor development. Clin Exp Metastasis. 2008; 25(6): 593-600.
    26.Stetler-Stevenson WG.The tumor microenvironment:regulation by MMP-independent effects of tissue inhibitor of metalloproteinases-2.Cancer Metastasis Rev.2008 Mar;27(1):57-66.
    27.No(e|¨)l A,Jost M,Maquoi E.Matrix metalloproteinases at cancer tumor-host interface.Semin Cell Dev Biol.2008 Feb;19(1):52-60.
    28.Westerlund A,Hujanen E,Puistola U,Turpeenniemi-Hujanen T.Fibroblasts stimulate human ovarian cancer cell invasion and expression of 72-kDa gelatinase A(MMP-2).Gynecol Oncol.1997 Oct;67(1):76-82.
    1. Larizgoitia I, and Pons JM: A systematic review of the clinical efficacy and effectiveness of the holmium: YAG laser in urology. BJU Int 84: 1-9,1999.
    2. Tooher R, Sutherland P, Costello A, et al: A systematic review of holmium laser prostatectomy for benign prostatic hyperplasia. J Urol 171: 1773-1781, 2004.
    3. Wu CF, Shee JJ, Lin WY, et al: Comparison between extracorporeal shock wave Hthotripsy and semirigid ureterorenoscope with holmium:YAG laser Hthotripsy for treating large proximal ureteral stones. J Urol 172: 1899-1902,2004.
    4. Pietrow PK and Smith JA Jr: Laser treatment for invasive and noninvasive carcinoma of the bladder. J Endourol 15: 415-418,2001.
    5. Johnson DE: Use of the holmium: YAG (Ho: YAG) laser for treatment of superficial bladder carcinoma. Lasers Surg Med 14: 213-218, 1994.
    6. Muraro GB, Grifoni R, and Spazzafumo L: Endoscopic therapy of superficial bladder cancer in high-risk patients: Holmium laser versus transurethral resection. Surg Technol Int 14: 222-226, 2005.
    7. Mazo EB, and Chepurov AK: The holmium laser in the treatment of bladder cancer patients. Urol Nefrol (Mosk) Jul-Aug: 34-35,1996.
    8. Oosterlinck W, Lobel B, Jakse G, Malmstrom PU, et al: Guidelines on bladder cancer. Eur Urol 41: 105-112, 2002.
    9. Jonler M, Lund L, and Bisballe S: Holmium:YAG laser vaporization of recurrent papillary tumours of the bladder under local anaesthesia. BJU Int 94: 322-325, 2004.
    10. Lopez-Beltran A, Luque RJ, Mazzucchelli R, et al: Changes produced in the urothelium by traditional and newer therapeutic procedures for bladder cancer. J Clin Pathol 55: 641-647,2002.
    11. Das A, Gilling P, and Fraundorfer M: Holmium laser resection of bladder tumors (HoLRBT). Tech Urol 4: 12-14,1998.
    12. Marks AJ, and Teichman JM: Lasers in clinical urology: state of the art and new horizons. World J Urol 25: 227-233,2007.
    13. Razvi HA, Chun SS, Denstedt JD et al: Soft-tissue applications of the holmium:YAG laser in urology. J Endourol 9: 387-390,1995.
    14. Fried NM: Therapeutic applications of lasers in urology: an update. Expert Rev Med Devices 3: 81-94,2006.
    15. Syed HA, Biyani CS, Bryan N, et al: Holmium:YAG laser treatment of recurrent superficial bladder carcinoma: initial clinical experience. J Endourol 15: 625-527, 2001.
    16. Hossain MZ, Khan SA, Salam MA, et al: Holmium YAG laser treatment of superficial bladder carcinoma. Mymensingh Med J 14: 13-15,2005.
    17. Saito S: Transurethral en bloc resection of bladder tumors. J Urol 166: 2148-2150, 2001.
    18. Collado A, Chechile GE, Salvador J et al: Early complications of endoscopic treatment for superficial bladder tumors. J Urol 164: 1529-1532,2000.
    1 Kim JC, Kim DB, Seo SI, Park YH, Hwang TK: Nerve growth factor and vanilloid receptor expression, and detrusor instability, after relieving bladder outlet obstruction in rats. BJU Int 2004;94:915-918.
    2 Buttyan R, Chen MW, Levin RM: Animal models of bladder outlet obstruction and molecular insights into the basis for the development of bladder dysfunction. Eur Urol 1997;32(suppl l):32-39.
    3 Levin RM, Brading AF, Mills IW, Longhust PA: Experimental models of bladder obstruction; in Lepor H(ed): Prostatic disease. Philadelphia, Saunders, 2000, pp 169-196.
    4 Chen MW, Krasnapolsky L, Levin RM, et al: An early molecular response induced by acute overdistension of the rabbit urinary bladder. Mol Cell Biochem 1994;32:39-44.
    5 Levin RM, Monson FC, Haugaard N, et al: Genetic and cellular characteristics of bladder outlet obstruction. Urol Clin North Am 1995;22:263-283.
    6 Nigro DA, Haugaard N, Wein AJ, Levin RM: Cellular basis for contractile dysfunction following chronic partial outlet obstruction in rabbits. Mol Cell Biochem 1999;200:1-6.
    7 Holm NR, Horn T, Smedts F, Nordling J, de la Rossette J: The detrusor muscle cell in bladder outlet obstruction—ultrastructural and morphometric findings. Scand J Urol Nephrol 2003;37:309-315.
    8 Uvelius B, Lindner P, Mattiasson A: Collagen content in the rat urinary bladder following removal of an experimental infravesical outlet obstruction. Urol Int 1991; 47:245-249.
    9 Oelke M, Hofner K, Jonas U, Ubbink D, de la Rosette J, Wijkstra H: Ultrasound measurement of detrusor wall thickness in healthy adults. Neurourol Urodynam 2006;25:308-317.
    10 Oelke M, Hofner K, Wiese B, Grunewald V, Jonas U: Increase in detrusor wall thickness indicates bladder outlet obstruction (BOO) in men. World J Urol 2002; 19:443-452.
    11 Kessler TM, Gerber R, Burkhard FC, Studer UE, Danuser H: Ultrasound assessment of detrusor thickness in men-can it predict bladder outlet obstruction and replace pressure flow study?. J Urol 2006; 175:2170-2173.
    12 Hakenberg OW, Linne C, Manseck A, Wirth MP: Bladder wall thickness in normal adults and men with mild lower urinary tract symptoms and benign prostatic enlargement. Neurourol Urodyn 2000;19:585-593.
    13 Gosling JA, Kung LS, Dixon JS, Horan P, Whitbeck C, Levin RM: Correlation between the structure and function of the rabbit urinary bladder following partial outlet obstruction. J Urol 2000;163:1349-1356.
    14 Williams JH, Turner WH, Sainsbury GM, Brading AF. Experimental model of bladder outflow tract obstruction in the guinea-pig. Br J Urol 1993;71:543—554.
    15 Saito M, Longhurst PA, Tammela TL, Wein AJ, Levin RM: Effects of partial outlet obstruction of the rat urinary bladder on micturition characteristics, DNA synthesis and the contractile response to field stimulation and pharmacological agents. J Urol 1993; 150:1045-1051.
    16 Su X, Stein R, Stanton MC, Zderic S, Moreland RS: Effect of partial outlet obstruction on rabbit urinary bladder smooth muscle function. Am J Physiol Renal Physiol 2003;284:F644-652.
    17 Stanton MC, Delaney D, Zderic SA, Moreland RS: Partial bladder outlet obstruction abolishes the receptor- and G protein-dependent increase in calcium sensitivity in rabbit bladder smooth muscle. Am J Physiol Renal Physiol 2004;287:F682-689.
    18 Baskin LS, Sutherland RS, Thomson AA, Hayward SW, Cunha GR: Growth factors and receptors in bladder development and obstruction. Lab Invest 1996;75:157-166.
    19 Chaqour B, Whitbeck C, Han JS, Macarak E, Horan P, Chichester P, Levin R: Cyr61 and CTGF are molecular markers of bladder wall remodeling after outlet obstruction. Am J Physiol Endocrinol Metab. 2002;283:E765-774.
    20 Delrieu I: The high molecular weight isoforms of basic fibroblast growth factor
    1 Kim JC, Kim DB, Seo SI, Park YH, Hwang TK: Nerve growth factor and vanilloid receptor expression, and detrusor instability, after relieving bladder outlet obstruction in rats. BJU Int 2004;94:915-918.
    2 Holm NR, Horn T, Smedts F, Nordling J, de la Rossette J: The detrusor muscle cell in bladder outlet obstruction-ultrastructural and morphometric findings. Scand J Urol Nephrol 2003;37:309-315.
    3 Blake C, Abrams P: Noninvasive techniques for the measurement of isovolumetric bladder pressure. J Urol 2004;171:12-19.
    4 Valentini FA, Nelson PP: Non-invasive urodynamics in male patient. Ann Readapt Med Phys 2006;49:187-196.
    5 Howard PS, Kucich U, Coplen DE, He Y: Transforming growth factor-beta1-induced hypertrophy and matrix expression in human bladder smooth muscle cells. Urology 2005;66:1349-1353.
    6 Buttyan R, Chen MW, Levin RM: Animal models of bladder outlet obstruction and molecular insights into the basis for the development of bladder dysfunction. Eur Urol 1997;32 (Suppl 1):32-39.
    7 Baskin LS, Sutherland RS, Thomson AA, Hayward SW, Cunha GR: Growth factors and receptors in bladder development and obstruction. Lab Invest 1996;75:157-166.
    8 Chen MW, Levin RM, Buttyan R: Peptide growth factors in normal and hypertrophied bladder. World J Urol 1995;13:344-348.
    9 Monga M, Gabal-Shehab LL, Stein P: Urinary transforming growth factor-betal levels correlate with bladder outlet obstruction. Int J Urol 2001;8:487-489.
    10 MacRae Dell K, Hoffman BB, Leonard MB, Ziyadeh FN, Schulman SL: Increased urinary transforming growth factor-beta(1) excretion in children with posterior urethral valves. Urology 2000;56:311-314.
    11 Rodrigues P, Lucon AM, Freire GC, Arap S: Urodynamic pressure flow studies can predict the clinical outcome after transurethral prostatic resection. J Urol 2001;165:499-502.
    12 Kelly CE: The relationship between pressure flow studies and ultrasound-estimated bladder wall mass. Rev Urol 2005;Suppl 6:29-34.
    13 Burns JA, Kreder KJ, Lubaroff DM, See WA: Alterations in constituent urinary proteins in response to bladder outlet obstruction in rats. J Urol 1998; 159:1747-1751.
    14 Chul Kim J, Il Seo S, Hyun Park Y, Kon Hwang TA: Changes in detrusor and urinary growth factors according to detrusor function after partial bladder outlet obstruction in the rat. Urology 2001;57:371-375.
    15 Chen MW, Krasnapolsky L, Levin RM, Buttyan R: An early molecular response induced by acute overdistension of the rabbit urinary bladder. Mol Cell Biochem 1994;132:39-44.
    16 Baskin LS, Hayward SW, Sutherland RA, DiSandro MS, Thomson AA, Cunha GR: Cellular signaling in the bladder. Front Biosci 1997;2:592-595.
    17 Gravas S, Bosinakou I, Kehayas P, Giannopoulos A: Urinary basic fibroblast growth factor in bladder cancer patients. Histopathological correlation and clinical potential. Uro. Int 2004;73:173-177.
    18 Gupta GK, Milner L, Linshaw MA, et al: Urinary basic fibroblast growth factor: a noninvasive marker of progressive cystic renal disease in a child. Am J Med Genet 2000;93:132-135.
    19 Bing W, Chang S, Hypolite JA, et al: Obstruction-induced changes in urinary bladder smooth muscle contractility: a role for Rho kinase. Am J Physiol Renal Physiol 2003;285:990-997.
    20 Mannikarottu AS, Disanto ME, Zderic SA, Wein AJ, Chacko S: Altered expression of thin filament-associated proteins in hypertrophied urinary bladder smooth muscle. Neurourol Urodyn 2006;25: 78-88.
    21 21. Chaqour B, Whitbeck C, Han JS, et al: Cyr61 and CTGF are molecular markers of bladder wall remodeling after outlet obstruction. Am J Physiol Endocrinol Metab 2002;283:765-774.
    22 22. Lin AT, Yang CH, Chen KK, Chang LS: Detrusor mitochondrial lipid peroxidation and superoxide dismutase activity in partial bladder outlet obstruction of rabbits. Neurourol Urodyn 2005;24:282-287.
    1. Reitomo JJ, Scheinin TM, Hayry P: The desmoid syndrome, New aspects in the cause, pathogenesis and treatment of the desmoid tumor. Am J Surg 1986;151:230-237.
    2. Rock,M.G.;Pritchard,D.J,;Reiman,H.M,;Soule,E.H,;Brewster,R.C: Extra-abodminal desmoid tumors. J.Bone Joint Surg 1984;66A: 1369-1374.
    3. Markhede,G,;Lundgren,L,;Bjurstan,N,;Berlin. O,;Stener.B:Extra-abodminal desmoid tumors. Acta Orthop Scand 1986;57:l-7.
    4. Foote JW, Seemayer TA, Duignan JP: Desmoid tumor involving the bladder: case report. J Urol 1975 Jul;l 14(1): 147-149.
    5. Lundhus E, Fredburg U: Desmoid tumor with invasion of the bladder. Ugeskr Laeger 1984 Jan 9; 146(2): 112-113.
    6. Kawamura J, Okabe S, Tazima K, Tochigi H, Sugiyama, Y: Huge pelvic fibromatosis encroaching on the urinary bladder. A case report. Urol Int 1988;43(2):125-128.
    7. Sugi M: A case of abdominal desmoid tumor that was difficult to differentiate from urachal tumor. Hinyokika Kiyo 2004 Jul;50(7):489-492.
    8. Gluck RW, Bloiso G, Glasser J: Paratesticular desmoid tumor. Urology 1987;29:648-649.
    9. Lai FM, Allen PW, Chan LW, et al: Aggressive fibromatosis of the spermatic cord. A typical lesion in a "new" location. Am J Clin Pathol 1995; 104:403-407.
    10. Sumi Y, Shindoh N, Komura S, Minowa O,Ozaki Y, Kyogoku S, Katayama H: Paratesticular aggressive fibromatosis: CT findings. Abdom Imaging 2000 Mar-Apr;25(2):210-212.
    11. Posner MC, Shiu MH, Necosone JL,et al: The desmoid tumors:not a benign disease. Arch Surg 1989;124:191-193.
    12. Anthong T,Rodriguez Bigas MA: Desmoid tumors J Am Coll Surg 1996; 182:369-372.
    13. Izes JK, Zinman LN, Larsen CR: Regression of large pelvic desmoid tumor by tamoxifen and sulindac. Urology 1996 May;47(5):756-759.
    14. Souma T, Hirono T, Yamato Y, Yoshiya K, Nakayama K, Tsuchida M, Eguchi S: Surgical management of desmoid tumors of the chest wall: a case report and review of literature. Kyobu Geka 1992;45(9):823-826.
    15. Micke O, Seegenschmiedt MH, German Cooperative Group on Radiotherapy for Benign Diseases: Radiation therapy for aggressive fibromatosis (desmoid tumors): results of a national Patterns of Care Study. Int J Radiat Oncol Biol Phys 2005 Mar 1;61(3):882-891.
    16. Nuyttens JJ, Rust PF, Thomas CR, et al: Surgery versus radiation therapy for patients with aggressive fibromatosis or desmoid tumors: A comparative review of 22 articles. Cancer 2000. Apr 1; 88(7): 1517-23.
    17. Spear MA, Jennings LC, Mankin HJ, et al: Individualizing management of aggressive fibromatoses. Int J Radiat Oncol Biol Phys 1998;40:637-645.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700