用户名: 密码: 验证码:
CXCR4在胃癌侵袭转移中的作用及其机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:胃癌的腹膜种植转移是影响胃癌患者预后的重要原因之一。文献报道在胃癌术后复发的类型中,腹膜种植约占50%,目前其发生机制尚不明确,且缺乏行之有效的防治手段。趋化因子受体CXCR4(CXC chemokine receptor4,CXCR4)是组织表达最为广泛的趋化因子受体之一。研究发现CXCR4的异常活化与乳腺癌、前列腺癌以及肺癌等恶性肿瘤发生发展密切相关,肿瘤细胞可能通过活化的CXCR4信号影响肿瘤的发生发展进程,但CXCR4与胃癌侵袭转移的关系如何,经系统文献检索至今尚未见报道,鉴于此,本课题首先观察胃癌不同组织中CXCR4的表达及其与胃癌临床病理参数之间的关系,随后构建CXCR4-siRNA慢病毒载体转染胃癌细胞MKN-45,以特异抑制胃癌细胞MKN-45中CXCR4的表达,观察其阻抑效应;再建立裸鼠胃癌腹膜种植转移模型,观察胃癌细胞腹膜种植转移的变化情况,由此揭示CXCR4在胃癌腹膜种植转移中的作用及可能机理,为胃癌腹膜种植转移防治提供新思路。
     方法:
     1.收集90例外科手术切除胃癌标本和30例正常胃组织,应用免疫组组织化学方法检测CXCR4、SDF-1和VEGF-C的表达,系统分析它们与临床病理参数之间的关系,研究三者在胃癌不同组织中的表达与胃癌侵袭转移的关系。
     2.构建CXCR4-siRNA慢病毒载体并直接感染胃癌细胞株MKN-45。实验分成6组:正常对照组(SDF-1α阴性)、正常对照组(SDF-1α阳性)、空病毒载体组(SDF-1α阴性)、空病毒载体组(SDF-1α阳性)、CXCR4-siRNA载体转染组(SDF-1α阴性)、CXCR4-siRNA载体转染组(SDF-1α阳性)。采用MTT试验、流式细胞、趋化实验(Transwell小室法)、RT-PCR、Western blot等技术,比较研究了CXCR4-siRNA慢病毒载体转染前后及SDF-1作用前后细胞增殖、细胞凋亡、细胞趋化的变化和对胃癌细胞株MKN-45胞浆VEGF-C、NRP-1表达的受抑程度。
     3.建立人胃癌细胞裸鼠腹腔种植转移模型,观察CXCR4-siRNA慢病毒载体对胃癌细胞裸鼠腹腔种植转移的影响。
     结果:
     1. CXCR4阳性表达主要在胃癌细胞的细胞膜和/或细胞质中。在90例胃癌原发灶、71例胃癌转移的淋巴结和9例腹膜转移灶中表达率分别为83.33%(75/90)、90.14% (64/71)和100%(9/9),30例正常胃组织中未见CXCR4表达。VEGF-C阳性表达主要在癌细胞的细胞质,正常胃组织中VEGF-C表达阳性率为6.67%(2/30);胃癌组织中VEGF-C表达阳性率80.00%(72/90),胃癌转移淋巴结中VEGF-C阳性率为91.55% (65/71)。而胃癌腹膜转移中VEGF-C阳性率为100.00%(9/9),与前四组相比,具有显著性差异(P<0.01或P<0.05)。SDF-1阳性表达主要位于癌细胞胞质和胞浆内。SDF-1在正常胃组织中的表达呈强阳性,阳性率为93.33%(28/30);SDF-1在胃癌组织中的阳性表达率明显降低,胃癌组织中SDF-1阳性表达率68.89%(62/90),胃癌淋巴结转移中SDF-1阳性表达率42.25%(30/71),胃癌腹膜转移组织中SDF-1阳性表达率11.11%(1/9),与正常胃组织相比,差异均具有显著性(P<0.01或P<0.05)。CXCR4、SDF-1和VEGF-C在胃癌原发灶中的表达与肿瘤的分期、浸润深度、分化程度及淋巴结转移相关(r=0.337,P<0.05),与病人的年龄、性别、肿瘤的部位及大小无相关性(P>0.05)。结果表明肿瘤的浸润深度、肿瘤的大小和原发灶中CXCR4、SDF-1的表达构成了胃癌淋巴结和腹膜转移的危险因素。
     2.成功构建了CXCR4-siRNA慢病毒载体。CXCR4-siRNA慢病毒载体直接感染胃癌细胞MKN-45后,细胞生长受到明显抑制,抑制作用呈时间依赖性;转染后细胞周期分布中,G0/G1期比例增高,而S期和G2/M期比例降低,细胞的增殖指数亦明显降低(P<0.05),细胞的凋亡指数明显增加(P<0.01),显著抑制胃癌细胞MKN-45的趋化运动能力(P<0.01)和VEGF-C、NRP-1的表达(P<0.01)。
     3.建立各转染组胃癌细胞裸鼠腹腔种植转移模型,CXCR4-siRNA慢病毒载体转染组与对照组、空病毒组裸鼠比较,腹水产生时间、腹水量、腹膜种植瘤最大直径、最大重量、种植瘤数目、生存时间、存活率、生命延长率相比均有显著性差异(P<0.01或P<0.05);CXCR4-siRNA慢病毒载体组肿瘤抑制率为59.58%;种植瘤细胞周期分布情况:CXCR4-siRNA慢病毒载体组与对照组、空病毒组细胞比较,G0/G1期比例增高,而S期和G2/M期比例降低,细胞的增殖指数降低,凋亡显著增加(P<0.05或P<0.01)。而对照组和空病毒组细胞周期相比,无明显变化(P>0.05)。
     结论:
     1.研究表明CXCR4和VEGF-C在胃癌组织中特异性高表达,与胃癌的浸润深度、淋巴结转移、临床分期及肿瘤转移,尤其腹膜种植转移呈显著相关。随病变进展,CXCR4和VEGF-C在胃癌组织中的表达呈现逐渐上调的趋势,其中腹膜转移灶中表达最强,二者在胃癌组织中的表达具有显著相关性,胃癌腹膜种植转移可能是胃癌细胞分泌的CXCR4促进VEGF-C的活性升高所引起。
     2.胃癌细胞MKN-45特异性高表达CXCR4 mRNA与蛋白,与胃癌侵袭转移显著相关;CXCR4-siRNA慢病毒载体能显著抑制MKN-45细胞中CXCR4 mRNA及蛋白的表达,显著降低胃癌细胞MKN-45的增殖和侵袭能力,升高凋亡率,并显著下调VEGF-C、NRP-1的表达,结果表明CXCR4-siRNA慢病毒载体体外显著抑制胃癌细胞的侵袭转移,体内动物实验显著抑制胃癌腹腔种植转移。CXCR4促进VEGF-C活性升高可能是导致胃癌腹膜种植转移重要的分子机理之一。
     3. CXCR4-siRNA慢病毒载体可显著抑制裸鼠胃癌腹腔种植瘤的形成和腹水产生,显著延长裸鼠生存时间,降低其死亡率。同时可显著增加种植瘤细胞G0/G1期细胞比率(P<0.01)和凋亡率(P<0.01);显著降低G2/M期细胞比率和增殖PI值(P<0.05);并且随CXCR4-siRNA作用时间延长,胃癌细胞凋亡率和G0/G1期细胞比率呈上升趋势,而G2/M期细胞比率和PI值呈下降趋势,结果表明CXCR4-siRNA可能通过阻断胃癌细胞进入增殖周期,抑制其增殖,诱导其凋亡升高可能是CXCR4-siRNA慢病毒载体抑制胃癌腹腔侵袭转移的作用机制之一。
Objective: The peritoneal seeding metastasis after gastric cancer radical dissection is one of the important causes of death in patients of gastric cancer. In advanced gastric cancer, peritoneal metastasis is the most frequent (50%) type of recurrence after curative resection, as well as the death cause of most patients. The mechanism of peritoneal seeding of gastric cancer has not been identified, so effective prevent and cure methods are not available. CXC chemokine receptor4(CXCR4) is one of the most common chemokine receptors in tissues and plays important roles in malignant tumors growth, migration and metastasis. The abnormal activation of CXCR4 had been observed in a variety of human malignancies development, including breast cancers, prostatic carcinomas, lung cancers and so on, but whether the activated CXCR4 could affect peritoneal seeding and metastasis of gastric cancer or not, and what downstream genes regulated by CXCR4 could induce the appearance of cancer cells invasive phenotype are not known. So, clinical samples of gastric cancer patients were collected. The expressions of CXCR4 in those samples were detected, and the relationships between the expression level and pathologic parameters were observed firstly. Secondly, the CXCR4-siRNA Lentivirus expression vectors were transfected into gastric cancer cells MKN-45 to block the activated CXCR4 protein especially, and the repressive effects were observed. Finally, after the gastric cancer animal model of peritoneal implantation had been established in nude mice, changes of implantation capacity and the expressions of relative regulative factors in gastric cancer cells were observed in order to reveal the mechanism of CXCR4 in the course of gastric cancer peritoneal seeding and provide new strategy for tumor prevention and treatment.
     Methods:
     1. 90 clinical samples of tumor patients and 30 adjacent noncancerous specimens of human gastric cancer were collected. Peritoneal lavage cytology was used to exam the exfoliated cancer cells, and nested Immuohistochemistry(SP)was employed to detect the expression of CXCR4, SDF-1, and VEGF-C expression and relative clinical pathological parameters were observed.
     2. CXCR4-siRNA Lentivirus expression vectors were constructed and transfected into MKN-45 cells. There were 6 groups in our study, normal control group (SDF-1- negative), normal control group(SDF-1-positive), keno-viral vector group (SDF-1- negative), keno-viral vector group(SDF-1-positive), CXCR4-siRNA experimental group (SDF-1- negative), CXCR4-siRNA experimental group (SDF-1- positive). The changes of cell proliferation, apoptosis, cell cycle and chemotactic activity,and expressive changes of VEGF-C、NRP-1 were observed by MTT assay, flow cytometry, chemotaxis assay, RT-PCR and Western blot respectively. The molecular mechanisms of CXCR4-siRNA transfection on inhibiting peritoneal invasion and metastasis were investigated.
     3. The tumor animal model of peritoneal implantation was established in nude mice. The capability of cancer cell’s peritoneal seeding in nude mice was observed, and changes of cellular proliferation activity, cellular affinity and the invasive and metastatic potentials were observed in vivo, after CXCR4-siRNA Lentivirus expression vectors were transfected.
     Results:
     1. Immunohistochemistry illustrated that the expression of CXCR4 was on the membrane or in the cytoplasm of gastric cancer cell. There was no CXCR4 expression in normal gastric mucosa cell .The expression rate of CXCR4 in primary tumor, lymph mode and peritoneal metastatic tumor was 83.33%, 90.14% and 100% respectively(P<0.01 or P<0.05). The expression of VEGF-C was mainly in the cytoplasm of gastric cancer cell. The expression rate of VEGF-C in normal gastric mucosa cell, primary tumor, lymph mode and peritoneal metastatic tumor was 6.67%, 80.00%, 91.55% and 100% respectively (P <0.01 or P< 0.05). The expression of SDF-1was on the membrane and in the cytoplasm of gastric cancer cell. SDF-1 could be expressed in normal gastric mucosa cell(93.33%). The expression rate of SDF-1 in primary tumor, lymph mode and peritoneal metastatic tumor was 68.89%, 42.25% and 11.11% respectively (P<0.01 or P<0.05). The expressions of CXCR4, SDF-1, and VEGF-C in primary tumor were correlated with tumor stage, depth of tumor invasion, pathological differentiation and lymph node metastasis(r=0.337, P<0.05), but not with age of patients, gender, location of tumor and tumor size(P>0.05).
     2. CXCR4-siRNA Lentivirus expression vectors were constructed successfully. After the vector was transfected into gastric cancer cells, tumor cells` proliferation was inhibited in a time-dependent manner. Among the distribution of cell cycle, the ratio of G0/G1 increased, and the S stage and ratio of G2/M decreased. Meanwhile, the proliferation index decreased(P<0.05) and apoptotic index increased(P < 0.05), with significantly decreased expressions of VEGF-C and NRP-1(P<0.05).
     3. The gastric cancer model of peritoneal seeding was established. There were significant differences in ascitic volume, tumor max diameter, max weight, quantity of tumor, survival time, survival rate, prolonged survival ratio between the CXCR4-siRNA group, the keno-viral vector group and the control group(P<0.05, P<0.01). Among the distribution of cell cycle, the rate of G0/G1 increased ,and the S stage and rate of G2/M decreased. The proliferation index decreased(P<0.05), and apoptotic index also increased obviously(P<0.05). The migrative and invasive abilities of transfected MKN45 cells in vivo decreased in some degree (P<0.05 or P<0.01), but the distribution of cell cycle was no difference between the control group and the keno-viral vector group(P>0.05).
     Conclusions:
     1. As close correlations existed between the expression of CXCR4 and the peritoneal implantation of gastric cancer, it could act as a standard for judging the invasive and metastatic states of gastric cancer and forecasting the prognostic of patients. Laparoscopic radical gastrectomy does not facilitate the peritoneal implantation of gastric cancer cells.
     2. Positive correlations existed between the expressive intensity of CXCR4 and the implantation and metastatic potentials of gastric cancer cells.
     3. Restraint of CXCR4 effects in nucleus could directly result in the impairment of implantation and metastatic potentials of gastric cancer cells both in vitro and in vivo.
引文
1. Victor Archie, John Kauh, Dennie V. Jones Jr, et al. Gastric cancer: Standards for the 21st century[J]. Critical Reviews in Oncology/Hematology. 2006, 57 (1) : 123-131.
    2. Katherine D C, Alfred I N. Epidemiology of gastric cancer[J]. World J Gastroenterol, 2006, 12 (3) : 354-362.
    3. Berardi R, Scartozzi M, Romagnoli E, et al. Gastric cancer treatment: a systematic review[J]. Oncol Rep, 2004, 11 (4) : 911-916.
    4.李诚,周健,裘炯良.胃癌流行病学与分子生物学病因的研究进展[J].肿瘤防治研究, 2004, 31 (2) : 115-118.
    5. Lee CC,Lo SS,Wu CW,et al.Peritoneal recurrence of gastric adenocarcinoma after curative resection[J]. Hepatogast-roenterology, 2003,50 (53) : 1720-1722.
    6. Dickson JL, Cunningham D. Systemic treatment of gastric cancer[J]. Eur J Gastroenterol Hepatol, 2004,16 (3) : 255-263.
    7. Yeh KH, Cheng AL. Recent advances in therapy for gastric cancer. J Formos Med Assoc, 2004,103(3):171-185.
    8. Lee CC, Lo SS, Wu CW, et al. Peritoneal recurrence of gastric adenocarcinoma after curative resection. Hepatogast -roenterology, 2003,50(53):1720-1722.
    9. Charlotte Y.D, Christopher M.H and Puzas J.E. Molecular Correlates of Site-Specific Metastasis [J]. Seminars in Radiation Oncol, 2006, 16 (2) : 102-110.
    10. Christine E.H and Patricia S.S. Metastasis gets site specific [J]. Cancer Cell, 2005, 8 (2) : 93-95.
    11. Chan JR, Hyduk SJ, Cybulsky MI. Chemoattractants induce a rapid and transient upregulation of monocyteα4 integrin affinity for vascular cell adhesion molecule 1 which mediates arrest: an early step in the process of emigration[J]. J Exp Med, 2001, 193 (7) :1149-1158.
    12. Laudanna C, Kim JY, Constantin G, et al. Rapid leukocyte integrin activation by chemokines[J]. Immunotogical Reviews, 2002, 186 (1) :37-46.
    13. Horuk R. Chemokine receptors[J]. Cytokine Growth Factor Rev, 2001, 12 (2) :313-335.
    14. Juarez J, Bendall L, Bradstock K. Chemokines and their receptors as therapeutic targets:the role of the SDF-1/CXCR4 axis[J]. Curr Pharm Des,2004,10(11):1245-59.
    15. Dhawan P, Richmond A. Role of CXCL1 in tumorigenesis of mehnoma[J]. J Leukoc Biol 2002, 72 (1) : 9-18.
    16. Vicari AP, Caux C. Chemokines in cancer[J]. Cytokine Growth Factor Rev, 2002, 13 (1) :143-145.
    17. Gregory J. Babcock, Michael Farzan, et al. Ligand-independent Dimerization of CXCR4, a Principal HIV-1 Coreceptor[J]. J.Biol.Chem, 2003, 278 (5) : 3378-3385.
    18. Robert MS. Chemokines: Not just leukocyte chemoattractants in the promotion of cancer[J]. Nature immunol, 2001, 2 (4) : 285-286.
    19. Barshishat M, Ariel A, Cahalon L, et al. TNFalpha and IL-8 regulate the expression and function of CD44 variant proteins in human colon carcinoma cells[J]. Clin Exp Metastasis, 2002, 19 (4) : 327-37.
    20. Christoph R.W, Christian A.S, Lars R, et al. Signalling mechanisms of SDF-induced endothelial cell proliferation and migration [J]. BBRC, 2005, 335 (4) : 1107-1114.
    21. Wang J-h, Wang J-c, Sun Y-x, et al. Diverse signaling pathways through the SDF-1/CXCR4 chemokine axis in prostate cancer cell lines leads to altered patterns of cytokine secretion and angiogenesis[J]. Cellular Signalling, 2005, 17 (12) : 1578-1592.
    22. Chu H-y, Zhou H-m, Liu Y-l, et al. Functional expression of CXC chemokine recepter-4 mediates the secretion of matrix metalloproteinases from mouse hepatocarcinoma cell lines with different lymphatic metastasis ability [J]. Intern J Biochem & Cell Biol, 2007, 39 (1):197-205
    23. Adriana B, Federica B, Alessandra D, et al. Expression of CXC chemokine receptors 1–5 and their ligands in human glioma tissues: Role of CXCR4 and SDF1 in glioma cell proliferation and migration [J]. Neurochemistry Intern, 2006, 49 (5): 423-432.
    24. Jiang Y-p, Wu X-h, Shi B, et al. Expression of chemokine CXCL12 and its receptor CXCR4 in human epithelial ovarian cancer: An independent prognostic factor for tumor progression [J]. Gynecologic Oncol, 2006, 103 (1) : 226-233.
    25. Sigrid H, Jan B and Sandra L. Stromal cell-derived factor 1 (CXCL12) binds to endothelial cells and signals through a receptor different from CXCR4 [J]. BBRC, 2006, 348 (1) : 192-199.
    26. Ryan M.T and Andrew M. L. CXCR4 signaling regulates proliferation in pancreatic cancer precursors [J]. J American College Surgeons, 2006, 203 (3) : S86-91.
    27. Su Y.-C, Wu M.-T, Huang C.-J, et al. Expression of CXCR4 is associated with axillary lymph node status in patients with early breast cancer [J]. The Breast, 2006, 15 (4) : 533-539.
    28. Kathryn E.L and Gary D.L. Functions of CXCL12 and CXCR4 in breast cancer [J]. Cancer Letters, 2006, 238 (1) : 30-41.
    29. Hong X, Jiang F, Steven N.K, et al. SDF-1 and CXCR4 are up-regulated by VEGF and contribute to glioma cell invasion [J]. Cancer Letters, 2006, 236 (1) : 39-45.
    30 Kang H, Gareth W, Anthony D-J, et al. The elevated level of CXCR4 is correlated with nodal metastasis of human breast cancer[J]. Breast, 2005, 14 (5) : 360-367.
    31 Andreas E, Ulrich F, Monika T, et al. Expression Analysis and Potential Functional Role of the CXCR4 Chemokine Receptor in Bladder Cancer [J]. Euro Urol, 2005, 47 (1) : 111-117.
    32 Heidi V. R, John H, Fatih O, et al. CXCR4 Expression in neuroblastoma primary tumors is associated with clinical presentation of bone and bone marrow metastases [J]. J Pediatric Surgery, 2004, 39 (10) : 1506-1511.
    1. Victor Archie, John Kauh, Dennie V, et al. Gastric cancer: Standards for the 21st century[J]. Critical Reviews in Oncology/Hematology 2006, 57 (1) : 123-131.
    2.何裕隆.胃癌病理分型研究进展中国实用外科杂志. 2005,25(7): 438-440
    3. Nakajima T, Gastric cancer treatment guidelines in Japan[J]. Gastric Cancer, 2002, 5 : 1-5.
    4.蔡文琴,王伯云.实用免疫细胞化学与核酸分子杂交技术[M].成都:四川科学技术出版社,1994:72-89.
    5.金冬雁,黎孟枫,等译.分子克隆实验指南(第二版)[M].北京:科学出版社, 1992 : 366.
    6. Hermann GE, Rogers RC. TNFalpha: a trigger of autonomic dysfunction[J]. Neuroscientist. 2008, 14 (1) : 53-67.
    7. Pan J, Mestas J, Burdick MD, et al. Stromal derived factor-1 (SDF-1/CXCL12) and CXCR4 in renal cell carcinoma metastasis[J]. Mol Cancer. 2006, 5 (1) : 56.
    8. Uchida D, Onoue T, Tomizuka Y, et al. Involvement of an autocrine stromal cell derived factor-1/CXCR4 system on the distant metastasis of human oral squamous cell carcinoma [J]. Mol Cancer Res. 2007, 5 (7) : 685-694.
    9. Tan Y, Du J, Cai S, et al. Cloning and characterizing mutated human stromal cell-derived factor-1 (SDF-1): C-terminal alpha-helix of SDF-1alpha plays a critical role in CXCR4 activation and signaling, but not in CXCR4 binding affinity[J]. Exp Hematol. 2006, 34 (11) : 1553-1562.
    10. Galamb O, Gy?rffy B, Sipos F, et al. Helicobacter pylori and antrum erosion-specific gene expression patterns: the discriminative role of CXCL13 and VCAM1 transcripts[J]. Helicobacter. 2008, 13 (2) : 112-126.
    11. Kathryn E.L and Gary D.L. Functions of CXCL12 and CXCR4 in breast cancer [J]. Cancer Letters, 2006, 238 (1) : 30-41.
    12. Hofman VJ, Moreilhon C, Brest PD, et al. Gene expression profiling in human gastric mucosa infected with Helicobacter pylori[J]. Mod Pathol. 2007, 20 (9) : 974-989.
    13. Bodger K, Ahmed S, Pazmany L, et al. Altered gastric corpus expression of tissue inhibitors of metalloproteinases in human and murine Helicobacter infection[J]. J Clin Pathol. 2008, 61 (1) : 72-78.
    14. Tahara T, Arisawa T, Shibata T, et al. Risk prediction of gastric cancer by analysis of aberrant DNA methylation in non-neoplastic gastric epithelium[J]. Digestion. 2007, 75 (1) : 54-61.
    15. Son SH, Kim HK, Ji JS, et al. Expression of peroxisome proliferator-activated receptor (PPA R) gamma in Helicobacter pylori-infected gastric epithelium[J]. Korean J Gastroenterol. 2007, 49 (2) : 72-78.
    16. Harris PR, Wright SW, Serrano C, et al. Helicobacter pylori gastritis in children is associated with a regulatory T-cell response[J]. Gastroenterology. 2008, 134 (2) : 491-499.
    17. Muller A, Homey B, Soto H, et al. Involvement of chemokine receptors in breast cancer metastasis[J]. Nature, 2001, 410 (6824) : 50-56.
    18. Violet F.S and Julia L.W. The chemokine network: A target in cancer biology? [J].Advanced Drug Delivery Reviews,2006,58(8): 962-974.
    19. Matteucci E, Locati M, Desiderio M A. Hepatocyte growth factor enhances CXCR4 expression favoring breast cancer cell invasiveness[J]. Exp Cell Res, 2005, 310 (1) : 176-185.
    20. Saur D, Seidler B, Schneider G, et al. CXCR4 expression increases liver and lung metastasis in a mouse model of pancreatic cancer[J]. Gastroenterology. 2005, 129 (4) :1237-1250.
    21. Bachelder RE,Crago A,Chung J,et al.Vascular endothelial growth factor is an autocrine survival factor for neuropilin-expressing breast carcinoma cell[J]. Cancer Res,2001,61: 5736-5740.
    22. Bachelder RE,Wendt MA,Mercurio AM. Vascular endothelial growth factor promotes breast carcinoma invasion in an autocrine manner by regulating the chemokine receptor CXCR4[J]. Cancer Res ,2002,62 (24) : 7203-7206.
    23. Kolev Y, Uetake H, Iida S, et al. Prognostic significance of VEGF expression in correlat- ion with COX-2, microvessel density, and clinicopathological characteristics in human gastric carcinoma [J]. Ann Surg Oncol. 2007, 14 (10) : 2738-2747.
    24. Ai KX, Lu LY, Huang XY, et al. Prognostic significance of S100A4 and vascular endothelial growth factor expression in pancreatic cancer[J]. World J Gastroenterol. 2008, 14 (12) : 1931.
    25. Aishima S, Nishihara Y, Iguchi T, et al. Lymphatic spread is related to VEGF-C expression and D2-40-positive myofibroblasts in intrahepatic cholangiocarcinoma[J]. Mod Pathol. 2008, 21 (3) : 256-264.
    26. Ding S, Li C, Lin S, et al. Distinct roles of VEGF-A and VEGF-C in tumour metastasis of gastric carcinoma[J]. Oncol Rep. 2007, 17 (2) : 369-375.
    27. Onogawa S, Kitadai Y, Amaioka T, et al. Expression of vascular endothelial growth facto (VEGF)-C and VEGF-D in early gastric carcinoma : correlation with clinicopathological parameters[J]. Cancer Lett, 2005, 226 (1) : 85-90.
    28. Timoshenko AV, Rastogi S, Lala PK. Migration-promoting role of VEGF-C and VEGF-C binding receptors in human breast cancer cell[J]. Br J Cancer. 2007, 97 (8) : 1090-1098.
    29. Ribeiro LA, Bacci ML, Seren E, et al. Characterization and differential expression of vascular endothelial growth factor isoforms and receptors in swine corpus luteumthroughout estrous cycle[J]. Mol Reprod Dev. 2007, 74 (2) : 163-171.
    30. Da MX, Wu XT, Wang J, et al. Expression of cyclooxygenase-2 and vascular endothelial growth factor-C correlates with lymphangiogenesis and lymphatic invasion in human gastric cancer[J]. Arch Med Res. 2008, 39 (1) : 92-99.
    31. Zu X, Tang Z, Li Y, et al. Vascular endothelial growth factor-C expression in bladder transitional cell cancer and its relationship to lymph node metastasis[J]. BJU Int. 2006, 98 (5) : 1090-1093.
    32. Matsumura S, Oue N, Mitani Y, et al. DNA demethylation of vascular endothelial growth factor-C is associated with gene expression and its possible involvement of lymphangiogenesis in gastric cancer[J]. Int J Cancer. 2007, 120 (8) : 1689-1695.
    33. Wang TB, Deng MH, Qiu WS, Dong WG. Association of serum vascular endothelial growth factor-C and lymphatic vessel density with lymph node metastasis and prognosis of patients with gastric cancer[J]. World J Gastroenterol. 2007, 13 (12) : 1794-1797.
    34. Fukunaga S, Maeda K, Noda E, et al. Association between expression of vascular endothelial growth factor C, chemokine receptor CXCR4 and lymph node metastasis in colorectal cancer[J]. Oncology. 2006, 71 (3-4) : 204-211.
    35.孙梯业,赵永亮,余佩武. CXCR4在VEGF-C介导的胃癌淋巴道转移作用中的研究[J].第三军医大学学报, 2008, 30 (2) : 161-165.
    36. Han U, Can OI, Han S, et al. Expressions of p53, VEGF C, p21: could they be used in preoperative evaluation of lymph node metastasis of esophageal squamous cell carcinoma[J]? Dis Esophagus. 2007, 20 (5) : 379-385.
    37. Kazama S, Watanabe T, Kanazawa T, et al. Vascular endothelial growth factor-C (VEGF-C) is a more specific risk factor for lymph node metastasis than VEGF-D in submucosal colorectal cancer[J]. Hepatogastroenterology. 2007, 54 (73) : 71-76.
    38. Hashimoto I, Kodama J, Seki N,et al. Vascular endothelial growth factor-Cexpression and its relationship to pelvic lymph node status in invasive cervical cancer[J]. British Journal of Cancer, 2001, 85 (1) : 93-97.
    39.王中亮,陈尧,梁传余,等. VEGF-C和VEGFR-3在喉鳞状细胞癌及转移淋巴结组织中的表达[J].临床耳鼻咽喉科杂志, 2004, 18 (11) : 664-667.
    40. Pocza P, Süli-Vargha H, Darvas Z, Falus A. Locally generated VGVAPG and VAPG elastin-derived peptides amplify melanoma invasion via the galectin-3 receptor[J]. Int J Cancer. 2008, 122 (9) : 1972-1980.
    41. Sutton A, Friand V, Brulé-Donneger S, et al. Stromal cell-derived factor-1/chemokine (C-X-Cmotif) ligand 12 stimulates human hepatoma cell growth, migration, and invasion[J]. Mol Cancer Res. 2007, 5 (1) : 21-33.
    42. Nowicki M, Ostalska-Nowicka D, Kaczmarek M, et al.The significance of VEGF- C/VEGFR-2 interaction in the neovascularization and prognosis of nephroblastoma (Wilms' tumour)[J]. Histopathology. 2007, 50 (3) : 358-364.
    43. Grau SJ, Trillsch F, Herms J,et al. Expression of VEGFR3 in glioma endothelium correlates with tumor grade[J]. J Neurooncol. 2007, 82 (2) : 141-150.
    44. Barr MP, Bouchier-Hayes DJ, Harmey JJ. Vascular endothelial growth factor is an autocrine survival factor for breast tumour cells under hypoxia[J]. Int J Oncol. 2008, 32 (1) : 41-48.
    45. Hong X, Jiang F, Kalkanis SN, et al. Decrease of endogenous vascular endothelial growth factor may not affect glioma cell proliferation and invasion[J]. J Exp Ther Oncol. 2007, 6 (3) : 219-229.
    46. Tao J, Li T, Li K,et al. Effect of HIF-1alpha on VEGF-C induced lymphangiogenesis and lymph nodes metastases of pancreatic cancer[J]. J Huazhong Univ Sci Technolog Med Sci. 2006, 26 (5) : 562-564.
    47. Chen Y, Stamatoyannopoulos G, Song CZ. Down-regulation of CXCR4 by inducible small interfering RNA inhibits breast cancer cell invasion in vitrol[J]. Cancer RES, 2003, 63 (16) : 4801-4804.
    48. Kondo K, Kaneko T, Baba M, Konno H. VEGF-C and VEGF-A synergistically enhance lymph node metastasis of gastric cancer[J]. Biol Pharm Bull. 2007, 30 (4) : 633-637.
    49. Da MX, Wu XT, Wang J, et al. Expression of cyclooxygenase-2 and vascular endothelial growth factor-C correlates with lymphangiogenesis and lymphatic invasion in human gastric cancer[J]. Arch Med Res. 2008, 39 (1) : 92-99.
    50. Ohashi S, Okamura S, Urano F, Maeda M. Clinicopathological variables associated with lymph node metastasis in submucosal invasive gastric cancer[J]. Gastric Cancer. 2007, 10 (4) : 241-250.
    51. Matsumura S, Oue N, Mitani Y, et al. DNA demethylation of vascular endothelial growth factor-C is associated with gene expression and its possible involvement of lymphangiogenesis in gastric cancer[J]. Int J Cancer. 2007, 120 (8) : 1689-1695.
    52. Timoshenko AV, Rastogi S, Lala PK. Migration-promoting role of VEGF-C and VEGF-C binding receptors in human breast cancer cells[J]. Br J Cancer. 2007, 97 (8) : 1090-1098.
    53. Aishima S, Nishihara Y, Iguchi T, et al. Lymphatic spread is related to VEGF-C expression and D2-40-positive myofibroblasts in intrahepatic cholangiocarcinoma[J]. Mod Pathol. 2008, 21 (3) : 256-264.
    54. Ingrid S. Zeelenberg, Lisette Ruuls-Van Stalle, Ed Roos. The Chemokine Receptor CXCR4 Is Required Micrometastases[J]. Cancer Research,for Outgrowth of Colon Carcinoma 2003, 63 (82) : 3833-3839.
    55. Sun YX, Schneider A, Jung Y, et al. Skeletal localization and neutralization of theSDF-1(CXCL12)/CXCR4 axis blocks prostate cancer metastasis and growth in osseous sites in vivo[J]. J Bone Miner Res, 2005, 20 (2): 318-29.
    56. Yangchao Chen, George Stamatoyannopoulos and Chao-Zhong Song.Down-Regulation of CXCR4 by Inducible Small Interfering RNA Inhibits Breast Cancer Cell Invasion in Vitro[J]. Cancer Research. 2003, 63 (47) : 4801-4804.
    57. Hashimoto I, Koizumi K, Tatematsu M, et al. Blocking on the CXCR4/mTOR signalling pathway induces the anti-metastatic properties and autophagic cell death in peritoneal disseminated gastric cancer cells[J]. Eur J Cancer. 2008 Mar 27; [Epub ahead of print]
    58. Kaur S, Lal L, Sassano A, et al. Regulatory effects of mammalian target of rapamycin-activated pathways in type I and II interferon signaling[J]. J Biol Chem. 2007, 282 (3) : 1757-1768.
    59. Milosevic J, Maisel M, Wegner F, et al. Lack of hypoxia-inducible factor-1 alpha impairs midbrain neural precursor cells involving vascular endothelial growth factor signaling[J]. J Neurosci. 2007, 27 (2) : 412-421.
    60. Zheng HC, Takahashi H, Murai Y, et al. Upregulated EMMPRIN/CD147 might contribute to growth and angiogenesis of gastric carcinoma: a good marker for local invasion and prognosis[J]. Br J Cancer. 2006, 95 (10) : 1371-1378.
    61. Holmes DI, Zachary IC. Vascular endothelial growth factor regulates stanniocalcin-1 expression via neuropilin-1-dependent regulation of KDR and synergism with fibroblast growth factor-2[J]. Cell Signal. 2008, 20 (3) : 569-579.
    62. Al-Dissi AN, Haines DM, Singh B, Kidney BA. Immunohistochemical expression of vascular endothelial growth factor and vascular endothelial growth factor receptor associated with tumor cell proliferation in canine cutaneous squamous cell carcinomas and trichoepitheliomas[J]. Vet Pathol. 2007, 44 (6) : 823-830.
    63. He XW, Liu T, Chen YX, et al. Calcium carbonate nanoparticle delivering vascular endothelial growth factor-C siRNA effectively inhibits lymphangiogenesis and growth of gastric cancer in vivo[J]. Cancer Gene Ther. 2008, 15 (3) : 193-202.
    64. Timoshenko AV, Rastogi S, Lala PK. Migration-promoting role of VEGF-C and VEGF-C binding receptors in human breast cancer cell[J]. Br J Cancer. 2007, 97 (8) : 1090-1098.
    65. Kazuo Yasumoto,Keiichi Koizumi,et al.Atsuhiro Kawashima,et al. Role of the CXCL12/CXCR4 Axis in Peritoneal Carcinomatosis of Gastric Cancer[J]. Cancer Res, 2006, 66 (4) : 2181-2187.
    1. Huang DD. The Potential of RNA Interference-based Therapies for Viral Infections[J]. Curr HIV/AIDS Rep. 2008, 5 (1) : 33-39.
    2. Blidner RA, Svoboda KR, Hammer RP, Monroe WT. Photoinduced RNA interference using DMNPE-caged 2'-deoxy-2'-fluoro substituted nucleic acids in vitro and in vivo[J]. Mol Biosyst. 2008, 4 (5) : 431-440.
    3. Towne C, Raoul C, Schneider BL, Aebischer P. Systemic AAV6 Delivery Mediating RNA Interference Against SOD1: Neuromuscular Transduction Does Not Alter Disease Progression in fALS Mice[J]. Mol Ther. 2008 Apr 15; [Epub ahead of print]
    4. Krishnamachary B, Berg-Dixon S, Kelly B, et al. Regulation of colon carcinoma cell invasion by hypoxia-inducible factor 1[J]. Cancer Res. 2003, 63 (5) : 1138-1143.
    5. Kosciolek BA, Kalantidis K, Tabler M, Rowley PT.Inhibition of telomerase activity in human cancer cells by RNA interference[J]. Mol Cancer Ther. 2003, 2 (3) : 209-216.
    6. Watanabe T, Totoki Y, Toyoda A, et al. Endogenous siRNAs from naturally formed dsRNAs regulate transcripts in mouse oocytes[J]. Nature. 2008 Apr 10; [Epub ahead of print]
    7. Guo Y, C Walther T, Rao M, et al. Functional genomic screen reveals genes involved in lipid-droplet formation and utilization[J]. Nature. 2008 Apr 13; [Epub ahead of print]
    8. Rimkus SA, Katzenberger RJ, Trinh AT, et al. Mutations in String/CDC25 inhibit cell cycle re-entry and neurodegeneration in a Drosophila model of Ataxia telangiectasia[J]. Genes Dev. 2008 Apr 11; [Epub ahead of print]
    9. Gubler F, Hughes T, Waterhouse P, Jacobsen J. Regulation of Dormancy in Barley by Blue Light and After-Ripening: Effects on ABA and GA Metabolism[J]. Plant Physiol. 2008 Apr 11; [Epub ahead of print]
    10. Nishimoto Y, Yamashita T, Hideyama T, et al. Determination of editors at the novel A-to-I editing positions[J]. Neurosci Res. 2008 Mar 13; [Epub ahead of print]
    11. Chen WL, Yang L, Zeng SG, Wang YJ. Effect of using RNA interference to alter iNOS gene expression on the proliferation of tongue squamous cell carcinoma cell line Tca8113[J]. Br J Oral Maxillofac Surg. 2008 Apr 10; [Epub ahead of print]
    12. Van Gele M, Geusens B, Schmitt AM, et al. Knockdown of Myosin Va Isoforms by RNAi as a Tool to Block Melanosome Transport in Primary Human Melanocytes[J]. JInvest Dermatol. 2008 Apr 10; [Epub ahead of print]
    13. McBride JL, Boudreau RL, Harper SQ, et al. Artificial miRNAs mitigate shRNA- mediated toxicity in the brain: implications for the therapeutic development of RNAi[J]. Proc Natl Acad Sci U S A. 2008, 105 (15) : 5868-5873.
    14. Evans JR, Kelly DL, Morris KJ, et al. RNA interference-mediated inhibition of hepatocyte nuclear factor 1alpha identifies target genes[J]. Biochim Biophys Acta. 2008 Mar 19; [Epub ahead of print]
    15. Jin J, Bao X, Wang H, et al. RNAi-induced down-regulation of Mecp2 expression in the rat brain[J]. Int J Dev Neurosci. 2008 Mar 4; [Epub ahead of print]
    16. Kloc A, Zaratiegui M, Nora E, Martienssen R. RNA Interference Guides Histone Modification during the S Phase of Chromosomal Replication[J]. Curr Biol. 2008, 18 (7) : 490-495.
    17. Chen T, Tang B, Liao X, et al. Blockade of the aberrant aggregation of alpha-synuclein in HEK293 cells induced by overexpression of wild-type alpha-synuclein by RNA interference[J]. Zhonghua Yi Xue Yi Chuan Xue Za Zhi. 2008, 25 (2) : 128-131.
    18. Berns N, Kusch T, Schr?der R, Reuter R. Expression, function and regulation of Brachyenteron in the short germband insect Tribolium castaneum[J]. Dev Genes Evol. 2008, 218 (3-4) : 169-179.
    19. Uchida D, Onoue T, Tomizuka Y, et al. Involvement of an autocrine stromal cell derived factor-1/CXCR4 system on the distant metastasis of human oral squamous cell carcinoma[J]. Mol Cancer Res. 2007, 5 (7) : 685-694.
    20. Ding Y, Zhang L, Goodwin JS, et al. Plectin regulates the signaling and trafficking of the HIV-1 co-receptor CXCR4 and plays a role in HIV-1 infection[J]. Exp Cell Res. 2008 ,314 (3) : 590-602.
    21. Zhang W, Navenot JM, Frilot NM, et al. Association of nucleophosmin negatively regulates CXCR4-mediated G protein activation and chemotaxis[J]. Mol Pharmacol. 2007, 72 (5) : 1310-1321.
    22. Glodek AM, Le Y, Dykxhoorn DM, et al. Focal adhesion kinase is required for CXCL12-induced chemotactic and pro-adhesive responses in hematopoietic precursor cells[J]. Leukemia. 2007 ,21 (8) : 1723-1732.
    23. Wang Z, Zhang L, Qiao A, Watson K, Zhang J, Fan GH. Activation of CXCR4 triggers ubiquitination and down-regulation of major histocompatibility complex class I (MHC-I) on epithelioid carcinoma HeLa cells[J]. J Biol Chem. 2008 ,283 (7) :3951-3959.
    24. Kleinman ME, Yamada K, Takeda A, et al. Sequence- and target-independent angiogenesis suppression by siRNA via TLR3[J]. Nature. 2008, 452 (7187) : 591-597.
    25. Liu DM, Jin L, Wang H, et al. RNA interference mediated silencing of alpha-synuclein in MN9D cells and its effects on cell viability[J]. Neurosci Bull. 2008, 24 (2) : 96-104.
    26. Zhang P. Transgenic RNA interference in mice[J]. Methods Mol Biol. 2008, 442 (2) : 259-266.
    27. Tanaka Y, Nakamura N, Togami J. Altering Flower Color in Transgenic Plants by RNAi-Mediated Engineering of Flavonoid Biosynthetic Pathway[J]. Methods Mol Biol. 2008; 442: 245-257.
    28. Watanabe T, Totoki Y, Toyoda A, et al. Endogenous siRNAs from naturally formed dsRNAs regulate transcripts in mouse oocytes[J]. Nature. 2008 Apr 10; [Epub ahead of print]
    29. Ghildiyal M, Seitz H, Horwich MD, et al. Endogenous siRNAs Derived from Transposons and mRNAs in Drosophila Somatic Cells[J]. Science. 2008 Apr 10; [Epub ahead of print]
    30. Lee H, Gaughan JP, Tsygankov AY. c-Cbl facilitates cytoskeletal effects in v-Abl transformed fibroblast through Rac1- and Rap1-mediated signaling[J]. Int J Biochem Cell Biol. 2008 Mar 11; [Epub ahead of print]
    31. Van Gele M, Geusens B, Schmitt AM, et al. Knockdown of Myosin Va Isoforms by RNAi as a Tool to Block Melanosome Transport in Primary Human Melanocytes[J]. J Invest Dermatol. 2008 Apr 10; [Epub ahead of print]
    32. McBride JL, Boudreau RL, Harper SQ, et al. Artificial miRNAs mitigate shRNA-mediated toxicity in the brain: implications for the therapeutic development of RNAi[J]. Proc Natl Acad Sci U S A. 2008, 105 (15) : 5868-5873.
    33. Evans JR, Kelly DL, Morris KJ, et al. RNA interference-mediated inhibition of hepatocyte nuclear factor 1alpha identifies target genes[J]. Biochim Biophys Acta. 2008 Mar 19; [Epub ahead of print]
    34. Chris J. Scotton, Julia L. Wilson, et al. Epithelial Cancer Cell Migration: A Role for Chemokine Receptors[J]? Cancer Res. 2001, 61 (42) : 4961-4965.
    35. Rácz Z, Hamar P. RNA interference in research and therapy of renal diseases[J]. Contrib Nephrol. 2008; 159 (1) : 78-95.
    36. Entchev EV, Schwudke D, Zagoriy V, et al. LET-767 is required for the production ofbranched chain and long chain fatty acids in C. elegans[J]. J Biol Chem. 2008 Apr 4; [Epub ahead of print]
    37. Guan LL, Peng ZL, Niu XY, et al. Effect of siRNA inhibiting HPV16 E6 gene expression on proliferation and cell cycle of cervical cancer cell line CaSki[J]. Sichuan Da Xue Xue Bao Yi Xue Ban. 2008, 39 (1) : 10-14.
    38. Liu Y, Nie D, Huang Y, Lu G. RNAi-mediated knock-down of gene mN6A1 reduces cell proliferation and decreases protein translation[J]. Mol Biol Rep. 2008 Apr 4; [Epub ahead of print]
    39. Barr SD, Smiley JR, Bushman FD. The interferon response inhibits HIV particle production by induction of TRIM22[J]. PLoS Pathog. 2008, 4 (2) : e1000007.
    40. Rogers SL, Rogers GC. Culture of Drosophila S2 cells and their use for RNAi-mediated loss-of-function studies and immunofluorescence microscopy[J]. Nat Protoc. 2008, 3 (4) : 606-611.
    41. Franich NR, Fitzsimons HL, Fong DM, et al. AAV Vector-mediated RNAi of Mutant Huntingtin Expression Is Neuroprotective in a Novel Genetic Rat Model of Huntington's Disease[J]. Mol Ther. 2008 Mar 25; [Epub ahead of print]
    42. Trammell MA, Mahoney NM, Agard DA, Vale RD. Mob4 plays a role in spindle focusing in Drosophila S2 cells[J]. J Cell Sci. 2008, 121 (Pt 8) : 1284-1292.
    43. Moore MD, McGarvey MJ, Russell RA, et al. Stable inhibition of hepatitis B virus proteins by small interfering RNA expressed from viral vectors[J]. J Gene Med. 2005, 7 (7): 918-925.
    44. Uprichard SL, Boyd B, Althage A,et al. Clearance of hepatitis B virus from the liver of transgenic mice by short hairpin RNAs[J]. PNAS. 2005; 102 (3): 773-778.
    45. Shlomai A, Shaul Y.Inhibition of hepatitis B virus expression and replication by RNA interference[J]. Hepatology. 2003, 37 (4): 764-770.
    46. McCaffrey AP, Nakai H, Pandey K, Inhibition of hepatitis B virus in mice by RNA interference[J]. Nat Biotechnol. 2003, 21 (6) : 639-644.
    47. Naito Y, Yamada T, Matsumiya T, et al. dsCheck: highly sensitive off-target search software for double-stranded RNA-mediated RNA interference[J]. Nucleic Acids Res. 2005, 33 (3) : W589-591.
    1. Nakao T, Shiota M, Tatemoto Y, Izumi Y, Iwao H. Pravastatin induces rat aortic endothelial cell proliferation and migration via activation of PI3K/Akt/mTOR/p70 S6 kinase signaling[J]. J Pharmacol Sci. 2007, 105 (4) : 334-341.
    2. Galamb O, Gyorffy B, Sipos F, et al. Identification of colorectal cancer, adenoma, and inflammatory bowel disease specific gene expression patterns using whole genomic oligonucleotide microarray system[J]. Orv Hetil. 2007, 148 (44) : 2067-2079.
    3. Luo B, Wang Y, Wang XF, et al. Correlation of Epstein-Barr virus and its encoded proteins with Helicobacter pylori and expression of c-met and c-myc in gastric carcinoma[J]. World J Gastroenterol. 2006, 12 (12) : 1842-1848.
    4. Lin F, Zhang PL, Yang XJ, et al. Morphoproteomic and molecular concomitants of an overexpressed and activated mTOR pathway in renal cell carcinomas[J]. Ann Clin Lab Sci. 2006, 36 (3) : 283-293.
    5. Drayer AL, Olthof SG, Vellenga E. Mammalian target of rapamycin is required for thrombopoietin-induced proliferation of megakaryocyte progenitors[J]. Stem Cells. 2006, 24 (1) : 105-114.
    6. Arya M, Patel HR, McGurk C, et al. The importance of the CXCL12-CXCR4 chemokine ligand-receptor interaction in prostate cancer metastasis[J]. J Exp Ther Oncol. 2004, 4 (4) : 291-303.
    7. Huynh H, Teo CC, Soo KC. Bevacizumab and rapamycin inhibit tumor growth in peritoneal model of human ovarian cancer[J]. Mol Cancer Ther. 2007, 6 (11) : 2959-2966.
    8. Sun DF, Fang JY, Zhang YJ, et al. The relationship of mTOR signaling pathway and histone acetylation in human gastric cancer cell lines[J]. Zhong hua Yi Xue Yi Chuan Xue Za Zhi. 2007, 24 (4) : 387-391.
    9. Sun YX, Schneider A, Jung Y, et al. Skeletal localization and neutralization of the SDF-1(CXCL12)/CXCR4 axis blocks prostate cancer metastasis and growth in osseous sites in vivo[J]. J Bone Miner Res. 2005, 20 (2) : 318-329.
    10. Pan J, Mestas J, Burdick MD, et al. Stromal derived factor-1 (SDF-1/CXCL12) and CXCR4 in renal cell carcinoma metastasis[J]. Mol Cancer. 2006, 5 (1) : 56.
    11. Koizumi K, Hojo S, Akashi T, et al. Chemokine receptors in cancer metastasis and cancer cell-derived chemokines in host immune response[J]. Cancer Sci. 2007, 98 (11) : 1652-1658.
    12. Jiang YP, Wu XH, Xing HY, DU XY. Role of CXCL12 in metastasis of human ovarian cancer[J]. Chin Med J (Engl). 2007, 120 (14) : 1251-1255.
    13. Hermann GE, Van Meter MJ, Rogers RC. CXCR4 receptors in the dorsal medulla: implications for autonomic dysfunction[J]. Eur J Neurosci. 2008, 27 (4) : 855-864.
    14. Balk-will F. Chemokine biology in cancer[J]. Semin Immunol, 2003, 15 (1): 49-55.
    15. Kuo PL, Hsu YL, Cho CY. Plumbagin induces G2-M arrest and autophagy by inhibiting the AKT/mammalian target of rapamycin pathway in breast cancer cells[J]. Mol Cancer Ther. 2006, 5 (12) : 3209-3221.
    16. Li W, Sumpio BE. Strain-induced vascular endothelial cell proliferation requires PI3K-dependent mTOR-4E-BP1 signal pathway[J]. Am J Physiol Heart Circ Physiol. 2005, 288 (4) : H1591-1597.
    17. Hayashi AA, Proud CG. The rapid activation of protein synthesis by growth hormone requires signaling through mTOR[J]. Am J Physiol Endocrinol Metab. 2007, 292 (6) : E1647-1655.
    18. Lang SA, Gaumann A, Koehl GE, et al. Mammalian target of rapamycin is activated in human gastric cancer and serves as a target for therapy in an experimental model[J]. Int J Cancer. 2007, 120 (8) : 1803-1810.
    19. Cao C, Subhawong T, Albert JM, et al. Inhibition of mammalian target of rapamycin or apoptotic pathway induces autophagy and radiosensitizes PTEN null prostate cancer cells[J]. Cancer Res. 2006, 66 (20) : 10040-10047.
    20. Follo MY, Mongiorgi S, Bosi C, et al. The Akt/mammalian target of rapamycin signal transduction pathway is activated in high-risk myelodysplastic syndromes and influences cell survival and proliferation[J]. Cancer Res. 2007, 67 (9) : 4287-4294.
    21. Dreyer HC, Glynn EL, Lujan HL, et al. Chronic paraplegia-induced muscle atrophy downregulates the mTOR/S6K1 signaling pathway[J]. J Appl Physiol. 2008, 104 (1) : 27-33.
    22. Aoki H, Takada Y, Kondo S, et al. Evidence that curcumin suppresses the growth of malignant gliomas in vitro and in vivo through induction of autophagy: role of Akt and extracellular signal-regulated kinase signaling pathways[J]. Mol Pharmacol. 2007, 72 (1) : 29-39.
    23. Liang Z, Brooks J, Willard M, et al. CXCR4/CXCL12 axis promotes VEGF-mediated tumor angiogenesis through Akt signaling pathway[J]. Biochem Biophys Res Commun. 2007, 359 (3) : 716-722.
    24. Kijima T, Maulik G, Ma PC, et al. Regulation of cellular proliferation, cytoskeletal function, and signal transduction through CXCR4 and c-Kit in small cell lung cancer cells[J]. Cancer Res, 2002, 62 (21): 6304-6311.
    25. Phillips RJ, BurdickMD, Lutz M, et al. The stromal derived factcr-1/CXCL12-CXC chemokine receptor 4 biological axis in non small cell lung cancer metastases[J]. Am J Respir Crit Care Med, 2003, 167 (12): 1676-1686.
    26. Wang Z, Zhang L, Qiao A, et al. Activation of CXCR4 triggers ubiquitination and down-regulation of major histocompatibility complex class I (MHC-I) on epithelioid carcinoma HeLa cells[J].J Biol Chem. 2008, 283 (7) : 3951-3959.
    27. Broxmeyer HE. Chemokines in hematopoiesis[J]. Curr Opin Hematol. 2008, 15 (1) : 49- 58.
    28. Bachmeier BE, Mohrenz IV, Mirisola V, et al. Curcumin downregulates the inflammatory cytokines CXCL1 and -2 in breast cancer cells via NF kappaB[J]. Carcinogenesis. 2008, 29 (4) : 779-789.
    29. Pattarozzi A, Gatti M, Barbieri F, et al. 17beta-estradiol promotes breast cancer cell proliferation-inducing stromal cell-derived factor-1-mediated epidermal growth factor receptor transactivation: reversal by gefitinib pretreatment[J]. Mol Pharmacol. 2008, 73 (1) : 191-202.
    30. Miao Z, Luker KE, Summers BC, et al. CXCR7 (RDC1) promotes breast and lung tumor growth in vivo and is expressed on tumor-associated vasculature[J]. Proc Natl Acad Sci USA. 2007, 104 (40) : 15735-15740.
    31. Moncunill G, Armand-Ugón M, Clotet-Codina I, et al. Anti-HIV activity and resistance profile of the CXC chemokine receptor 4 antagonist POL3026[J]. Mol Pharmacol. 2008, 73 (4) : 1264-1273.
    32. Chen Y, Stamatoyannopoulo~G, Song CZ. Down-regulation of CXCR4 by inducible smal1 interfering RNA inhibits breast cancer cell invasion in vitro[J]. Cancer Res, 2003, 63 (16): 4801-4804.
    33. Li M, Ransohoff RM. Multiple roles of chemokine CXCL12 in the central nervous system: a migration from immunology to neurobiology[J]. Prog Neurobiol. 2008, 84 (2) : 116-131.
    34. Sasaki K, Natsugoe S, Ishigami S, et al. Expression of CXCL12 and its receptor CXCR4 correlates with lymph node metastasis in submucosal esophageal cancer[J]. J Surg Oncol. 2008, 97 (5) : 433-438.
    35. Billadeau DD, Chatterjee S, Bramati P, et al. Characterization of the CXCR4 signaling in pancreatic cancer cells[J]. Int J Gastrointest Cancer. 2006, 37 (4) : 110-119.
    36. Yang S, Pham LK, Liao CP, et al. A novel bone morphogenetic protein signaling in heterotypic cell interactions in prostate cancer[J]. Cancer Res. 2008, 68 (1) : 198-205.
    37. Kaminski A, Ma N, Donndorf P, et al. Endothelial NOS is required for SDF- 1alpha/CXCR4-mediated peripheral endothelial adhesion of c-kit+ bone marrow stem cells[J]. Lab Invest. 2008, 88 (1) : 58-69.
    38. Rehimi R, Khalida N, Yusuf F, et al. Stromal-derived factor-1 (SDF-1) expression during early chick development[J]. Int J Dev Biol. 2008, 52 (1) : 87-92.
    39. Scupoli MT, Donadelli M, Cioffi F, et al. Bone marrow stromal cells and the upregulation of interleukin-8 production in human T-cell acute lymphoblastic leukemia through the CXCL12/CXCR4 axis and the NF-kappaB and JNK/AP-1 pathways[J]. Haematologica. 2008, 93 (4) : 524-532.
    40. Pello OM, Martínez-Mu?oz L, et al. Ligand stabilization of CXCR4/delta-opioid receptor heterodimers reveals a mechanism for immune response regulation[J]. Eur J Immunol. 2008, 38 (2) : 537-549.
    41. Le Y, Zhu BM, Harley B, et al. SOCS3 protein developmentally regulates the chemokine receptor CXCR4-FAK signaling pathway during B lymphopoiesis[J]. Immunity. 2007, 27 (5) : 811-823.
    42. Zernecke A, Bot I, Djalali-Talab Y, et al. Protective role of CXC receptor 4/CXC ligand 12 unveils the importance of neutrophils in atherosclerosis[J]. Circ Res. 2008, 102 (2) : 209-217.
    43. Pan H, Luo C, Li R, et al. Cyclophilin A is required for CXCR4-mediated nuclear export of heterogeneous nuclear ribonucleoprotein A2, activation and nuclear translocation of ERK1/2, and chemotactic cell migration[J]. J Biol Chem. 2008, 283 (1) : 623-637.
    44. Tsuboi A, Oka Y, Nakajima H, et al. Wilms tumor gene WT1 peptide-based immunotherapy induced a minimal response in a patient with advanced therapy -resistant multiple myeloma[J]. Int J Hematol. 2007, 86 (5) : 414-417.
    45. SerratìS, Margheri F, Fibbi G, et al. Endothelial cells and normal breast epithelial cells enhance invasion of breast carcinoma cells by CXCR-4-dependent up-regulation of urokinase-type plasminogen activator receptor (uPAR, CD87) expression[J]. J Pathol. 2008, 214 (5) : 545-554.
    46. Struckmann K, Mertz K, Steu S, et al. pVHL co-ordinately regulates CXCR4/CXCL12 and MMP2/MMP9 expression in human clear-cell renal cell carcinoma[J]. J Pathol. 2008, 214 (4) : 464-471.
    47. Hayashi H, Kume T. Forkhead transcription factors regulate expression of the chemokine receptor CXCR4 in endothelial cells and CXCL12-induced cell migration[J]. Biochem Biophys Res Commun. 2008, 367 (3) : 584-589.
    48. Kerr JFR,Wyllie AH,Currie AR.Apoptosis:a basic biological phenomenon with wide-ranging implications in tissue kinetics[J]. Br J Cancer, 1972, 26 (2): 239-257.
    49. Knukson G. Tumou-associated hyaluronan: providing an extracellular matrix that facilitates invasion[J]. Am J Pathol, 2006, 148 (59) : 1721-1726.
    50. Harn HJ, Ho Li, Chang JY, et al. Differental expression of the human adhesion molecule CD44v6 in normal and carcinomatous stomach mucosa of Chinese subjects[J]. Cancer, 2006, 75 (73) : 1065-1072.
    51. Dammrich J, Vollmers HP, Heider RH, et al. Importance of different CD44v6 expression in human gastric intestinal and diffuse type cancers for metatic imphogenic spreading[J]. J Mol Med, 2005, 73 (8) : 395-401.
    52. Uchida D, Begum NM, Almofti A, et a1.Possible role of stromal-cel1-derived factor-1/CXCR4 signaling on lymph node metastasis of oral squamous cell carcinoma[J]. Exp Cell Ras, 2003, 290 (2): 289-302.
    53. Kleinman HK, Koblinski J, Lee S, et al. Role of basement membrane in tumor growth and metastasis[J]. Surg Oncol Clin N Am, 2001, 10 (2) : 329-338.
    54. Heino J. Biology of tumor cell invasion: interplay of cell adhesion and matrix degradation[J]. Int J Cancer, 1996, 65 (6) : 717-722.
    55. Effert PJ, Gastl G, Strohmeyer T. Current and future strategies to block tumorangiogenesis, invasion, and metastasis[J]. World J Urol, 1996, 14 (3) : 131-140.
    56. Todd R, Donoff RB, Wong DT. The molecular biology of oral carcinogenesis: toward a tumor progression model[J]. J Oral Maxillofac Surg, 1997, 55 (6) : 613-623.
    57. Holash J, Wiegand SJ, Yancopoulos GD. New model of tumor angiogenesis: dynamic balance between vessel regression and growth mediated by angiopoietins and VEGF[J]. Oncogene, 1999, 18 (38) : 5356-5362.
    58. Ding Y, Zhang L, Goodwin JS, Wang Z, Liu B, Zhang J, Fan GH. Plectin regulates the signaling and trafficking of the HIV-1 co-receptor CXCR4 and plays a role in HIV-1 infection[J]. Exp Cell Res. 2008, 314 (3) : 590-602.
    59. Pan H, Luo C, Li R, Qiao A, Zhang L, Mines M, Nyanda AM, Zhang J, Fan GH. Cyclophilin A is required for CXCR4-mediated nuclear export of heterogeneous nuclear ribonucleoprotein A2, activation and nuclear translocation of ERK1/2, and chemotactic cell migration[J]. J Biol Chem. 2008, 283 (1) : 623-637.
    60. Du YF, Xing YF, Zeng FQ, Lu P, Liu XY, Xiao YJ. Establishment of RNA interfering retrovirus vector targeting CXCR4 gene driven by human prostate-specific antigen promoter and its biological effects on prostate cancer cells[J]. Zhonghua Zhong Liu Za Zhi. 2007, 29 (7) : 489-494.
    61. Pan H, Luo C, Li R, Qiao A, Zhang L, Mines M, Nyanda AM, Zhang J, Fan GH. Cyclophilin A is required for CXCR4-mediated nuclear export of heterogeneous nuclear ribonucleoprotein A2, activation and nuclear translocation of ERK1/2, and chemotactic cell migration[J]. J Biol Chem. 2008, 283 (1) : 623-637.
    62. Liang Z, Wu H, Reddy S, Zhu A, Wang S, Blevins D, Yoon Y, Zhang Y, Shim H. Blockade of invasion and metastasis of breast cancer cells via targeting CXCR4 with an artificial microRNA[J]. Biochem Biophys Res Commun. 2007, 363 (3) : 542-546.
    63. Giri B, Dixit VD, Ghosh MC, Collins GD, Khan IU, Madara K, Weeraratna AT, Taub DD. CXCL12-induced partitioning of flotillin-1 with lipid rafts plays a role in CXCR4 function[J]. Eur J Immunol. 2007, 37 (8) : 2104-2116.
    64. Glodek AM, Le Y, Dykxhoorn DM, et al. Focal adhesion kinase is required for CXCL12-induced chemotactic and pro-adhesive responses in hematopoietic precursor cells[J]. Leukemia. 2007, 21 (8) : 1723-1732.
    65. Yano M, Nakamuta S, Shiota M, Endo H, Kido H. Gatekeeper role of 14-3-3tau protein in HIV-1 gp120-mediated apoptosis of human endothelial cells by inactivation of Bad[J]. AIDS. 2007, 21 (8) : 911-920.
    66. Babcock GJ, Farzan M, Sodroski J. Ligand-independent dimerization of CXCR4,a pricipal HIV-1 coreceptor[J]. Biol Chem, 2003, 278 (5): 3378-3385.
    1. Zhao B, Smith G, Cai J, Ma A, Boulton M. Vascular endothelial growth factor C promotes survival of retinal vascular endothelial cells via vascular endothelial growth factor receptor-2[J]. Br J Ophthalmol. 2007, 91 (4) : 538-545.
    2. Holmes DI, Zachary IC. Vascular endothelial growth factor regulates stanniocalcin-1 expression via neuropilin-1-dependent regulation of KDR and synergism with fibroblast growth factor-2[J]. Cell Signal. 2008, 20 (3) : 569-579.
    3. Al-Dissi AN, Haines DM, Singh B, Kidney BA. Immunohistochemical expression of vascular endothelial growth factor and vascular endothelial growth factor receptor associated with tumor cell proliferation in canine cutaneous squamous cell carcinomas and trichoepitheliomas[J]. Vet Pathol. 2007, 44 (6) : 823-830.
    4. Zins K, Abraham D, Sioud M, Aharinejad S. Colon cancer cell-derived tumor necrosis factor-alpha mediates the tumor growth-promoting response in macrophages by up-regulating the colony-stimulating factor-1 pathway[J]. Cancer Res. 2007, 67 (3) : 1038-1045.
    5. Ramanathan M, Pinhal-Enfield G, Hao I, Leibovich SJ. Synergistic up-regulation of vascular endothelial growth factor (VEGF) expression in macrophages by adenosine A2A receptor agonists and endotoxin involves transcriptional regulation via the hypoxia response element in the VEGF promoter[J]. Mol Biol Cell. 2007, 18 (1) : 14-23.
    6. Sivakumar R, Sharma-Walia N, Raghu H, et al. Kaposi's sarcoma-associated herpesvirus induces sustained levels of vascular endothelial growth factors A and C early during in vitro infection of human microvascular dermal endothelial cells: biological implications [J]. J Virol. 2008, 82 (4) : 1759-1776.
    7. Stepanova OI, Krylov AV, Lioudyno VI, et al. Gene expression for VEGF-A, VEGF-C, and their receptors in murine lymphocytes and macrophages[J]. Biochemistry (Mosc). 2007, 72 (11) : 1194-1198.
    8. Maekawa S, Iwasaki A, Shirakusa T, et al. Correlation between lymph node metastasis and the expression of VEGF-C, VEGF-D and VEGFR-3 in T1 lung adenocarcinoma[J]. Anticancer Res. 2007, 27 (6A) : 3735-3741.
    9. Li J, Hong M, Pan T. Clinical significance of VEGF-C and VEGFR-3 expression in non-small cell lung cancer[J]. J Huazhong Univ Sci Technolog Med Sci. 2006, 26 (5) : 587-590.
    10. Kannan R, Zhang N, Sreekumar PG,et al. Stimulation of apical and basolateral VEGF-A and VEGF-C secretion by oxidative stress in polarized retinal pigment epithelial cells[J]. Mol Vis. 2006, 22 (12) : 1649-1659.
    11. Grau SJ, Trillsch F, Herms J, et al. Expression of VEGFR3 in glioma endothelium correlates with tumor grade[J]. J Neurooncol. 2007, 82 (2) : 141-150.
    12. Tao J, Li T, Li K,et al. Effect of HIF-1alpha on VEGF-C induced lymphangiogenesis and lymph nodes metastases of pancreatic cancer[J]. J Huazhong Univ Sci Technolog Med Sci.2006, 26 (5) : 562-564.
    13. Matsumoto T, Classon-Welsh L. VEGF receptor Ssignal transduction[J]. Sci-STKE, 2001 (112): RE21.
    14. He XW, Yu X, Liu T, et al. Vector-based RNA interference against vascular endothelial growth factor-C inhibits tumor lymphangiogenesis and growth of colorectal cancer in vivo in mice[J]. Chin Med J (Engl). 2008, 121 (5) : 439-444.
    15. He XW, Liu T, Chen YX, et al. Calcium carbonate nanoparticle delivering vascular endothelial growth factor-C siRNA effectively inhibits lymphangiogenesis and growth of gastric cancer in vivo[J]. Cancer Gene Ther. 2008, 15 (3) : 193-202.
    16. Lee TH, Seng S, Sekine M, et al. Vascular endothelial growth factor mediates intracrine survival in human breast carcinoma cells through internally expressed VEGFR1/FLT1 [J]. PLoS Med. 2007, 4 (6) :e186.
    17. Ochi N, Matsuo Y, Sawai H, Yasuda A, Takahashi H, Sato M, Funahashi H, Okada Y, Manabe T. Vascular endothelial growth factor-C secreted by pancreatic cancer cell line promotes lymphatic endothelial cell migration in an in vitro model of tumor lymphangiogenesis[J]. Pancreas. 2007, 34 (4) : 444-451.
    18. Matsumura S, Oue N, Mitani Y, et al. DNA demethylation of vascular endothelial growth factor-C is associated with gene expression and its possible involvement of lymphangio- genesis in gastric cancer[J]. Int J Cancer. 2007, 120 (8) : 1689-1695.
    19. Shen HL, Xu W, Wu ZY, et al. Vector-based RNAi approach to isoform-specific downregulation of vascular endothelial growth factor (VEGF)165 expression in human leukemia cells[J]. Leuk Res. 2007, 31 (4) : 515-521.
    20. Li TJ, Song JN, Kang K, et al. RNA interference-mediated gene silencing of vascular endothelial growth factor in colon cancer cells[J]. World J Gastroenterol. 2007, 13 (40) : 5312-5316.
    21. Timoshenko AV, Rastogi S, Lala PK. Migration-promoting role of VEGF-C and VEGF-C binding receptors in human breast cancer cells[J]. Br J Cancer. 2007, 97 (8) : 1090-1098.
    22. Banerjee S, Mehta S, Haque I, et al. VEGF-A165 Induces Human Aortic Smooth Muscle Cell Migration by Activating Neuropilin-1-VEGFR1-PI3K Axis[J]. Biochemistry. 2008, 47 (11) : 3345-3351.
    23. Kim YM, Namkoong S, Yun YG, et al. Water extract of Korean red ginseng stimulates angiogenesis by activating the PI3K/Akt-dependent ERK1/2 and eNOS pathways in human umbilical vein endothelial cells[J]. Biol Pharm Bull. 2007, 30 (9) : 1674-1679.
    24. Laramée M, Chabot C, Cloutier M, et al. The scaffolding adapter Gab1 mediates vascular endothelial growth factor signaling and is required for endothelial cell migration and capillary formation[J]. J Biol Chem. 2007, 282 (11) : 7758-7769.
    25. Kazi AA, Koos RD. Estrogen-induced activation of hypoxia-inducible factor-1alpha, vascular endothelial growth factor expression, and edema in the uterus are mediated by the phosphatidylinositol 3-kinase/Akt pathway[J]. Endocrinology. 2007, 148 (5) : 2363-2374.
    26. Liang Z, Brooks J, Willard M, et al. CXCR4/CXCL12 axis promotes VEGF-mediated tumor angiogenesis through Akt signaling pathway[J]. Biochem Biophys Res Commun. 2007, 359 (3) : 716-722.
    27. Hasaneen NA, Zucker S, Lin RZ, et al. Angiogenesis is induced by airway smooth muscle strain[J]. Am J Physiol Lung Cell Mol Physiol. 2007, 293 (4) : 1059-1068.
    28. Zheng X, Jiang F, Katakowski M, et al. nhibition of ADAM17 reduces hypoxia-induced brain tumor cell invasiveness[J]. Cancer Sci. 2007, 98 (5) : 674-684.
    29. Vogel C, Bauer A, Wiesnet M, et al. Flt-1, but not Flk-1 mediates hyperpermeability through activation of the PI3-K/Akt pathway[J]. J Cell Physiol. 2007, 212 (1) : 236-243.
    30. Yao JS, Shen F, Young WL, Yang GY. Comparison of doxycycline and minocycline in the inhibition of VEGF-induced smooth muscle cell migration[J]. Neurochem Int. 2007, 50 (3) : 524-530.
    31. Slongo ML, Molena B, Brunati AM, et al. Functional VEGF and VEGF receptors are expressed in human medulloblastomas[J]. Neuro Oncol. 2007, 9 (4) : 384-392.
    32. Suswam E, Li Y, Zhang X, et al. Tristetraprolin down-regulates interleukin-8 and vascular endothelial growth factor in malignant glioma cells[J]. Cancer Res. 2008, 68 (3) : 674-682.
    33. Fujiwara S, Nakagawa K, Harada H, et al. Silencing hypoxia-inducible factor-1alpha inhibits cell migration and invasion under hypoxic environment in malignant gliomas[J]. Int J Oncol. 2007, 30 (4) : 793-802.
    34. Li L, Gondi CS, Dinh DH, et al. Transfection with anti-p65 intrabody suppresses invasion and angiogenesis in glioma cells by blocking nuclear factor-kappaB transcriptional activity[J]. Clin Cancer Res. 2007, 13 (7) : 2178-2190.
    35. Chen JH, Yao XH, Gong W,et al. A novel lipoxygenase inhibitor Nordy attenuates malignant human glioma cell responses to chemotactic and growth stimulating factors[J]. J Neurooncol. 2007, 84 (3) : 223-231.
    36. Mac Gabhann F, Popel AS. Targeting neuropilin-1 to inhibit VEGF signaling in cancer: Comparison of therapeutic approaches[J]. PLoS Comput Biol. 2006, 2 (12) : e180.
    37. Ritter E, Perry A, Yu J, et al. Breast cancer cell-derived fibroblast growth factor 2 and vascular endothelial growth factor are chemoattractants for bone marrow stromal stem cells[J]. Ann Surg. 2008, 247 (2) : 310-314.
    38. Miao HQ, Lee P, Lin H, et al. Neuropilin-1 expression by tumor cells promotes tumor angiogenesis and progression[J]. FASEB J. 2000, 14(15):532-539.
    39. Fukahi K, Fukasawa M, Neufeld G, et al. Aberrant expression of neuropilin-1 and -2 in human pancreatic cancer cells[J]. Clin Cancer Res. 2004, 15;10(2):581-590.
    40. Ochi N, Matsuo Y, Sawai H, et al. Vascular endothelial growth factor-C secreted by pancreatic cancer cell line promotes lymphatic endothelial cell migration in an in vitro model of tumor lymphangiogenesis[J]. Pancreas. 2007, 34 (4) : 444-451.
    41. Kobayashi S, Kishimoto T, Kamata S, et al, Ishikura H. Rapamycin, a specific inhibitor of the mammalian target of rapamycin, suppresses lymphangiogenesis and lymphatic metastasis[J]. Cancer Sci. 2007, 98 (5) : 726-733.
    42. Yeh WL, Lin CJ, Fu WM. Enhancement of glucose transporter expression of brain endothelial cells by vascular endothelial growth factor derived from glioma exposed to hypoxia[J]. Mol Pharmacol. 2008, 73 (1) : 170-177.
    43. Tummalapalli P, Gondi CS, Dinh DH, et al RNA interference-mediated targeting of urokinase plasminogen activator receptor and matrix metalloproteinase-9 gene expression in the IOMM-lee malignant meningioma cell line inhibits tumor growth, tumor cell invasion and angiogenesis[J]. Int J Oncol. 2007, 31 (1) : 5-17.
    44. Kong D, Li Y, Wang Z, et al. Inhibition of angiogenesis and invasion by 3,3'- diindolylmethane is mediated by the nuclear factor-kappaB downstream target genes MMP-9 and uPA that regulated bioavailability of vascular endothelial growth factor in prostate cancer[J]. Cancer Res. 2007, 67 (7) : 3310-3319.
    45. Vales A, Kondo R, Aichberger KJ, et al. Myeloid leukemias express a broad spectrum of VEGF receptors including neuropilin-1 (NRP-1) and NRP-2.Leuk Lymphoma[J]. 2007, 48 (10) : 1997-2007.
    46. Parthymou A, Lampropoulou E, Mikelis C, et al. Heparin affin regulatory peptide/pleiotrophin negatively affects diverse biological activities in C6 glioma cells[J]. Eur J Cell Biol. 2008, 87 (1) : 17-29.
    47. Zhang L, Yang N, Mohamed-Hadley A, et al . Vector-based RNAi, a novel tool for isoform-specific knock-down of VEGF-C and anti-angiogenesis gene t herapy of cancer [J]. Biochem Biophys Res Commun, 2003, 303 (4) :1169-1178.
    48. Xu WH, Ge YL, Li Q, et al. Inhibitory effect of vascular endothelial growth factors-targeted small interfering RNA on proliferation of gastric cancer cells[J]. World J Gastroenterol. 2007, 13 (14) : 2044-2047.
    49. Wang S, Liu H, Ren L, et al. Inhibiting colorectal carcinoma growth and metastasis by blocking the expression of VEGF using RNA interference[J]. Neoplasia. 2008, 10 (4) : 399-407.
    50. Mansfield L, Subramanian A, Devalia H, et al. HTERT mRNA expression correlates with matrixmetalloproteinase-1 and vascular endothelial growth factor expression in human breast cancer: a correlative study using RT-PCR[J]. Anticancer Res. 2007, 27 (4B) : 2265-2268.
    51. Maekawa S, Iwasaki A, Shirakusa T, et al. Correlation between lymph node metastasis and the expression of VEGF-C, VEGF-D and VEGFR-3 in T1 lung adenocarcinoma[J]. Anticancer Res. 2007, 27 (6A) : 3735-3741.
    52. Huang DD. The Potential of RNA Interference-based Therapies for Viral Infections[J]. Curr HIV/AIDS Rep. 2008, 5 (1) : 33-39.
    53. Blidner RA, Svoboda KR, Hammer RP, Monroe WT. Photoinduced RNA interference using DMNPE-caged 2'-deoxy-2'-fluoro substituted nucleic acids in vitro and in vivo[J]. Mol Biosyst. 2008, 4 (5) : 431-440.
    54. Towne C, Raoul C, Schneider BL, Aebischer P. Systemic AAV6 Delivery Mediating RNA Interference Against SOD1: Neuromuscular Transduction Does Not Alter Disease Progression in fALS Mice[J]. Mol Ther. 2008 Apr 15; [Epub ahead of print]
    55. Chen WL, Yang L, Zeng SG, Wang YJ. Effect of using RNA interference to alter iNOS gene expression on the proliferation of tongue squamous cell carcinoma cell line Tca8113[J]. Br J Oral Maxillofac Surg. 2008 Apr 10; [Epub ahead of print]
    56. Watanabe T, Totoki Y, Toyoda A, et al. Endogenous siRNAs from naturally formed dsRNAs regulate transcripts in mouse oocytes[J]. Nature. 2008 Apr 10; [Epub ahead of print]
    57. Van Gele M, Geusens B, Schmitt AM, et al. Knockdown of Myosin Va Isoforms by RNAi as a Tool to Block Melanosome Transport in Primary Human Melanocytes[J]. J Invest Dermatol. 2008 Apr 10; [Epub ahead of print]
    58. Rácz Z, Hamar P. RNA interference in research and therapy of renal diseases[J]. Contrib Nephrol. 2008; 159 (1) : 78-95.
    59. McBride JL, Boudreau RL, Harper SQ, et al. Artificial miRNAs mitigate shRNA- mediated toxicity in the brain: implications for the therapeutic development of RNAi[J]. Proc Natl Acad Sci U S A. 2008, 105 (15) : 5868-5873.
    60. Nguyen T, Menocal EM, Harborth J, Fruehauf JH. RNAi therapeutics: an update on delivery[J]. Curr Opin Mol Ther. 2008, 10 (2) : 158-167.
    61. Hu WG, Li JW, Feng B, et al. Vascular endothelial growth factors C and D represent novel prognostic markers in colorectal carcinoma using quantitative image analysis[J]. Eur Surg Res. 2007, 39 (4) : 229-238.
    62. Duff SE, Jeziorska M, Kumar S, et al. Lymphatic vessel density, microvessel density and lymphangiogenic growth factor expression in colorectal cancer[J]. Colorectal Dis. 2007, 9 (9) : 793-800.
    63. Kazama S, Watanabe T, Kanazawa T, et al. Vascular endothelial growth factor-C (VEGF-C) is a more specific risk factor for lymph node metastasis than VEGF-D insubmucosal colorectal cancer[J]. Hepatogastroenterology. 2007, 54 (73) : 71-76.
    64. Kilic N, Oliveira-Ferrer L, Wurmbach JH, et al. Pro-angiogenic signaling by the endothelial presence of CEACAM1[J]. J Biol Chem, 2005, 280 (3) :2361-2369.
    65. Merav Darash-yahana, Eli Pikasky, Rinat Abramovitch, et al. Role of high expression levels of CXCR4 in tumor growth, vascularization, and metastasis.[J] The FASEB Journal .2004, 59 (18) : 1240-1242.
    66. Fraser A. RNA interference : human genes hit the big screen[J]. Nature, 2004, 428 (6981) :375-378.
    67. Mat sumoto G, Kushibiki T, Kinoshita Y, et al. Cationized gelatin delivery of a plasmid DNA expressing small interference RNA for VEGF inhibit s murine squamous cell carcinoma [J]. Cancer Sci, 2006, 97 (4) : 313-321.
    68. Miyagishi M, Taira K. U6 promoter-driven siRNAs with four uridine 3′overhangs efficiently suppress targeted gene expression in mammalian cells [J]. Nature Biotech, 2002, 20 ( 5 ) : 497-500.
    69. Niola F, Evangelisti C, Campagnolo L, et al. A plasmid-encoded VEGF siRNA reduces glioblastoma angiogenesis and its combination wit h interleukin24 blocks tumor growt h in a xenograft mouse model [J]. Cancer Biol Ther, 2006, 5 (2) : 174-179.
    70. Sun P, Gao J, Liu YL, et al. RNA interference (RNAi)-mediated vascular endothelial growth factor-C (VEGF-C) reduction interferes with lymphangiogenesis and enhances Epirubicin sensitivity of breast cancer cells[J]. Mol Cell Biochem. 2008, 308 (1-2) : 161-168.
    71. Jia RB, Zhang P, Zhou YX, et al. VEGF-targeted RNA interference suppresses angiogenesis and tumor growth of retinoblastoma[J]. Ophthalmic Res. 2007, 39 (2) : 108-115.
    72. Forooghian F, Das B.Anti-angiogenic effects of ribonucleic acid interference targeting vascular endothelial growth factor and hypoxia-inducible factor-1alpha[J]. Am J Ophthalmol. 2007, 144 (5) : 761-768.
    73. Tao J, Tu YT, Huang CZ, et al. Inhibiting the growth of malignant melanoma by blocking the expression of vascular endothelial growth factor using an RNA interference approach[J]. Br J Dermatol. 2005, 153 (4) : 715-724.
    74. Singh N, Higgins E, Amin S, Jani P, Richter E, Patel A, Kaur R, Wang J, Ambati J, Dong Z, Ambati BK. Unique homologous siRNA blocks hypoxia-induced VEGF upregulation in human corneal cells and inhibits and regresses murine corneal neovascularization[J]. Cornea. 2007, 26 (1) : 65-72.
    75. Kijowski J, Baj Krzyworzeka M. The SDF-1/CXCR4 axis stimulates VEGF secretion and activates integrins but does not affect proliferation and survival in lymphohematopoietic cells[J]. Stem Cells, 2001, 19 (5): 453-466.
    1. Toriumi F, Kubota T, Saikawa Y, et al. Thymidylate synthetase(TS)genotype and TS/dihydropyrimidine dehydrogenase mRNA level as an indicator in determining chemosensitivity to 5-fluorouracil in advanced gastric carcinoma[J]. Anticancer Res, 2004. 24 (4) : 2455-2463.
    2. Chen JQ, Zhan WH, He YL, et al. Expression of heparanase gene,CD44v6,MMP-7 and nm23 protein and their relationship with the invasion and metastasis of gastric carcinomas [J]. World J Gastroenterol, 2004, 10 (6) : 776-782.
    3. Yamada Y, Hamajima N, Kato T, et al. Association of a polymorphism of the phospholipase D2 gene with the prevalence of colorectal cancer[J]. J Mol Med, 2003, 81 (2) : 126-131.
    4. Tuschl T. Expanding small RNA interference. Nat Biotechnol, 2002, 20 (3) : 446-448.
    5. McManus MT, Sharp PA. Gene silencing in mammals by small interfering RNAs [J]. Nature Rev Genet, 2002, 3 (3) : 737-747.
    6. Fire A, Xu S, Montgomery MK, et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans [J]. Nature, 1998; 391 (6669) : 806-811.
    7. Mcmanus M.T. and Sharp PA. Gene silencing in mammals by small interfering RNAs[J]. Nat Rev Genet. 2002, 3 (10) : 737-747.
    8. Song E, Lee SK, Wang J, Ince N, et al. RNA interference targeting Fas protects mice from fulminant hepatitis[J]. Nat Med, 2003, 9 (3) : 347-351.
    9. Merav Darash-yahana, Eli Pikasky, Rinat Abramovitch, et al. Role of high expression levels of CXCR4 in tumor growth, vascularization, and metastasis.[J]. The FASEB Journal. 2004, 18 (10) :1240-1242.
    10. Grzesiak JJ, Smith KC, Burton DW, et al. Integrin-mediated laminin-1 adhesion upregulates CXCR4 and IL-8 expression in pancreatic cancer cells[J]. Surgery. 2007, 141 (6) : 804-814.
    11. Juarez J, Baraz R, Gaundar S, et al. Interaction of interleukin-7 and interleukin-3 with the CXCL12-induced proliferation of B-cell progenitor acute lymphoblastic leukemia[J]. Haematologica. 2007, 92 (4) : 450-459.
    12. Broxmeyer HE, Hangoc G, Cooper S, et al. AMD3100 and CD26 modulate mobilization, engraftment, and survival of hematopoietic stem and progenitor cells mediated by the SDF-1/CXCL12-CXCR4 axis[J]. Ann N Y Acad Sci. 2007, 1106 (1) : 1-19.
    13. Stumm R, H?llt V. CXC chemokine receptor 4 regulates neuronal migration and axonal pathfinding in the developing nervous system: implications for neuronal regeneration in the adult brain[J]. J Mol Endocrinol. 2007, 38 (3) : 377-382.
    14. Sutton A, Friand V, Brulé-Donneger S, et al. Stromal cell-derived factor-1/chemokine (C-X-C motif) ligand 12 stimulates human hepatoma cell growth, migration, and invasion[J]. Mol Cancer Res. 2007, 5 (1) : 21-33.
    15. Cho HH, Kyoung KM, Seo MJ, et al. Overexpression of CXCR4 increases migration and proliferation of human adipose tissue stromal cells[J]. Stem Cells Dev. 2006, 15 (6) : 853-864.
    16. Tucci MG, Lucarini G, Giangiacomi M, et al. Immunohistochemical study of apoptosis markers and involvement of chemokine CXCR4 in skin Merkel cell carcinoma[J]. J Eur Acad Dermatol Venereol. 2006, 20 (10) : 1220-1225.
    17.彭黎明,王曾礼主编.细胞凋亡的基础与临床研究[M].北京.人民卫生出版社. 2000, 132-133.
    18. Nie Y, Han YC, Zou YR. CXCR4 is required for the quiescence of primitive hemato- poietic cells[J]. J Exp Med. 2008 , 205 (4) : 777-783.
    19. Ateeq B, Unterberger A, Szyf M, Rabbani SA. Pharmacological inhibition of DNA methylation induces proinvasive and prometastatic genes in vitro and in vivo[J]. Neoplasia. 2008, 10 (3) : 266-278.
    20. Johnson K, Hashimshony T, Sawai CM, et al. Regulation of immunoglobulin light-chain recombination by the transcription factor IRF-4 and the attenuation of interleukin-7 signaling[J]. Immunity. 2008, 28 (3) : 335-345.
    21. van Montfoort AP, Geraedts JP, Dumoulin JC, et al. Differential gene expression in cumulus cells as a prognostic indicator of embryo viability: a microarray analysis[J]. Mol Hum Reprod. 2008, 14 (3) : 157-168.
    22. Jin L, Tabe Y, Konoplev S, et al. CXCR4 up-regulation by imatinib induces chronic myelogenous leukemia (CML) cell migration to bone marrow stroma and promotes survival of quiescent CML cells[J]. Mol Cancer Ther. 2008, 7 (1) : 48-58.
    23. Yang D, Koupenova M, McCrann DJ, et al. The A2b adenosine receptor protects against vascular injury[J]. Proc Natl Acad Sci U S A. 2008, 105 (2) : 792-796.
    24. De Falco V, Guarino V, Avilla E, et al. Biological role and potential therapeutic targeting of the chemokine receptor CXCR4 in undifferentiated thyroid cancer[J]. Cancer Res. 2007, 67 (24) : 11821-11829.
    25. Abdel-Malak NA, Harfouche R, Hussain SN. Transcriptome of angiopoietin 1-activated human umbilical vein endothelial cells[J]. Endothelium. 2007, 14 (6) : 285-302.
    26. Bennett F, Rawstron A, Plummer M, et al. B-cell chronic lymphocytic leukaemia cells show specific changes in membrane protein expression during different stages of cell cycle[J]. Br J Haematol. 2007, 139 (4) : 600-604.
    27. Miao Z, Luker KE, Summers BC, et al. CXCR7 (RDC1) promotes breast and lungtumor growth in vivo and is expressed on tumor-associated vasculature[J]. Proc Natl Acad Sci U S A. 2007, 104 (40) : 15735-15740.
    28. Hirbe AC, Rubin J, Ulu?kan O, et al. Disruption of CXCR4 enhances osteoclastogenesis and tumor growth in bone[J]. Proc Natl Acad Sci U S A. 2007, 104 (35) : 14062-14067.
    29. Yoon Y, Liang Z, Zhang X, et al. CXC chemokine receptor-4 antagonist blocks both growth of primary tumor and metastasis of head and neck cancer in xenograft mouse models[J]. Cancer Res. 2007, 67 (15) : 7518-7524.
    30. Matsuoka T, Hirakawa K, Chung YS, et al. Adhesion polypeptides are useful for the prevention of peritoneal dissemination of gastric cancer[J]. Clin Exp Metastasis, 2005, 16 (4) : 381-388.
    31. Zheng H, Dai T, Zhou B, et al. SDF-1alpha/CXCR4 decreases endothelial progenitor cells apoptosis under serum deprivation by PI3K/Akt/eNOS pathway[J]. Atherosclerosis. 2008 Feb 19; [Epub ahead of print]
    32. Shirvaikar N, Reca R, Jalili A, et al. CFU-megakaryocytic progenitors expanded ex vivo from cord blood maintain their in vitro homing potential and express matrix metalloproteinases[J]. Cytotherapy. 2008, 10 (2) : 182-192.
    33. Holmes T, O'Brien TA, Knight R, et al. Glycogen Synthase Kinase-3{beta} inhibition Preserves Hematopoietic Stem Cell activity and Inhibits Leukemic Cell Growth[J]. Stem Cells. 2008 Mar 6; [Epub ahead of print]
    34. Endo M, Inatsu A, Hashimoto K, et al. Human immunodeficiency virus-induced apoptosis of human breast cancer cells via CXCR4 is mediated by the viral envelope protein but does not require CD4[J]. Curr HIV Res. 2008, 6 (1) : 34-42.
    35. Maluf DG, Mas VR, Archer KJ, et al. Molecular pathways involved in loss of kidney graft function with tubular atrophy and interstitial fibrosis[J]. Mol Med. 2008 Feb 15; [Epub ahead of print]
    36. van Montfoort AP, Geraedts JP, Dumoulin JC, et al. Differential gene expression in cumulus cells as a prognostic indicator of embryo viability: a microarray analysis[J]. Mol Hum Reprod. 2008, 14 (3) : 157-168.
    37. Croker AK, Allan AL. Cancer stem cells: implications for the progression and treatment of metastatic disease[J]. J Cell Mol Med. 2008, 12 (2) : 374-390.
    38. O'Hara SP, Small AJ, Nelson JB, et al. The human immunodeficiency virus type 1 tat protein enhances Cryptosporidium parvum-induced apoptosis in cholangiocytes via a Fas ligand-dependent mechanism[J]. Infect Immun. 2007, 75 (2) : 684-696.
    39. Pan J, Mestas J, Burdick MD, et al. Stromal derived factor-1 (SDF-1/CXCL12) and CXCR4 in renal cell carcinoma metastasis[J]. Mol Cancer. 2006, 5 (1) : 56-63.
    40. Trushin SA, Algeciras-Schimnich A, Vlahakis SR, et al. Glycoprotein 120 binding toCXCR4 causes p38-dependent primary T cell death that is facilitated by, but does not require cell-associated CD4[J]. J Immunol. 2007, 178 (8) : 4846-4853.
    41. Sutton A, Friand V, Brulé-Donneger S, et al. Stromal cell-derived factor-1/chemokine (C-X-C motif) ligand 12 stimulates human hepatoma cell growth, migration, and invasion[J]. Mol Cancer Res. 2007, 5 (1) : 21-33.
    42. Kulbe H, Thompson R, Wilson JL, et al. The inflammatory cytokine tumor necrosis factor-alpha generates an autocrine tumor-promoting network in epithelial ovarian cancer cells[J]. Cancer Res. 2007, 67 (2) : 585-592.
    43. Skommer J, Wlodkowic D, Pelkonen J. Gene-expression profiling during curcumin- induced apoptosis reveals downregulation of CXCR4[J]. Exp Hematol. 2007, 35 (1) : 84-95.
    44. Zeng Z, Samudio IJ, Munsell M, et al. Inhibition of CXCR4 with the novel RCP168 peptide overcomes stroma-mediated chemoresistance in chronic and acute leukemias[J]. Mol Cancer Ther. 2006, 5 (12) : 3113-3121.
    45. Vergote D, Butler GS, Ooms M, et al. Proteolytic processing of SDF-1alpha reveals a change in receptor specificity mediating HIV-associated neurodegeneration[J]. Proc Natl Acad Sci U S A. 2006,103 (50) : 19182-19187.
    46. Redjal N, Chan JA, Segal RA, Kung AL. CXCR4 inhibition synergizes with cytotoxic chemotherapy in gliomas[J].Clin Cancer Res. 2006, 12 (22) : 6765-6771.
    47. Hardy AW, Graham DR, Shearer GM, Herbeuval JP. HIV turns plasmacytoid dendritic cells (pDC) into TRAIL-expressing killer pDC and down-regulates HIV coreceptors by Toll-like receptor 7-induced IFN-alpha[J]. Proc Natl Acad Sci U S A. 2007, 104 (44) : 17453-17458.
    48. Yano T, Liu Z, Donovan J, et al. Stromal cell derived factor-1 (SDF-1)/CXCL12 attenuates diabetes in mice and promotes pancreatic beta-cell survival by activation of the prosurvival kinase Akt[J]. Diabetes. 2007, 56 (12) : 2946-2957.
    49. Borders AS, Hersh MA, Getchell ML, et al. Macrophage-mediated neuroprotection and neurogenesis in the olfactory epithelium[J]. Physiol Genomics. 2007, 31 (3) : 531-543.
    50. Mocchetti I, Bachis A, Masliah E. Chemokine receptors and neurotrophic factors: potential therapy against aids dementia? [J]J Neurosci Res. 2008, 86 (2) : 243-255.
    51. Wendt MK, Cooper AN, Dwinell MB. Epigenetic silencing of CXCL12 increases the metastatic potential of mammary carcinoma cells[J]. Oncogene. 2008, 27 (10) : 1461- 1471.
    52. Zhang P. Transgenic RNA interference in mice[J]. Methods Mol Biol. 2008, 442 (2) : 259-266.
    1. Rossi D, Zlotnik A. The biology of chemokines and their receptors[J]. Annu Rev Immunol.2000; 18 (2): 217-242.
    2. Balkwill F, Mantovani A. Inflammation and cancer:back to Virchow?[J] Lancet. 2001; 357 (4):539-545.
    3. Murphy PM, Baggiolini M, Charo IF, et al. International union of pharmacology. XXII.Nomenclature for chemokine receptors[J]. Pharmacol Rev, 2000, 52 (1):145-176.
    4. Zlotnik A, Yoshic O. Chemokines: a new classification system and their role in inununity[J]. Immunity, 2000, 12 (2):121-127.
    5. Luster AD. Chemokines-chemotactic cytokines that mediate inflammalion[J]. N Engl J Med, 1998, 338 (7):436-445.
    6. Murphy PM. Chemokines and the molecular basis of cancer metastasis[J]. N Engl J Med, 2001, 345 (11):833-835.
    7. Scotton CJ,Wilson JL,Scott K,et al. Multiple actions of the chemokine CXCL12 on epithelial tumor cells in human ovarian cancer[J].Cancer Res. 2002, 62 (20):5930-5938.
    8. Nagasawa T, Kikutani H, Kishimoto T, et al . Molecular cloning and structure of pre-B-cell stimulating factor[J]. Proc Natl Acad Sci USA, 1994, 91 (6):2305-2309.
    9. Gleichmann M, Gillen C, Czardybon M, et al. Cloning and characterization of SDF-1 gamma, a novel SDF-1 chemokine transcript with developmentally regulated expression in the nervous system[J]. Eur J Neuro Sci, 2000, 12 (6):1857-1866.
    10. Loetscher M, Geiser T, O’Reilly T, et al. Cloning of a human seven-transmembrane domain receptor, LESTR, that is highly expressed in leukocytes[J]. J Biol Chem, 1994, 269 (1):232-237.
    11. Feng Y, Broiler CC, Kennedy PE, et al. HIV-1 entry cofactor; Funectional cDNA cloning of a seven transmembrane, G protein-coupled receptor[J]. Science, 1996, 272 (5263):872-877.
    12. Kollet O, Petit I, Kahn J, et al. Human CD34+ CXCR4+ sorted cells harbor intracellular CXCR4, which can be functionally expressed and provide NOD/SLID repopulation [J]. Blood, 2002, 100 (8):2778-2786.
    13.杨文博,孔佩艳.趋化因子基质细胞衍生因子1 (SDF-1)及其受体CXCR4[J].免疫学杂志,2003, 19 (3):142-146.
    14. Dekker LV ,Segal AW. Perspectives: signal transduction. Signals to move cells[J].Science , 2000, 287 (5455):982-985.
    15. Christopherson KW, Cooper S,Broxmeyer HE. Cell surface eptidase CD26 /DPPIV mediates G-CSF mobilization of mouse progenitor cells [J]. Blood, 2003, 101 (12):4680-4686.
    16. Sbaa-Ketata E, Courel M N,Delpech B, et al. Hyaluronan-derived oligosaccharides enhance SDF-1-dependent chemotactic effect on peripheral blood hematopoietic CD34+ cells [J]. Stem Cells, 2002, 20 (6):585-587.
    17. Hecht I, Cahalon L, Hershkoviz R,et al. Heterologous desensitization of T cell functions by CCR5 and CXCR4 ligands: inhibition of cellular signaling, adhesion and chemotaxis [J]. Int Immunol, 2003, 15 (1):29-38.
    18. Wysoczynski M, Reca R, Ratajczak J, et al. Incorporation of CXCR4 into membrane lipid rafts primes homing-related responses of hematopoietic stem/progenitor cells to an SDF-1 gradient [J]. Blood, 2005, 105 (1):40-48.
    19. Bachelder R E, Wendt M A, Mercurio A M. Vascular endothelial growth factor promotes breast carcinoma invasion in an autocrine manner by regulating the chemokine receptor CXCR4 [J]. Cancer Res, 2002, 62 (24):7203-7206.
    20. Ceradini D J, Kulkarni A R,Callaghan M J, et al. Progenitor cell trafficking is regulated by hypoxic gradients through HIF-1 induction of SDF-1 [J]. Nat Med, 2004, 10 (8):858-864.
    21.王杰,欧周罗. CXCLl2-CXCR4生物学轴与肿瘤转移[J].国外医学肿瘤学分册, 2004, 31 (5):326-330.
    22. Vcari A P, Caux C. Chemokine in cancer cytokine growth factor[J]. Rev, 2002, 13 (2):143-154.
    23. Balkwill F. Chemokine biology in cancer [J]. Semin Immunol, 2003, 15 (1):49-55.
    24. Kulbe H, Levinson Nr, Balkwill F, et al. The chemokine network in cancer research much more than rirecting cell movement [J].Dev Biol, 2004, 48 (526):489-496.
    25. Simone B, RudyB, Adriana B, et al. Stromal cell-derived factor 1 stimulates human glioblastoma cell growth through the activation of both extracellular signal-regulated kinase 1/2 and AKT[J]. Cancer Res, 2003, 63 (8):1969-1974.
    26. Kijowski J, Baj-KrzyworzekaM, MajkaM, et al. The SDF-1/CXCR4 axsis stimulates VEGF secrition and activates integrins but not affect proliferation and survival in lymphohematopoietic cells [J].Stem Cells, 2001, 19 (5):453-466.
    27. Wu MH, Chen Q, LiD, et al. LRRC4 Inhibits Human Glioblastoma Cells Proliferation, Invasion and proMMP-2 Activation by Reducing SDF-1α/CXCR4-Mediated ERK1/2 and Akt Signaling Pathways[J]. Cellular Biochemistry, 2007.
    28. Balkwill F. The significance of cancer cell expression of the chemokine receptor CXCR4 [J]. Semin Cancer Biol, 2004, 14 (3):171-179.
    29. Kang Y, Siegel P M, Shu W, et al. A multigenic program mediating breast cancer metastasis to bone [J].Cancer Cell, 2003, 3 (6):537-549.
    30. Peled A, Kollet O, Ponomaryov T, et al. The chemokine SDF-1 activates the integrins LFA-1, VLA-4, and VLA-5 on immature human CD34+cells: role in transendothelial/stromal migration and engraftment of NOD.SCID mice [J]. Blood, 2000, 95 (11):3289-3296.
    31. Scotton C J, Wilson J L, Milliken D, et al. Epithelial cancer cell migration: a role for chemokine receptors? [J]. Cancer Res, 2001 ,61 (13):4961-4965.
    32. Ding Z, Issekutz T, Downey G P, et al. L-selectin stimulation enhances functional expression of surface CXCR4 in lymphocytes: implications for cellular activation during adhesion and migration [J]. Blood, 2003, 101 (11):4245-4252.
    33. Majka M, Ratajczak J, Villaire G,et al. Thrombopoietin but not cytokines binding to gp130 protein-coupled receptors activates MAPKp42/44, AKT and STAT proteins in normal human CD34+ cells, megakaryocytes and platelets [J]. Exp Hematol, 2002, 30 (7):751-760.
    34. Chan C C, Shen D, Hackett J J, et al. Expression of chemokine receptors, CXCR4 and CXCR5, and chemokines, BLC and SDF-1,in the eyes of patientswith p rimary intraoculai lymphoma [J]. Ophthalmology, 2003, 110 (2):421-426.
    35. YANG Shi-xi, B IAN Xiu-wu, J IANG Xue-feng, et al. Clinical significance of expressiong of chemokine receptor CXCR4 in human glioma[J]. CMINS, 2005, 10 (8):360-362.
    36. Rempel SA, Dudas S, Ge S, et al. Identification and localizaton of the cytokine sdf-1and its receptor cxcr4, to regions of necrosis and angiogenesis in human glioblastoma[J]. Clin Cancer Res, 2000, 6 (1):102-111.
    37. Schimanski C C, Schwald S, Siminantonaki N, et al. Effect of chemokine receptor CXCR4 CCR7 on themetastatic behavior of human colorectal cancer[J]. Clin Cancer Res, 2005, 11 (5):1743-1750.
    38. Eisenhardt A, FreyU, TackM, et al. Expression analysis and potential functional role of the cxcr4 chemokine receptor in bladder cancer[J]. Eur Urol, 2005, 457 (1):111-117.
    39. Mochizuki H, Matsuhara A, Teishima J, et al. Interaction of ligand receptor system between SDF-1 and cxcr4 in human prostate cancer: a possible p redictor of metastasis [J]. Biochem Biophys Res Commun, 2004, 320 (3):656-663.
    40. Scala S, Ottaiano A, Ascierto P A, et al. Expression of cxcr4 predicts poor prognosis inpatients with malignabt melanoma [J]. Clin Cancer Res, 2005, 11 (5):1835-1841.
    41. Wehler T, Wolfert F, Schimanski C C, et al. Strong exp ression of chemokine receptor CXCR4 by pancreatic cancer correlates with advanced disease[J]. Oncol Rep, 2006, 16 (6):1159-1164.
    42. Porcile C, Bajetto A, Barbieri F, et al. Stromal cell2derived factor-1alpha ( SDF-1alpha /CXCL12 ) stimulates ovarian cancer cell growth through the EGF receptor transactivation [J]. Exp Cell Res, 2005, 308 (2):241-253.
    43. HUANG Shao-song, YANG Hui, BIAN Xiu-wu, et al. Relationship between invasiveness and CXCR4 expression in human pituitrry adenomas [J]. Academiae Medicinae Militaris Tertiae, 2005, 27 (20):2063-2066.
    44. SehgalA, Keener C, Boynton AL, et al. CXCR4, a chemokine receptor, is over-expressed in and required for proliferation of glioblastoma tumor cells[J]. Surg Oncol, 1998, 69 (2):99-104.
    45. Kang H, Mansel R E, J iangW G. Genetic manipulation of stromal cell-derived factor-1 attests the p ivotal role of the autocrine SDF-1-CXCR4 pathway in the aggressiveness of breast cancer cells [J]. Oncol, 2005, 26 (5):1429-1434.
    46. YANG Shi-xi, BIAN Xiu-wu, JIANG Xue-feng, et al. Expression of CXCR4 in endothelial cells of glioma and ECV304 cells and the significance[J]. Academiae Medicinae Militaris Tertiae, 2004, 26 (22):2020-2022.
    47. Wu M H, Chen Q, LiD, et al. LRRC4 Inhibits Human Glioblastoma Cells Proliferation, Invasion and proMMP-2 Activation by Reducing SDF-1α/CXCR4-Mediated ERK1/2 and Akt Signaling Pathways[J]. Cellular Biochemistry, 2007.
    48. WU Ming-hua, LI Gui-yuan. Structure and function of the leucinerich repeat as a protein recognition motif [J]. Int J Pathol Clin Med, 2006, 26 (1):35-38.
    49. Juarez J, Bradstock K F, Cottlieb D J, et al. Effects of inhibitors of the chemokine recep tor CXCR4 on acute lymphoblastic leukemia cells in vitro[J]. Leukemia, 2003, 17 (7):1294-1300.
    50. Sun YX, Wang J, Shelburne CE, et al. Expression of CXCR4 and CXCL12 (SDF-1) in human prostate cancers (PCa) in vivo [J]. J Cell Biochem, 2003, 89 (3):462-473.
    51. Barbero S, Bonavia R, Bajetto A, et al. Stromal cell-derived factor 1alpha stimulates human glioblastoma cell growth through the activation of both extracellular signal-regulated kinases 1/2 and Akt [J]. Cancer Res, 2003, 63 (8):1969-1974.
    52. Muller A, Homey B, Soto H, et al. Involvement of chemokine receptors in breast cancer metastasis [J]. Nature, 2001, 410 (6824):50-56.
    53. Moller C, Stromberg T, Juremalm M, et al. Expression and function of chemokine receptors in human multiple myeloma[J]. Leukemia, 2003; 17 (1):203-217.
    54. Scotton CJ , Wilson JL , Scott K, et al. Multip le actions of the chemokine CXCL12 on epithelial tumor cells in human ovarian cancer[J]. Cancer Res, 2002; 62 (20):5930-5943.
    55. Kijima T, Maulik G, M a PC, et al. Regulation of cellularm proliferation, cytoskeletal function, and signal transduction through CXCR4 and c-Kit in small cell lung cancer cells[J]. Cancer Res, 2002; 62 (21):6304-6315.
    56. Taichman RS, Cooper C, Keller ET, et al. Use of the stromal cell-derived factor-1/ CXCR4 pathway in prostate cancer metastasis to bone[J]. Cancer Res, 2002; 62 (6):1832-1845.
    57. Libura J , Drukala J , MajkaM , et al. CXCR4/SDF-1 signaling is active in rhabdomyo sarcoma cells and regulates locomo tion,chemo taxis, and adhesion[J]. Blood, 2002; 100 (7):2597-2612.
    58. Staller P, Sulitkova J, L isztwan J, et al. Chemokine receptor CXCR4 downregulated by von Hippel-L indau tumour suppressor pVHL[J]. Nature, 2003; 425 (6955):307.
    59. Mori T, Doi R, KoizumiM, et al. Imamura M. CXCR4 antagonist inhibits stromal cell-derived factor 1-inducedm igration and invasion of human pancreatic cancer[J]. Mol Cancer Ther, 2004; 3 (1):29-38.
    60.王青青,王建莉.趋化因子及其受体与肿瘤[J].中国肿瘤生物治疗杂志,2001, 8 (1):2-6.
    61. Phillips RJ,Burdick MD, Lutz M, et al. The strornal derived factor-1/CXCL12-CXC chemolone receptor 4 biological axis in non-small cell lung cancer metastases[J].Am J Respir Crit Care Med, 2003, 167 (12):1676-1682.
    62.李芳,朱怀仕.卵巢癌趋化因子受体CXCR4的表达及意义[J].济宁医学院学报, 2003, 26 (3):1-4.
    63. Vila-Coro A J, Rodriguez-Frade JM, De Ana A M, et al. The chemokine SDF-1αtriggers CXCR4 receptor dimerization and activates the JAK/STAT pathway [J]. FASEB J, 1999, 13 (13):1699-1710.
    64. Cheng ZJ, Zhao J, Sun Y, et al. beta-arrestin differentially regulates the chemokine receptor CXCR4-mediated signaling and receptor internalization, and this implicates multiple interaction sites between beta-arrestin and CXCR4. J Bio l Chem,2000;275 (4):2479-2488.
    65. Sun Y, Cheng Z, Ma L, et al.β-arrestin 2 is critically involved in CXCR4-mediated chemotaxis and this is mediated by its enhancement of p38 MAPK activation [J]. J Biol Chem, 2002, 277 (51): 49212-49219.
    66. Chernock RD, Cherla RP, Ganju RK. SHP2 and cbl participate inα-chemokinereceptor CXCR4-mediated signaling pathways [J]. Blood, 2001,97(3):608-615.
    67. Ganju RK, Brubaker SA, Meyer J, et al. The alpha-chemokine, stromal cell-derived factor-1 alpha, binds to the transmembrane G-protein-coupled CXCR4 receptor and activates multiple signal transduction pathways[J]. J Biol Chem, 1998; 273 (36):23169-23178.
    68. Tilton B, Ho L , Oberlin E, et al. Signal transduction by CXC chemokine receptor 4. Stromal cell-derived factor 1 stimulates prolonged protein kinase B and extracellular signal-regulated kinase 2 activation in T lymphocytes[J]. J Exp Med, 2000; 192 (3):313-324.
    69. Chernock RD, Cherla RP, Ganju RK. SHP2 and cbl participate in alpha-chemokine receptor CXCR4-mediated signaling pathways[J]. Blood, 2001; 97 (3):608-617.
    70. Helbig G, Ch ristopherson KW , Bhat-Nakshatri P, et al. NF-kappa B promotes breast cancer cell migration and metastasis by inducing the expression of the chemokine receptor CXCR4[J]. J Biol Chem, 2003; 278 (24):21631-21646.
    71. Neuhaus T, Stier S, Totzke G, et al. Stromal cell-derived factor 1alpha (SDF-1alpha ) induces gene-expression of early growth response-1 ( Egr-1 ) and VEGF in human arterial endothelial cells and enhances VEGF induced cell proliferation[J]. Cell Prolif, 2003; 36 (2):75-88.
    72. Wang JF, Park IW, Groopman JE. Stromal cell-derived factor-1alpha stimulates tyrosine phosphorylation of multiple focal adhesion proteins and induces migration of hematopoietic progenitor cells: roles of phosphoinositide-3 kinase and protein kinase C[J]. Blood, 2000; 95 (8):2505-2513.
    73. Majka M, Ratajczak J, Kowalska MA, et al. Binding of stromal derived factor-1alpha ( SDF-1alpha) to CXCR4 chemokine receptor in normal human megakaryoblasts but not in platelets induces phosphorylation of m itogen-activated protein kinase p42/44 (MAPK), ELK-1 transcription factor and serine/threonine kinase AKT[J]. Eur J Haematol, 2000; 64 (3):164-177.
    74. Kremer KN, Humphreys TD, KumarA, et al. Distinct role of ZA P-70 and Srchomology 2 domain-containing leukocyte protein of 76 kDa in the prolonged activation of extracellular signal-regulated protein kinase by the stromal cell-derived factor-1 alpha/CXCL12 chemokine[J]. J Immunol, 2003; 171 (1):360-374.
    75. Fernandis A Z, Cherla R P, Ganju R K. Differential regulation of CXCR4-mediated T-cell chemotaxis and mitogen-activated protein kinase activation by the membrane tyrosine phosphatase, CD45[J]. J Biol Chem, 2003, 278 (11):9536-9543.
    76. Roland J , Murphy BJ , Ahr B, et al. Role of the intracellular domains of CXCR4 inSDF-1-mediated signaling[J]. Blood, 2003; 101 (2):399-411.
    77. Uchida D,Begum NM,Almofti A,et al. Possible role of stromalcell-derived factor-1/ CXCR4 signaling only mphnode metastasis of orals quamous cell carcinoma[J]. Exp Cell Res, 2003, 290 (2):289-302.
    78. Schioppa T, Uranchimeg B, Saccani A, et al. Regulation of the chemokine receptor CXCR4 by hypoxia[J]. J ExpMed, 2003, 198 (9):1391-1402.
    79. Tamamura H,Hori A,Kanzaki N,et al. T140 analogs as CXCR4 antagonists identified as anti-metastatic agents in the treatment of breast cancer[J]. FEBS Lett, 2003, 550 (123):79-83.
    80. Zeelenberg IS,Ruuls Van Stalle L,Roos E. The chemokine receptor CXCR4 is required for outgrowth of colon carcinoma micrometastases[J]. Cancer Res, 2003, 63 (13): 3833-3839.
    81. Bertolini F,Dell.Agnola C,Mancuso P,et al. CXCR4 neutralization。a novel therapeutic approach for non-Hodgkin’s lymphoma[J]. Cancer Res, 2002, 62 (11):3106-3112.
    82. Hall JM,Korach KS. Stromal cell-derived factor 1.a novel target of estrogen receptor action.mediates the mitogenic effects of estradiol in ovarian and breast cancer cells[J]. Mol Endocrinol, 2003, 17 (5):792-803.
    83. Cai SH, Tan Y, Ren XD, et al. Loss of C-terminal alpha-helix decreased SDF-1alpha- mediated signaling and chemo taxis without influencing CXCR4 internalization[J]. Acta Pharmacol Sin, 2004; 25 (2):152-165.
    84. Haviv YS, van Houdt WJ, Lu B, et al. Transcrip tional targeting in renal cancer cell lines via the human CXCR4 promoter[J]. Mol Cancer Ther, 2004; 3 (6):687-696.
    85. Chen Y, Stamatoyannopoulos G, Song CZ. Down-regulation of CXCR4 by inducible small interfering RNA inhibits breast cancer cell invasion in vitro[J]. Cancer Res, 2003; 63 (16):4801-4812.
    86. Engel BC,Bauer G, Pepper KA, et al. Intrakines-evidence for a trans-cellularmechanism of action[J]. Mol Ther, 2000; 1(2):165-178.
    87. Chen JD, Bai X, Yang A G, et al. Inactivation of HIV-1 chemokine co-receptor CXCR4 by a novel intrakine strategy[J]. Nat Med, 1997; 3 (10):1110-1121.
    88. Onai N, Zhang Y, Yoneyama H, et al. Impairment of lymphopoiesis and myelopoiesis in mice reconstituted with bone Marrow-hematopoietic progenitor cells expressing SDF-1-intrakine[J]. Blood, 2000; 96 (6):2074-2082.
    89. Homey B, Muller A, Zlotnik A. Chemokines: agents for the immunotherapy of cancers?[J] Nat Rev Immunol, 2002, 2 (3):75-184.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700