用户名: 密码: 验证码:
应用蛋白质组学技术研究新疆维吾尔族、汉族原发性高尿酸血症
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
国内外大量流行病学研究表明,随着人们生活水平的提高,高尿酸血症的发病率日渐增高。高尿酸血症(hyperuricemia,HUA)除了引发痛风和尿酸性肾病等疾病,还可引起胰岛素抵抗,加速血管病变和糖耐量异常的发生和发展,与高血压、动脉粥样硬化、冠心病、血脂血糖代谢紊乱、肥胖和胰岛素抵抗等代谢综合症疾病密切相关。因此加强对高尿酸血症的认识和研究,积极探寻其发病机制,阻断高尿酸血症向相关疾病转化,寻找有效的防治策略和措施,显得非常必要和迫切。蛋白质作为基因功能和生理功能的实施者和生命现象的直接体现者,对蛋白质结构和功能的研究将直接阐明生命在生理或病理条件下的变化机制。近些年兴起的蛋白质组学研究方法为标准蛋白的筛选提供了有力工具,从而为研究重大疾病病理生理学机制、发现早期诊断的特异性标志物、研发药物作用靶点等开辟了新的途径。
     本课题选择维吾尔族及汉族高尿酸血症人群做为研究对象,运用双向电泳和串联质谱联用的研究方法进行研究,不仅可以发现不同民族高尿酸血症患者潜在的差异蛋白质,探讨可能参与不同民族高尿酸血症发病机制的蛋白质,而且能为将来进一步研究生活环境因素改变和遗传因素交互作用对高尿酸血症发病的综合影响奠定基础,为相关代谢性疾病的人群防治提供科学建议。
     目的:
     (1)应用2-D电泳技术检测维吾尔族和汉族原发性高尿酸血症患者和健康人血清蛋白质斑点,初步筛选出两个民族的患者和健康人的血清差异蛋白质。
     (2)应用基质辅助激光解吸飞行时间串联质谱(MALDI-TOF-MS/MS)技术鉴定差异蛋白质,筛选出可能参与了高尿酸血症的发生和发展的蛋白质,探讨不同民族高尿酸血症发病的可能机制。
     方法:
     (1)临床资料及血清标本采集:按照纳入、排出标准收集汉族、维吾尔族原发性高尿酸血症患者血清各15例为病例组;选择同期就诊的年龄、性别、地域等相匹配的汉族、维吾尔族健康体检者血清各15例为正常对照组。每组按等体积方式混合为一个血清样本。血清都是在患者和健康志愿者知情的情况下收集,所有处理过程都符合新疆医科大学第一附属医院医学伦理委员会的要求。
     (2)双向电泳:利用亲和捕获的方法去除血清混合样本中高丰度的白蛋白和免疫球蛋白,并除去血清中存在的影响后续实验的组份,然后用双向电泳方法进行蛋白质的分离。分离获得的凝胶内的蛋白点通过胶内考马斯亮蓝染色法显色,利用图像分析软件,经定量比较筛选出在维吾尔族和汉族高尿酸血症患者和健康人血清双向电泳图谱中表达存在显著差异的蛋白斑点。为了保证实验结果的重复性,以上实验在相同条件、不同时间下重复进行3次。
     (3)蛋白质点鉴定:双向电泳获得的凝胶中的差异蛋白斑点经切胶、酶解后运用基质辅助激光解吸飞行时间串联质谱技术(MALDI-TOF-MS/MS)进行鉴定,获得差异蛋白点的质量指纹图(PMF)和肽序列标签图(PST)及相关数据。
     (4)质谱数据的检索:
     将PMF数据和PST数据在NCBI(nr)非冗余数据库和Swissprot数据库进行检索。在两个数据库中检索数据一致并且Total Ion Score C.I.%大于95%的认为是成功鉴定出的蛋白质。
     (5)差异蛋白质的验证:本研究另外分别收集了维吾尔族和汉族原发性高尿酸血症患者血清各30例及维吾尔族和汉族健康人的血清各30例,用Western-blot方法验证补体C3和触珠蛋白在各组中的表达情况,同时评价差异表达蛋白质在高尿酸血症患者血清中表达的相对特异性并且探讨其与高尿酸血症的关系。
     结果:
     (1)获得了重复性较好的血清蛋白质组双向凝胶电泳图谱:血清标本经过预处理后,进行了3次重复双向电泳,获得了重复性较好的电泳图谱。维吾尔族和汉族血清双向电泳图谱中约各检测到650个蛋白质斑点。这些蛋白斑点经定量比较,维吾尔族高尿酸血症患者血清中筛选出10个蛋白斑点与健康人血清表达存在差异,其中9个蛋白斑点在高尿酸血症患者血清中表达上调,1个蛋白斑点在高尿酸血症患者血清中表达下调;汉族高尿酸血症患者血清中筛选出8个蛋白斑点与健康人血清表达存在差异,其中4个蛋白斑点在高尿酸血症患者血清中表达上调,4个蛋白斑点在高尿酸血症患者血清中表达下调;
     (2)差异蛋白斑点的质谱鉴定及数据库搜索:所有差异蛋白斑点经MALDI-TOF-MS/MS质谱分析和数据库检索,维吾尔族及汉族高尿酸血症组各成功鉴定出4种蛋白质。汉族高尿酸血症组鉴定出的4种蛋白质分别是补体C3(C3)、触珠蛋白(Hp)、α1-抗胰蛋白酶(α1-AT)和载脂蛋白L1(APOL1),其中补体C3、Hp、α1-AT呈上调表达,APOL1呈下调表达;维吾尔族高尿酸血症组鉴定出的的4种蛋白分别是补体C3(C3)、触珠蛋白(Hp)、补体C4(C4)和载脂蛋白A1(APOA1),均呈上调表达;
     (3)补体C3和Hp的Westem-blot验证:对在汉族和维吾尔族高尿酸血症患者血清中均呈上调表达的补体C3和触珠蛋白用免疫印迹法(Western blot)进行验证,同时评价两种蛋白在高尿酸血症患者血清中表达的相对特异性。结果显示,触珠蛋白和补体C3在维吾尔族和汉族高尿酸血症患者及健康人群血清中都有表达,但在高尿酸血症患者血清中的表达高于健康人,差异有统计学意义(P<0.05)。
     结论:
     本研究进一步证实了蛋白质组学技术是研究疾病差异蛋白质的有力工具。通过双向电泳联合质谱的方法,我们发现补体C3(C3)、触珠蛋白(Hp)、α1-抗胰蛋白酶(α1-AT)在汉族高尿酸血症患者血清中表达上调,载脂蛋白L1(APOL1)在汉族高尿酸血症患者血清中表达下调;补体C3(C3)、触珠蛋白(Hp)、补体C4(C4)和载脂蛋白A1(APOA1)在维吾尔族高尿酸血症患者血清中均表达上调。这些差异表达蛋白质可能参与了高尿酸血症的发生和发展以及高尿酸血症与其他代谢综合症疾病之间的相互影响。
The large number of domestic and international epidemiological studies have shownthat the incidence of hyperuricemia (HUA) increase gradually with the improvement ofpeople's living standards. HUA not only leads to gout and uric acid kidney diseases, butalso can cause insulin resistance, vascular lesions and glucose tolerance abnormal.There isclosely correlationship between HUA and metabolic syndrome (hypertention, arteryatherosclerosis, coronary heart disease, dyslipidemia, obesity and insulin resistance).Therefore it is very necessary and urgent to strengthen the study of hyperuricemia and toexplore its pathogenesis, prevent transforming to related diseases.The proteomics methodsbooming in recent years provide a powerful tool for the screening of a standard protein.
     In this study we have used proteomics to identify differentially expressed proteins ofUyghur and Han patients with HUA in comparison to normal subjects’serum.The validityof the differential protein expression in patient’s with HUA was further examined andconfirmed with Western-blot.From this study we want to found that the differentlyexpressed proteins in Uyghur and Han patients with HUA, to explore the proteins possiblyinvolve in the pathogenesis of hyperuricemia.And for applying the foundation for furtherstudying of interaction of environment factors and genetic factors on hyperuricemia.
     Objective:
     (1) Screen the differently expressed proteins in Uyghur and Han patients with HUAand normal population by2-DE.
     (2) Identify the differently expressed proteins by MALDI-TOF-MS/MS, select theproteins that possibly involve in the pathogenesis of HUA and transformation betweenHUA and metabolic diseases.
     Methods:
     (1) Collection for clinical data and serum samples
     15sera of Uyghur and Han patients with HUA were selected respectively as studygroups and the control groups were selected from health examination people in the FirstAffiliated Hospital.Blood sample was taken from fasting patients in the morning.Sera wasseparated and freezed.The serum is collected in the case of informed patients and healthyvolunteers, and all process meet the requirements of the Ethics Committee of the FirstAffiliated Hospital of Xinjiang Medical University
     (2) Two dimensional electrophoresis (2-DE)
     Total protein was extracted, purified and quantified, and then separated by2-DE.Different protein spots were stained by Coomassie Brilliant Blue, and the twodimentional electrophoregram was analyzed with the application of PDQuest7.3.0software to screen the different proteins.In order to ensure the reproducibility of theexperimental results, the above experiment was repeated three times under the sameconditions, different time.
     (3) Identification of proteins by MALDI-TOF–MS/MS
     protein spots which displayed significant expressional differences (up-ordown-regulated by more than2.5times) were excised from the gel and sliced into sectionsabout1mm3.Samples were analyzed using MALDI-TOF-MS/MS.After MS analysis,peptides, which were different from matrix PMF (peptide mass fingerprint), were selectedand MS/MS (massspectrum/massspectrum) was achieved.
     (4) Database retrieval.
     The mass spectrum obtained from MALDI-TOF was searched using Mascotsoftware from NCBInr (www.matrixscience.com) and Swissprothttp (www.expasy.ch/sprot). The results were accordance in the two database and Total Ion Score C.I.%wasover95%were recogonized as successfully identified proteins.
     (5) Validation of differential expressed proteins.
     The levels of the proteins identified above (associated with HUA pathology) weremeasured in blood serum samples using Western-blot.Blood serums were obtainedrespectively from another30patients with HUA in Uyghur and Han and30normalsubjects in Uyghur and Han.
     Results:
     (1)2-D maps with a good reproducibility were obtained.
     After pretreatment, about650protein spots were respectively detected in2-dimensional electrophoresis profiles of Han and Uygur sera.By the quantitative analyse,there were8differential expressed protein spots in Han patients with HUA and10differential expressed protein spots in Uygur patients with HUA compared to controlgroups. Four of the total8proteins were up-expressed and other four proteins weredown-expressed.And nine of the total10proteins were up-expressed and other one proteinwas down-expressed in the serum.
     (2) Identification and verification of protein spots
     8PMFs were successfully identified by MALDI-TOF-MS/MS analyzing andretrieving NCBInr and Swissspot database.Complement3, haptoglobin, α1-antitrypsinwere up-regulated and apolipoprotein L1was down-regulated in Han patients as comparedwith control group. Complement3, complement4, haptoglobin, apolipoprotein A1wereup-regulated in Uygur patients as compared with control group.
     (3) Validation of complement3and haptoglobin by Western-blot
     Complement3and haptoglobin were validated by Western-blot and the results ofWestern-blot support the results of proteomic analysis.
     Conclusions:
     This study further validated that the proteomics techniques are powerful tools forscreening different proteins from patient’s serum.Our results revealed a significantlyincreased expression of Hp, C3and α1-AT in Han patients with HUA, and a significantlylowered level of APO L1in Han patients with HUA. And Complement3, complement4,haptoglobin, apolipoprotein A1are in higher level expression in Uygur patients' sera thanin control.These proteins are correlated with immunization and lipid metabolism..Ourresults of comparative serum proteomics analysis might provide clues for furtherelucidating the role of these proteins in HUA. These differentially expressed proteins maybe involved in the HUA occurrence, development and the relationship betweenhyperuricemia and other metabolic syndrome diseases.
引文
[1] Ar'Ev A L, Kunitskaia N A, Kozina L S. Gout and hyperuricemia today:prevalence,risk factors, features in the elderly [J]. Adv Gerontol,2012,25(3):540-544.
    [2] B L, T W, Hn Z, et al. The prevalence of hyperuricemia in China:a meta-analysis[J].BMC Public Health,2011,11:832.
    [3] Chuang S Y, Lee S C, Hsieh Y T, et al. Trends in hyperuricemia and gout prevalence:Nutrition and Health Survey in Taiwan from1993-1996to2005-2008[J]. Asia Pac JClin Nutr,2011,20(2):301-308.
    [4] Zhu Y, Pandya B J, Choi H K. Prevalence of gout and hyperuricemia in the USgeneral population:the National Health and Nutrition Examination Survey2007-2008[J]. Arthritis Rheum,2011,63(10):3136-3141.
    [5] Robinson P, Taylor W, Merriman T. A Systematic Review of the Prevalence of Goutand Hyperuricemia in Australia[J]. Intern Med J,2012.
    [6] Ma W, Chen J, Wang W, et al. Analysis of prevalence and risk factors ofhyperuricemia in subjects undergoing routine physical examinations in Guangzhou[J]. Nan Fang Yi Ke Da Xue Xue Bao,2012,32(12):1812-1815.
    [7]田小草,逄增昌,鲍国春,等.青岛市居民高尿酸血症患病及影响因素分析[J].中国公共卫生,2008(3).
    [8]孙玉萍,姚华,艾木拉江·买买提艾力,等.汉族和维吾尔族居民血尿酸及高尿酸血症分析[J].中国公共卫生,2008(2).
    [9]金明姬,刘冠贤,石咏军.高尿酸血症与胰岛素抵抗关系的研究进展[J].中国全科医学,2012(3):233-236.
    [10]李剑军,张秀华,尹国幸.中老年高尿酸血症与胰岛素抵抗的关系[J].南昌大学学报(医学版),2011(3).
    [11]蒋升,李素华.老年高尿酸血症与糖尿病前期及胰岛素抵抗的关系[J].中国全科医学,2009(1).
    [12] Cohen E, Krause I, Fraser A, et al. Hyperuricemia and metabolic syndrome:lessonsfrom a large cohort from Israel[J]. Isr Med Assoc J,2012,14(11):676-680.
    [13] Ichida K. Hyperuricemia and metabolic syndrome [J]. Nihon Yakurigaku Zasshi,2010,136(6):321-324.
    [14] Indraratna P L, Williams K M, Graham G G, et al. Hyperuricemia, cardiovasculardisease, and the metabolic syndrome[J]. J Rheumatol,2009,36(12):2842-2844.
    [15] Li C, Hsieh M C, Chang S J. Metabolic syndrome, diabetes, and hyperuricemia[J].Curr Opin Rheumatol,2013,25(2):210-216.
    [16] Tomiyama H, Higashi Y, Takase B, et al. Relationships among hyperuricemia,metabolic syndrome, and endothelial function[J]. Am J Hypertens,2011,24(7):770-774.
    [17] Delles C, Neisius U, Carty D M. Proteomics in hypertension and other cardiovasculardiseases[J]. Ann Med,2012,44Suppl1:S55-S64.
    [18] Kuo C F, Yu K H, Luo S F, et al. Role of uric acid in the link between arterialstiffness and cardiac hypertrophy:a cross-sectional study[J]. Rheumatology(Oxford),2010,49(6):1189-1196.
    [19] Strasak A M, Kelleher C C, Brant L J, et al. Serum uric acid is an independentpredictor for all major forms of cardiovascular death in28,613elderly women:aprospective21-year follow-up study[J]. Int J Cardiol,2008,125(2):232-239.
    [20] Strasak A, Ruttmann E, Brant L, et al. Serum uric acid and risk of cardiovascularmortality:a prospective long-term study of83,683Austrian men[J]. Clin Chem,2008,54(2):273-284.
    [21] Ioachimescu A G, Brennan D M, Hoar B M, et al. Serum uric acid is an independentpredictor of all-cause mortality in patients at high risk of cardiovascular disease:apreventive cardiology information system(PreCIS)database cohort study[J].Arthritis Rheum,2008,58(2):623-630.
    [22] Kawai T, Ohishi M, Takeya Y, et al. Serum uric acid is an independent risk factor forcardiovascular disease and mortality in hypertensive patients[J]. Hypertens Res,2012,35(11):1087-1092.
    [23] Okura T, Higaki J, Kurata M, et al. Elevated serum uric acid is an independentpredictor for cardiovascular events in patients with severe coronary arterystenosis:subanalysis of the Japanese Coronary Artery Disease(JCAD)Study[J]. CircJ,2009,73(5):885-891.
    [24] Pillinger M H, Rosenthal P, Abeles A M. Hyperuricemia and gout:new insights intopathogenesis and treatment[J]. Bull NYU Hosp Jt Dis,2007,65(3):215-221.
    [25] Yamada Y.[Deficiencies of hypoxanthine guanine phosphoribosyltransferase(HPRT)][J]. Nihon Rinsho,2008,66(4):687-693.
    [26] Yamada Y, Wakamatsu N, Taniguchi A, et al. Hypoxanthine guanine phosphori-bosyltransferase (HPRT) mutations in the Asian population[J]. NucleosidesNucleotides Nucleic Acids,2011,30(12):1248-1255.
    [27] Liu H, Peng X, Zhao F, et al. N114S mutation causes loss of ATP-inducedaggregation of human phosphoribosylpyrophosphate synthetase1[J]. BiochemBiophys Res Commun,2009,379(4):1120-1125.
    [28] Ichida K, Hosoyamada M, Kamatani N, et al. Age and origin of the G774A mutationin SLC22A12causing renal hypouricemia in Japanese[J]. Clin Genet,2008,74(3):243-251.
    [29] Anzai N, Ichida K, Jutabha P, et al. Plasma urate level is directly regulated by avoltage-driven urate efflux transporter URATv1(SLC2A9)in humans[J]. J BiolChem,2008,283(40):26834-26838.
    [30] Mckeigue P M, Campbell H, Wild S, et al. Bayesian methods for instrumentalvariable analysis with genetic instruments('Mendelian randomization'):examplewith urate transporter SLC2A9as an instrumental variable for effect of urate levelson metabolic syndrome[J]. Int J Epidemiol,2010,39(3):907-918.
    [31]江艳,姚华,孙玉萍,等.瘦素基因G2548A位点多态性与男性高尿酸血症的相关性研究[J].新疆医科大学学报,2007(6).
    [32]姚华,孙玉萍,玛丽亚·沙吾那斯,等.载脂蛋白E基因多态性与原发性高尿酸血症相关性研究[J].新疆医科大学学报,2007(6):543-547.
    [33]姚华,丁丽丽,王先敏,等.男性高尿酸血症与亚甲基四氢叶酸还原酶C677T多态性的关系[J].癌变.畸变.突变,2007(1).
    [34] Chiou W K, Huang D H, Wang M H, et al. Significance and association of serum uricacid(UA)levels with components of metabolic syndrome(MS)in the elderly[J]. ArchGerontol Geriatr,2012,55(3):724-728.
    [35] Lin S D, Tsai D H, Hsu S R. Association between serum uric acid level andcomponents of the metabolic syndrome[J]. J Chin Med Assoc,2006,69(11):512-516.
    [36] Li H, Li C, Wu H, et al. Identification of Apo-A1as a biomarker for early diagnosisof bladder transitional cell carcinoma[J]. Proteome Sci,2011,9(1):21.
    [37] Yeager M E, Colvin K L, Everett A D, et al. Plasma proteomics of differentialoutcome to long-term therapy in children with idiopathic pulmonary arterialhypertension[J]. Proteomics Clin Appl,2012,6(5-6):257-267.
    [38] Bluher M, Wilson-Fritch L, Leszyk J, et al. Role of insulin action and cell size onprotein expression patterns in adipocytes[J]. J Biol Chem,2004,279(30):31902-31909.
    [39] Lee K H, Chung H S, Kim H S, et al. Human alpha-enolase from endothelial cells asa target antigen of anti-endothelial cell antibody in Behcet's disease[J]. ArthritisRheum,2003,48(7):2025-2035.
    [40]姚华,孙玉萍,李清,等.新疆汉族男性高尿酸血症与代谢综合征相关性研究[J].新疆医科大学学报,2007(6).
    [41] Brodov Y, Behar S, Boyko V, et al. Effect of the metabolic syndrome andhyperuricemia on outcome in patients with coronary artery disease(from theBezafibrate Infarction Prevention Study)[J]. Am J Cardiol,2010,106(12):1717-1720.
    [42] Neogi T, Ellison R C, Hunt S, et al. Serum uric acid is associated with carotidplaques:the National Heart, Lung, and Blood Institute Family Heart Study[J]. JRheumatol,2009,36(2):378-384.
    [43] Edwards N L. The role of hyperuricemia and gout in kidney and cardiovasculardisease[J]. Cleve Clin J Med,2008,75Suppl5:S13-S16.
    [44] Delva J, Johnston L D, O'Malley P M. The epidemiology of overweight and relatedlifestyle behaviors:racial/ethnic and socioeconomic status differences amongAmerican youth[J]. Am J Prev Med,2007,33(4Suppl):S178-S186.
    [45] Saag K G, Choi H. Epidemiology, risk factors, and lifestyle modifications for gout[J].Arthritis Res Ther,2006,8Suppl1:S2.
    [46] Ku H K, Lim H M, Oh K H, et al. Interpretation of protein quantitation using theBradford assay:Comparison with two calculation models[J]. Anal Biochem,2013,434(1):178-180.
    [47] Aminian M, Nabatchian F, Vaisi-Raygani A, et al. Mechanism of Coomassie BrilliantBlue G-250binding to cetyltrimethylammonium bromide:An interference with theBradford assay[J]. Anal Biochem,2013,434(2):287-291.
    [48] Wenrich B R, Trumbo T A. Interaction of nucleic acids with Coomassie Blue G-250in the Bradford assay[J]. Anal Biochem,2012,428(2):93-95.
    [49] Gorg A, Drews O, Luck C, et al.2-DE with IPGs[J]. Electrophoresis,2009,30Suppl1:S122-S132.
    [50] Landegren U, Vanelid J, Hammond M, et al. Opportunities for sensitive plasmaproteome analysis[J]. Anal Chem,2012,84(4):1824-1830.
    [51] Carlsson A, Persson O, Ingvarsson J, et al. Plasma proteome profiling revealsbiomarker patterns associated with prognosis and therapy selection in glioblastomamultiforme patients[J]. Proteomics Clin Appl,2010,4(6-7):591-602.
    [52] Burte F, Brown B J, Orimadegun A E, et al. Severe childhood malaria syndromesdefined by plasma proteome profiles[J]. PLoS One,2012,7(12):e49778.
    [53] Josse A R, Garcia-Bailo B, Fischer K, et al. Novel effects of hormonal contraceptiveuse on the plasma proteome[J]. PLoS One,2012,7(9):e45162.
    [54] Da C L, Garcia-Bailo B, Borchers C H, et al. Association between the plasmaproteome and serum ascorbic acid concentrations in humans[J]. J Nutr Biochem,2012.
    [55] Zhang Q, Fillmore T L, Schepmoes A A, et al. Serum proteomics reveals systemicdysregulation of innate immunity in type1diabetes[J]. J Exp Med,2013,210(1):191-203.
    [56] Guipaud O. Serum and plasma proteomics and its possible use as detector andpredictor of radiation diseases[J]. Adv Exp Med Biol,2013,990:61-86.
    [57] Jayapalan J J, Ng K L, Razack A H, et al. Identification of potential complementaryserum biomarkers to differentiate prostate cancer from benign prostatic hyperplasiausing gel-and lectin-based proteomics analyses[J]. Electrophoresis,2012,33(12):1855-1862.
    [58] Capriotti A L, Caruso G, Cavaliere C, et al. Comparison of three different enrichmentstrategies for serum low molecular weight protein identification using shotgunproteomics approach[J]. Anal Chim Acta,2012,740:58-65.
    [59]李天旺,黄志祥,郑奔容,等.血清蛋白预处理方案对双向电泳效果的影响[J].中国医学工程,2011(1):1-4.
    [60] Wang Y Y, Cheng P, Chan D W. A simple affinity spin tube filter method forremoving high-abundant common proteins or enriching low-abundant biomarkersfor serum proteomic analysis[J]. Proteomics,2003,3(3):243-248.
    [61] Rabilloud T, Adessi C, Giraudel A, et al. Improvement of the solubilization ofproteins in two-dimensional electrophoresis with immobilized pH gradients[J].Electrophoresis,1997,18(3-4):307-316.
    [62]赵欣,蒲小平,肖卫忠.血清样本双向电泳实验方法学研究[J].中国药理学通报,2010(8):1112-1114.
    [63]廖秋林,丁彦青,赵亮.血清蛋白质组学研究中高丰度蛋白去除方法的建立[J].北京医学,2007(5):293-296.
    [64] Depagne J, Chevalier F. Technical updates to basic proteins focalization using IPGstrips[J]. Proteome Sci,2012,10(1):54.
    [65] Lengqvist J, Eriksson H, Gry M, et al. Observed peptide pI and retention time shiftsas a result of post-translational modifications in multidimensional separations usingnarrow-range IPG-IEF[J]. Amino Acids,2011,40(2):697-711.
    [66] Schriebl K, Trummer E, Weik R, et al. Applicability of different fluorescent dyes forisoform quantification on linear IPG gels[J]. Electrophoresis,2007,28(12):2100-2107.
    [67] Dwek M, Peiris D.2-DE-based proteomics for the analysis of metastasis-associatedproteins[J]. Methods Mol Biol,2012,878:111-120.
    [68] Charro N, Hood B L, Faria D, et al. Serum proteomics signature of cystic fibrosispatients:a complementary2-DE and LC-MS/MS approach[J]. J Proteomics,2011,74(1):110-126.
    [69] Franco O L, Pereira J L, Costa P H, et al. Methodological evaluation of2-DE to studyroot proteomics during nematode infection in cotton and coffee plants[J]. PrepBiochem Biotechnol,2010,40(2):152-163.
    [70]李俊,贾丽丽,陆琳娜,等.优化并建立双向凝胶电泳初步研究糖尿病视网膜病变血清蛋白质组[J].眼科研究,2010(12):1166-1170.
    [71] Stoyanov A. IEF-based multidimensional applications in proteomics:toward higherresolution[J]. Electrophoresis,2012,33(22):3281-3290.
    [72] Seshi B. Proteomics strategy based on liquid-phase IEF and2-D DIGE:application tobone marrow mesenchymal progenitor cells[J]. Proteomics,2007,7(12):1984-1999.
    [73] An Y, Cooper J W, Balgley B M, et al. Selective enrichment and ultrasensitiveidentification of trace peptides in proteome analysis using transient capillaryisotachophoresis/zone electrophoresis coupled with nano-ESI-MS[J]. Electro-phoresis,2006,27(18):3599-3608.
    [74] Shen Y, Kim J, Strittmatter E F, et al. Characterization of the human blood plasmaproteome[J]. Proteomics,2005,5(15):4034-4045.
    [75] D'Ambrosio C, Arena S, Talamo F, et al. Comparative proteomic analysis ofmammalian animal tissues and body fluids:bovine proteome database[J]. JChromatogr B Analyt Technol Biomed Life Sci,2005,815(1-2):157-168.
    [76] Lin J F, Chen Q X, Tian H Y, et al. Stain efficiency and MALDI-TOF MScompatibility of seven visible staining procedures[J]. Anal Bioanal Chem,2008,390(7):1765-1773.
    [77] Miller I, Crawford J, Gianazza E. Protein stains for proteomic applications:which,when, why?[J]. Proteomics,2006,6(20):5385-5408.
    [78] Volke D, Hoffmann R. Quantitative proteomics by fluorescent labeling of cysteineresidues using a set of two cyanine-based or three rhodamine-based dyes[J].Electrophoresis,2008,29(22):4516-4526.
    [79] Lin C Y, Wang V, Shui H A, et al. A comprehensive evaluation of imidazole-zincreverse stain for current proteomic researches[J]. Proteomics,2009,9(3):696-709.
    [80] Tannu N S, Howell L L, Hemby S E. Integrative proteomic analysis of the nucleusaccumbens in rhesus monkeys following cocaine self-administration[J]. MolPsychiatry,2010,15(2):185-203.
    [81] Fuxius S, Eravci M, Broedel O, et al. Technical strategies to reduce the amount of"false significant" results in quantitative proteomics[J]. Proteomics,2008,8(9):1780-1784.
    [82] Kuramitsu Y, Hayashi E, Okada F, et al. Staining with highly sensitive Coomassiebrilliant blue SeePico Stain after Flamingo fluorescent gel stain is useful for cancerproteomic analysis by means of two-dimensional gel electrophoresis[J]. AnticancerRes,2010,30(10):4001-4005.
    [83] Chevalier F, Rofidal V, Vanova P, et al. Proteomic capacity of recent fluorescentdyes for protein staining[J]. Phytochemistry,2004,65(11):1499-1506.
    [84] Weiss W, Weiland F, Gorg A. Protein detection and quantitation technologies forgel-based proteome analysis[J]. Methods Mol Biol,2009,564:59-82.
    [85]司英健.蛋白质组学研究的内容方法及意义[J].国外医学.临床生物化学与检验学分册,2003(3):167-168.
    [86]吴晓歌,鲁新宇.质谱技术在蛋白质组学中的应用发展[J].医学研究生学报,2007(10):1076-1078.
    [87]倪洋.蛋白质组双向电泳与质谱技术研究进展[J].黑龙江科技信息,2012(5):73.
    [88] Lu M, Cai Z. Advances of MALDI-TOF MS in the Analysis of Traditional ChineseMedicines[J]. Top Curr Chem,2013,331:143-164.
    [89] Wieser A, Schneider L, Jung J, et al. MALDI-TOF MS in microbiologicaldiagnostics-identification of microorganisms and beyond(mini review)[J]. ApplMicrobiol Biotechnol,2012,93(3):965-974.
    [90] Padoan A, Seraglia R, Basso D, et al. Usefulness of MALDI-TOF/MS Identificationof Low-MW Fragments in Sera for the Differential Diagnosis of PancreaticCancer[J]. Pancreas,2012.
    [91] Shao C, Tian Y, Dong Z, et al. The Use of Principal Component Analysis inMALDI-TOF MS:a Powerful Tool for Establishing a Mini-optimized ProteomicProfile[J]. Am J Biomed Sci,2012,4(1):85-101.
    [92] Bader O. MALDI-TOF-MS-based species identification and typing approaches inmedical mycology[J]. Proteomics,2012.
    [93] Gonzalez-Nilo F, Perez-Acle T, Guinez-Molinos S, et al. Nanoinformatics:anemerging area of information technology at the intersection of bioinformatics,computational chemistry and nanobiotechnology[J]. Biol Res,2011,44(1):43-51.
    [94] Liu D, Liu Q H, Wu L H, et al. Website for avian flu information andbioinformatics[J]. Sci China C Life Sci,2009,52(5):470-473.
    [95] Frey L J, Maojo V, Mitchell J A. Bioinformatics linkage of heterogeneous clinicaland genomic information in support of personalized medicine[J]. Yearb MedInform,2007:98-105.
    [96] Robinson M W, Connolly B. Proteomic analysis of the excretory-secretory proteinsof the Trichinella spiralis L1larva, a nematode parasite of skeletal muscle[J].Proteomics,2005,5(17):4525-4532.
    [97] Lei Z, Elmer A M, Watson B S, et al. A two-dimensional electrophoresis proteomicreference map and systematic identification of1367proteins from a cell suspensionculture of the model legume Medicago truncatula[J]. Mol Cell Proteomics,2005,4(11):1812-1825.
    [98] Wang Z, Ruan Y B, Guan Y. Analysis of proteomic components of sera from patientswith hepatocellular carcinomas by two-dimensional electrophoresis andmatrix-assisted laser desorption/ionization time of flying mass spectrometry [J].Zhonghua Bing Li Xue Za Zhi,2003,32(4):333-336.
    [99] Chang K P, Yu J S, Chien K Y, et al. Identification of PRDX4and P4HA2asmetastasis-associated proteins in oral cavity squamous cell carcinoma bycomparative tissue proteomics of microdissected specimens using iTRAQtechnology[J]. J Proteome Res,2011,10(11):4935-4947.
    [100]Zhong L P, Zheng J W, Zhang Z Y. Application of comparative proteomics in oralsquamous cell carcinoma[J]. Shanghai Kou Qiang Yi Xue,2008,17(3):317-321.
    [101]Wang Z, Jiang L, Huang C, et al. Comparative proteomics approach to screening ofpotential diagnostic and therapeutic targets for oral squamous cell carcinoma[J].Mol Cell Proteomics,2008,7(9):1639-1650.
    [102]刘小林.蛋白质组学及其研究进展[J].安徽农业科学,2007(31):9810-9812.
    [103]Zhang Y, Zhu Y, He F. An overview of human protein databases and theirapplication to functional proteomics in health and disease[J]. Sci China Life Sci,2011,54(11):988-998.
    [104]Martens L. Proteomics databases and repositories[J]. Methods Mol Biol,2011,694:213-227.
    [105]Li D, Gao W, Ling C X, et al. IndexToolkit:an open source toolbox to index proteindatabases for high-throughput proteomics[J]. Bioinformatics,2006,22(20):2572-2573.
    [106]Doehner W. Diagnostic biomarkers in cardiovascular disease:the proteomicsapproach[J]. Eur Heart J,2012,33(18):2249-2251.
    [107]Thomas A, Lenglet S, Chaurand P, et al. Mass spectrometry for the evaluation ofcardiovascular diseases based on proteomics and lipidomics[J]. Thromb Haemost,2011,106(1):20-33.
    [108]Gonzalez-Gonzalez M, Garcia J G, Montero J A, et al. Genomics and proteomicsapproaches for biomarker discovery in sporadic colorectal cancer with metastasis[J].Cancer Genomics Proteomics,2013,10(1):19-25.
    [109]Shetty V, Hafner J, Shah P, et al. Investigation of ovarian cancer associatedsialylation changes in N-linked glycopeptides by quantitative proteomics[J]. ClinProteomics,2012,9(1):10.
    [110]Craven R A, Vasudev N S, Banks R E. Proteomics and the search for biomarkers forrenal cancer[J]. Clin Biochem,2012.
    [111]Wang Q, Li D, Zhang W, et al. Evaluation of proteomics-identified CCL18andCXCL1as circulating tumor markers for differential diagnosis between ovariancarcinomas and benign pelvic masses[J]. Int J Biol Markers,2011,26(4):262-273.
    [112]Ahmed M, Forsberg J, Bergsten P. Protein profiling of human pancreatic islets bytwo-dimensional gel electrophoresis and mass spectrometry[J]. J Proteome Res,2005,4(3):931-940.
    [113]Hittel D S, Hathout Y, Hoffman E P, et al. Proteome analysis of skeletal musclefrom obese and morbidly obese women[J]. Diabetes,2005,54(5):1283-1288.
    [114]Janatova J. C3, C5components and C3a, C4a, and C5a fragments of the complementsystem[J]. Methods Enzymol,1988,162:579-625.
    [115]Grumach A S, Vilela M M, Gonzalez C H, et al. Inherited C3deficiency of thecomplement system[J]. Braz J Med Biol Res,1988,21(2):247-257.
    [116]Zalewski J, Pienkowski W, Gabrys M, et al. Changes in the C3component of thecomplement system in the amniotic fluid in normal pregnancy and pregnancycomplicated by Rh serologic incompatibility[J]. Ginekol Pol,1986,57(10):650-653.
    [117]Thielens N M, Colomb M G. A model system for the study of the assembly andregulation of human complement C3convertase(classical pathway)[J]. Eur JImmunol,1986,16(6):617-622.
    [118]Steiner J L, Davis J M, Mcclellan J L, et al. Effects of voluntary exercise ontumorigenesis in the C3(1)/SV40Tag transgenic mouse model of breast cancer[J].Int J Oncol,2013.
    [119]Hao L N, Zhang Y Q, Shen Y H, et al. Inducible nitric oxide synthase and Fas/FasLwith C3expression of mouse retinal pigment epithelial cells in response tostimulation by peroxynitrite and antagonism of puerarin[J]. Chin Med J(Engl),2011,124(16):2522-2529.
    [120]Holzer R G, Macdougall C, Cortright G, et al. Development and characterization of aprogressive series of mammary adenocarcinoma cell lines derived from theC3(1)/SV40Large T-antigen transgenic mouse model[J]. Breast Cancer Res Treat,2003,77(1):65-76.
    [121]Krishnan V, Xu Y, Macon K, et al. The structure of C2b, a fragment of complementcomponent C2produced during C3convertase formation[J]. Acta Crystallogr DBiol Crystallogr,2009,65(Pt3):266-274.
    [122]Sahu A, Lambris J D. Structure and biology of complement protein C3, a connectinglink between innate and acquired immunity[J]. Immunol Rev,2001,180:35-48.
    [123]Marks D J, Seymour C R, Sewell G W, et al. Inflammatory bowel diseases inpatients with adaptive and complement immunodeficiency disorders[J]. InflammBowel Dis,2010,16(11):1984-1992.
    [124]Markiewski M M, Lambris J D. The role of complement in inflammatory diseasesfrom behind the scenes into the spotlight[J]. Am J Pathol,2007,171(3):715-727.
    [125]Han Y, Fukuda N, Ueno T, et al. Role of complement3a in the synthetic phenotypeand angiotensin II-production in vascular smooth muscle cells from spontaneouslyhypertensive rats[J]. Am J Hypertens,2012,25(3):284-289.
    [126]Wei J N, Li H Y, Sung F C, et al. Obesity and clustering of cardiovascular diseaserisk factors are associated with elevated plasma complement C3in children andadolescents[J]. Pediatr Diabetes,2012,13(6):476-483.
    [127]Phillips C M, Kesse-Guyot E, Ahluwalia N, et al. Dietary fat, abdominal obesity andsmoking modulate the relationship between plasma complement component3concentrations and metabolic syndrome risk[J]. Atherosclerosis,2012,220(2):513-519.
    [128]Oberbach A, Bluher M, Wirth H, et al. Combined proteomic and metabolomicprofiling of serum reveals association of the complement system with obesity andidentifies novel markers of body fat mass changes[J]. J Proteome Res,2011,10(10):4769-4788.
    [129]Ruan C C, Zhu D L, Chen Q Z, et al. Perivascular adipose tissue-derivedcomplement3is required for adventitial fibroblast functions and adventitialremodeling in deoxycorticosterone acetate-salt hypertensive rats[J]. ArteriosclerThromb Vasc Biol,2010,30(12):2568-2574.
    [130]Nordestgaard B G, Adourian A S, Freiberg J J, et al. Risk factors for near-termmyocardial infarction in apparently healthy men and women[J]. Clin Chem,2010,56(4):559-567.
    [131]Onat A, Hergenc G, Can G, et al. Serum complement C3:a determinant ofcardiometabolic risk, additive to the metabolic syndrome, in middle-agedpopulation[J]. Metabolism,2010,59(5):628-634.
    [132]van Oostrom A J, Alipour A, Plokker T W, et al. The metabolic syndrome in relationto complement component3and postprandial lipemia in patients from an outpatientlipid clinic and healthy volunteers[J]. Atherosclerosis,2007,190(1):167-173.
    [133]Hernandez-Mijares A, Jarabo-Bueno M M, Lopez-Ruiz A, et al. Levels of C3inpatients with severe, morbid and extreme obesity:its relationship to insulinresistance and different cardiovascular risk factors[J]. Int J Obes(Lond),2007,31(6):927-932.
    [134]Gabrielsson B G, Johansson J M, Lonn M, et al. High expression of complementcomponents in omental adipose tissue in obese men[J]. Obes Res,2003,11(6):699-708.
    [135]刘威,康林,曹贵方,等.血清补体C3水平与冠状动脉病变的严重程度[J].中国组织工程研究与临床康复,2007(12).
    [136]Li C, Hsieh M C, Chang S J. Metabolic syndrome, diabetes, and hyperuricemia[J].Curr Opin Rheumatol,2013,25(2):210-216.
    [137]Tomiyama H, Higashi Y, Takase B, et al. Relationships among hyperuricemia,metabolic syndrome, and endothelial function[J]. Am J Hypertens,2011,24(7):770-774.
    [138]Ichida K. Hyperuricemia and metabolic syndrome[J]. Nihon Yakurigaku Zasshi,2010,136(6):321-324.
    [139]Nakanish I M, Yamate J, Ide M, et al. Humoral hypercalcemia of malignancy infemale F344rats implanted with a transplantable rat pulmonary carcinomaline(IP)[J]. J Vet Med Sci,2001,63(10):1135-1138.
    [140]Lin J D, Lin P Y, Lin L P, et al. Serum uric acid, hyperuricemia and body massindex in children and adolescents with intellectual disabilities[J]. Res Dev Disabil,2009,30(6):1481-1489.
    [141]Lin K C, Tsai S T, Lin H Y, et al. Different progressions of hyperglycemia anddiabetes among hyperuricemic men and women in the kinmen study[J]. JRheumatol,2004,31(6):1159-1165.
    [142]Niskanen L K, Laaksonen D E, Nyyssonen K, et al. Uric acid level as a risk factorfor cardiovascular and all-cause mortality in middle-aged men:a prospective cohortstudy[J]. Arch Intern Med,2004,164(14):1546-1551.
    [143]Lai S W, Li T C, Ng K C. Hyperuricaemia and its related factors in Taiwanesemiddle-aged adults[J]. Int J Nurs Pract,2002,8(1):56-60.
    [144]Ogura T, Matsuura K, Matsumoto Y, et al. Recent trends of hyperuricemia andobesity in Japanese male adolescents,1991through2002[J]. Metabolism,2004,53(4):448-453.
    [145]浜田紀宏,周吉海,徐杨.内脏脂肪蓄积型肥胖与高尿酸血症[J].日本医学介绍,2006(2):75-77.
    [146]肖明,苗蕾,姚华,等.新疆汉族高尿酸血症患者血清visfatin的变化及影响因素[J].新疆医科大学学报,2010(3).
    [147]岳明明,苗蕾,姚华,等.汉族及维吾尔族居民高尿酸血症影响因素分析[J].中国公共卫生,2010(6):701-703.
    [148]Zvi B, Levy A P. Haptoglobin phenotypes, which one is better and when?[J]. ClinLab,2006,52(1-2):29-35.
    [149]Morton D J, Bakaletz L O, Jurcisek J A, et al. Reduced severity of middle earinfection caused by nontypeable Haemophilus influenzae lacking the hemoglobin/hemoglobin-haptoglobin binding proteins(Hgp)in a chinchilla model of otitismedia[J]. Microb Pathog,2004,36(1):25-33.
    [150]Lim S K, Ferraro B, Moore K, et al. Role of haptoglobin in free hemoglobinmetabolism[J]. Redox Rep,2001,6(4):219-227.
    [151]Arredouani M, Matthijs P, Van Hoeyveld E, et al. Haptoglobin directly affects Tcells and suppresses T helper cell type2cytokine release[J]. Immunology,2003,108(2):144-151.
    [152]Arredouani M, Matthys P, Kasran A, et al. Haptoglobin and the Th1/Th2balance:hints from in vitro and in vivo studies[J]. Redox Rep,2001,6(6):369-371.
    [153]许莉,刘玉清,王平,等.冠心病患者血浆结合珠蛋白的检测及临床意义[J].中国分子心脏病学杂志,2010(4).
    [154]王春玉,钱采韻,黎明涛,等.触珠蛋白可能是阿尔茨海默病患者血清生物标记[J].中华神经科杂志,2006(8):559-561.
    [155]Sun L, Pan J, Peng L, et al. Combination of haptoglobin and osteopontin couldpredict colorectal cancer hepatic metastasis[J]. Ann Surg Oncol,2012,19(7):2411-2419.
    [156]Levy A P, Asleh R, Blum S, et al. Haptoglobin:basic and clinical aspects[J].Antioxid Redox Signal,2010,12(2):293-304.
    [157]Levy A P, Hochberg I, Jablonski K, et al. Haptoglobin phenotype is an independentrisk factor for cardiovascular disease in individuals with diabetes:The Strong HeartStudy[J]. J Am Coll Cardiol,2002,40(11):1984-1990.
    [158]Adams J N, Cox A J, Freedman B I, et al. Genetic analysis of haptoglobinpolymorphisms with cardiovascular disease and type2diabetes in the diabetes heartstudy[J]. Cardiovasc Diabetol,2013,12:31.
    [159]Spagnuolo M S, Cigliano L, D'Andrea L D, et al. Assignment of the binding site forhaptoglobin on apolipoprotein A-I[J]. J Biol Chem,2005,280(2):1193-1198.
    [160]Moreno P R, Purushothaman K R, Purushothaman M, et al. Haptoglobin genotype isa major determinant of the amount of iron in the human atherosclerotic plaque[J]. JAm Coll Cardiol,2008,52(13):1049-1051.
    [161]Kapralov A, Vlasova I I, Feng W, et al. Peroxidase activity ofhemoglobin-haptoglobin complexes:covalent aggregation and oxidative stress inplasma and macrophages[J]. J Biol Chem,2009,284(44):30395-30407.
    [162]Cardona F, Tinahones F J, Collantes E, et al. The elevated prevalence ofapolipoprotein E2in patients with gout is associated with reduced renal excretion ofurates[J]. Rheumatology(Oxford),2003,42(3):468-472.
    [163]Tinahones F J, Soriguer F J, Collantes E, et al. Decreased triglyceride levels withlow calorie diet and increased renal excretion of uric acid in hyperuricaemic-hyperlipidaemic patients[J]. Ann Rheum Dis,1995,54(7):609-610.
    [164]Vanella L, Li M, Kim D, et al. ApoA1:mimetic peptide reverses adipocytedysfunction in vivo and in vitro via an increase in heme oxygenase(HO-1)andWnt10b[J]. Cell Cycle,2012,11(4):706-714.
    [165]Canoui-Poitrine F, Luc G, Bard J M, et al. Relative contribution of lipids andapolipoproteins to incident coronary heart disease and ischemic stroke:the PRIMEStudy[J]. Cerebrovasc Dis,2010,30(3):252-259.
    [166]Duffy D, Rader D J. High-density lipoprotein cholesterol therapies:the next frontierin lipid management[J]. J Cardiopulm Rehabil,2006,26(1):1-8.
    [167]Barter P J, Rye K A. Cholesteryl ester transfer protein inhibition as a strategy toreduce cardiovascular risk[J]. J Lipid Res,2012,53(9):1755-1766.
    [168]Nissen S E, Tsunoda T, Tuzcu E M, et al. Effect of recombinant ApoA-I Milano oncoronary atherosclerosis in patients with acute coronary syndromes:a randomizedcontrolled trial[J]. JAMA,2003,290(17):2292-2300.
    [169]Shcherbakova M, Sinitsin P A, Poriadina G I, et al. Correlation of metabolicsyndrome clinical signs and genetic determinants at children with obese[J]. EkspKlin Gastroenterol,2010(7):6-11.
    [170]李慧敏.冠心病患者血脂血清总胆红素及血尿酸水平相关性分析[J].临床和实验医学杂志,2010(16).
    [171]Matsuura F, Yamashita S, Nakamura T, et al. Effect of visceral fat accumulation onuric acid metabolism in male obese subjects:visceral fat obesity is linked moreclosely to overproduction of uric acid than subcutaneous fat obesity[J]. Metabolism,1998,47(8):929-933.
    [172]Bedir A, Topbas M, Tanyeri F, et al. Leptin might be a regulator of serum uric acidconcentrations in humans[J]. Jpn Heart J,2003,44(4):527-536.
    [173]Balasubramanian T. Uric acid or1-methyl uric acid in the urinary bladder increasesserum glucose, insulin, true triglyceride, and total cholesterol levels in Wistar rats[J].ScientificWorldJournal,2003,3:930-936.
    [174]Bluestone R, Lewis B, Mervart I. Hyperlipoproteinaemia in gout[J]. Ann Rheum Dis,1971,30(2):134-137.
    [175]Gibson T, Kilbourn K, Horner I, et al. Mechanism and treatment ofhypertriglyceridaemia in gout[J]. Ann Rheum Dis,1979,38(1):31-35.
    [176]Wu D, Liu H, Li S H. Association of elevated uric acid with metabolic disorders andanalysis of the risk factors of hyperuricemia in type2diabetes mellitus[J]. NanFang Yi Ke Da Xue Xue Bao,2011,31(3):544-547.
    [177]Duchateau P N, Pullinger C R, Orellana R E, et al. Apolipoprotein L, a new humanhigh density lipoprotein apolipoprotein expressed by the pancreas. Identification,cloning, characterization, and plasma distribution of apolipoprotein L[J]. J BiolChem,1997,272(41):25576-25582.
    [178]Perez-Morga D, Vanhollebeke B, Paturiaux-Hanocq F, et al. Apolipoprotein L-Ipromotes trypanosome lysis by forming pores in lysosomal membranes[J]. Science,2005,309(5733):469-472.
    [179]Horrevoets A J, Fontijn R D, van Zonneveld A J, et al. Vascular endothelial genesthat are responsive to tumor necrosis factor-alpha in vitro are expressed inatherosclerotic lesions, including inhibitor of apoptosis protein-1, stannin, and twonovel genes[J]. Blood,1999,93(10):3418-3431.
    [180]Mimmack M L, Ryan M, Baba H, et al. Gene expression analysis inschizophrenia:reproducible up-regulation of several members of the apolipoproteinL family located in a high-susceptibility locus for schizophrenia on chromosome22[J]. Proc Natl Acad Sci U S A,2002,99(7):4680-4685.
    [181]Wan G, Zhaorigetu S, Liu Z, et al. Apolipoprotein L1, a novel Bcl-2homologydomain3-only lipid-binding protein, induces autophagic cell death[J]. J Biol Chem,2008,283(31):21540-21549.
    [182]谢沛根,蔡道章,戎利民,等.腰椎间盘突出症的血清蛋白质组学研究[J].中山大学学报(医学科学版),2009(3):313-317.
    [183]Gangadharan B, Antrobus R, Dwek R A, et al. Novel serum biomarker candidatesfor liver fibrosis in hepatitis C patients[J]. Clin Chem,2007,53(10):1792-1799.
    [184]Albert T S, Duchateau P N, Deeb S S, et al. Apolipoprotein L-I is positivelyassociated with hyperglycemia and plasma triglycerides in CAD patients with lowHDL[J]. J Lipid Res,2005,46(3):469-474.
    [185]Lin Y C, Chiu W K, Chang H, et al. Spontaneous pneumothorax in flight as firstmanifestation of alpha-1antitrypsin deficiency[J]. Aviat Space Environ Med,2008,79(7):704-706.
    [186]Kuca P.[Emphysema as a pulmonary manifestation of alpha-1antitrypsin(alpha-1AT)deficiency][J]. Pneumonol Alergol Pol,2004,72(9-10):447-452.
    [187]Shenoi A, Marwaha R K, Singh R P, et al. Late hemorrhagic disease:a firstmanifestation of neonatal hepatitis due to alpha-1-antitrypsin deficiency[J]. IndianPediatr,1989,26(8):838-840.
    [188]Serapinas D, Sitkauskiene B, Sakalauskas R. Inflammatory markers in chronicobstructive pulmonary disease patients with different alpha1antitrypsingenotypes[J]. Arch Med Sci,2012,8(6):1053-1058.
    [189]Hodges L C, Chan S K. Locations of oligosaccharide chains in human alpha1-protease inhibitor and oligosaccharide structures at each site[J]. Biochemistry,1982,21(11):2805-2810.
    [190]Koulmanda M, Bhasin M, Fan Z, et al. Alpha1-antitrypsin reduces inflammationand enhances mouse pancreatic islet transplant survival[J]. Proc Natl Acad Sci U SA,2012,109(38):15443-15448.
    [191]Shin S Y, Choi G S, Lee K H, et al. Changes of Alpha1-Antitrypsin Levels inAllergen-induced Nasal Inflammation[J]. Clin Exp Otorhinolaryngol,2011,4(1):33-39.
    [192]Ekeowa U I, Marciniak S J, Lomas D A. alpha(1)-antitrypsin deficiency andinflammation[J]. Expert Rev Clin Immunol,2011,7(2):243-252.
    [193]Hadzic R, Nita I, Tassidis H, et al. Alpha1-antitrypsin inhibits Moraxella catarrhalisMID protein-induced tonsillar B cell proliferation and IL-6release[J]. Immunol Lett,2006,102(2):141-147.
    [194]Marcus N Y, Blomenkamp K, Ahmad M, et al. Oxidative stress contributes to liverdamage in a murine model of alpha-1-antitrypsin deficiency[J]. Exp BiolMed(Maywood),2012,237(10):1163-1172.
    [195]Perlmutter D H. Alpha-1-antitrypsin deficiency:importance of proteasomal andautophagic degradative pathways in disposal of liver disease-associated proteinaggregates[J]. Annu Rev Med,2011,62:333-345.
    [196]Voide N, Ardigo S, Morris M, et al. Alpha-1-antitrypsin deficiency in a78-year-oldwoman with isolated liver cirrhosis[J]. J Am Geriatr Soc,2010,58(2):415-416.
    [197]Linja-Aho A, Mazur W, Toljamo T, et al. Distribution and levels of alpha-1-antitrypsin in the lung and plasma in smokers and chronic obstructive pulmonarydisease[J]. APMIS,2013,121(1):11-21.
    [1] Pandey A, Mann M. Proteomics to study genes and genomes[J]. Nature,2000,405(6788):837-846
    [2] Rosamond L, Allsop A. Hamessing the power of the genome in the search for newantibiotics[J]. Science,2000,287(5460):1973-1976
    [3] Jurgens M, Schrader M. Peptidomic approaches in proteomic research[J]. Curr OpinMol Ther,2002,4(3):236-241
    [4] Wasinger VC, Cordwell SJ, Cerpa_Poljak A, et al. Progress with gene-productmapping of the Mollicutes:Mucoplasma genitalium. Electophoresis,1995,16:1090-1094
    [5] Dove A, Proteomics:translation genomics into products? Nature Biotechnol,1999Mar,17(3):233-236
    [6] Kim, S. H. Shining a light on structural genomics. Nature Struct Biol,1998,5:643-645
    [7] Stephen K, Burley. An overview of structural genomics. Nature Struct BiolNovember2000, supplement,7:932-934
    [8]李佰量.功能蛋白质组学[J].生命的化学,1998,18(6)1-4
    [9] O’Farrell. High resolution two-dimensional gel. Electrophoresis of proteins[J]. J BiolChem,1975,250:4007
    [10]王月宾,唐红.双向电泳在疾病研究中的应用[J].生物医学工程学杂志,2011,28(6):1232-1236
    [11]李天旺,黄志祥,郑奔容,等.血清蛋白预处理方案对双向电泳效果的影响[J].中国医学工程,2011,19(1):1-4
    [12] Dihazi H, Bohrer R, Jahn O, et al. Mass spectrometry imaging:linking moleculeprofiles to tissue spatial distribution[J]. Expert Rev Proteomics.2013,10(1):17-20
    [13] Henn C, Boettcher S, Steinbach A, et al. Catalytic enzyme activity on a biosensorchip:combination of surface plasmon resonance and mass spectrometry[J]. AnalBiochem.2012,428(1):28-30.
    [14] Chen F, Yang JX, Wu M, et al. Differentially expressed proteins between normalovaries and ovarian cancer tissues screened by the protein chips[J]. Zhongguo YiXue Ke Xue Yuan Xue Bao.2009,31(3):378-80.
    [15] Kumar V, Kleffmann T, Hampton MB, et al. Redox proteomics of thiol proteins inmouse heart during ischemia/reperfusion using ICATreagents and mass spectrometry[J]. Free Radic Biol Med.2013,58C:109-117
    [16] Jerlstr m-Hultqvist J, Stadelmann B, Birkestedt S, et al. Plasmid vectors forproteomic analyses in Giardia:purification of virulence factors and analysis of theproteasome[J]. Eukaryot Cell.2012,11(7):864-873.
    [17]江月,丛浩龙,王健,等.串联亲和纯化技术筛选肠病毒71型3D聚合酶的相互作用蛋白[J].第三军医大学学报,2012,34(6):526-529
    [18]何蓉,丛树艳,齐莹,等.酵母双杂交技术筛选与HCMV-UL146编码产物相互作用蛋白[J].中国现代医学杂志,2012,22(4):1-5
    [19] Fearon E R, Finkel T, Gillison M L, et al. Proc Natl Acid Sci USA,1992,89:7958~7962
    [20] Johnsson N, Varshavsky A. Proc Natl Acad Sci USA,1994,91:10340~10344.
    [21] Marsolier M C, Prioleau M N, Sentenac A, et al. Mol Biol,1997,268:243~249
    [22] James P, Haliaday J, Craih EA. Genetics,1996,144(4):1425~1436
    [23]任立成,李冬娜.噬菌体抗体库展示技术及其研究进展[J].海南医学院学报,2012,18(12):1826~1829.
    [24] Yanagida M. Functional proteomics:current achievement[J]. Chromatogr B AnalytTechnol Biomed Life Sci,2002,771(1,2):89~106.
    [25]高政权,王广策,曾呈奎.蛋白质组学的研究概况及其在海洋生物学中的应用[J].海洋与湖沼,2003,34(3):334~344
    [26]张大保,张敏.生物信息学与转化医学研究[J].转化医学研究,2012,2(4):41-52
    [27]刘小林.蛋白质组学及其研究进展.安徽农业科学,2007,35(31):9810-9812
    [28] Petersen J, Rogowska-Wrzesinska A, Jensen ON. Functional proteomics of barleyand barley chloroplasts-strategies, methods and perspectives[J]. Front Plant Sci.2013,4:52..
    [29] Alhaider AA, Bayoumy N, Argo E, et al. Survey of the camel urinary proteome byshotgun proteomics using a multiple database search strategy[J]. Proteomics.2012Nov;12(22):3403-3406
    [30] Liu WD, Mo ZY, Liao DJ. Comparative proteomics research of HL-60celldifferentiation initiation induced by dimethylsulfoxide[J]. Zhonghua Xue Ye Xue ZaZhi.2012Mar;33(3):238-240
    [31] Tian R, Wang S, Elisma F, Rare cell proteomic reactor applied to stable isotopelabeling by amino acids in cell culture(SILAC)-based quantitative proteomics studyof human embryonic stem cell differentiation[J]. Mol Cell Proteomics.2011Feb;10(2):M110.000679
    [32] Schenck CA, Nadella V, Clay SL, et al. A proteomics approach identifies novelproteins involved in gravitropic signal transduction[J]. Am J Bot.2013,100(1):194-202
    [33] Wang Y, Kroon JK, Slabas AR, et al. Proteomics reveals new insights into the roleof light in cadmium response in Arabidopsis cell suspension cultures[J]. Proteomics.2013,5(22):342-347.
    [34] Reddy JG, Hosur RV. Reduced dimensionality(4,3)D-HN(C)NH for rapidassignment of1H(N)-15N HSQC peaks in proteins:an analytical tool for proteinfolding, proteomics, and drug discovery programs[J]. Anal Chem.2012,84(23):10404-10410
    [35] Wang H, Yang Y, Chen W, et al. Identification of differentially expressed proteins ofArthrospira(Spirulina)plantensis-YZ under salt-stress conditions by proteomics andqRT-PCR analysis[J]. Proteome Sci.2013Jan30;11(1):6
    [36] Akeroyd M, Olsthoorn M, Gerritsma J, et al. Searching for microbial proteinover-expression in a complex matrix using automated high throughput MS-basedproteomics tools[J]. J Biotechnol.2013Mar10;164(1):112-20
    [37] Kim HW, Oh HS, Kim SR, et al. Microbial population dynamics and proteomics inmembrane bioreactors with enzymatic quorum quenching[J]. Appl MicrobiolBiotechnol.2012,9(31):1012-1015
    [38] Gu W, Wang X, Qiu H, et al. Comparative antigenic proteins and proteomics ofpathogenic Yersinia enterocolitica bio-serotypes1B/O:8and2/O:9cultured at25°Cand37℃C[J]. Microbiol Immunol.2012,56(9):583-94
    [39]苏龙翔,刘进文,方向群,等.空间诱导蜡状芽孢杆菌LCT-BC25和LCT-BC235的蛋白质组学研究[J].解放军医学院学报,2013,34(1):7-10
    [40] Hendrickson RC, Donglass JF, Reynolds LD, et al. Mass spectrometric identificationof mtb81, a novel serological marker for tuberculosis[J]. Clin MicrobioL,2000,38:2354-2361
    [41] Deiwick J, Rappl C, Srender S, et al. Proteomic approaches to salmonellapathogenicity island2encoded proteins and the Ssr AB regulon[J]. Proteomics,2002,2:792-799
    [42] González-González M, Garcia JG, Montero JA, et al. Genomics and proteomicsapproaches for biomarker discovery in sporadic colorectal cancer with metastasis[J].Cancer Genomics Proteomics.2013,10(1):19-25.
    [43] Yoneyama T, Ohtsuki S, Ono M, et al. Quantitative targeted absolute44.proteomics-based large-scale quantification of proline-hydroxylated α-fibrinogen inplasma for pancreatic cancer diagnosis[J]. J Proteome Res.2013,12(2):753-762.
    [44] Panis C, Pizzatti L, Herrera AC, Cecchini R, et al. Putative circulating markers of theearly and advanced stages of breast cancer identified by high-resolution label-freeproteomics[J]. Cancer Lett.2013,330(1):57-66
    [45] Cordwell SJ, White MY. Targeted proteomics for determining phosphorylationsite-specific associations in cardiovascular disease[J]. Circulation.2012,126(15):1803-1807
    [46] Delles C, Neisius U, Carty DM. Proteomics in hypertension and other cardiovasculardiseases[J]. Ann Med.2012,44(1):55-64
    [47] Cocciolo A, Di Domenico F, Coccia R, et al. Decreased expression and increasedoxidation of plasma haptoglobin in Alzheimer disease:Insights from redoxproteomics[J]. Free Radic Biol Med.2012,53(10):1868-1876
    [48] Sultana R, Robinson RA, Lange MB, et al. Do proteomics analyses provide insightsinto reduced oxidative stress in the brain of an Alzheimer disease transgenic mousemodel with an M631L amyloid precursor protein substitution and thereby theimportance of amyloid-beta-resident methionine35in Alzheimer diseasepathogenesis?[J]. Antioxid Redox Signal.2012,17(11):1507-1514
    [49] Robinson RA, Lange MB, Sultana R, et al. Differential expression and redoxproteomics analyses of an Alzheimer disease transgenic mouse model:effects of theamyloid-β peptide of amyloid precursor protein[J]. Neuroscience.2011,177:207-222.
    [50] Seibel J, K nig S, G hler A, et al. Investigating infection processes with a workflowfrom organic chemistry to biophysics:the combination of metabolic glycoengineering,super-resolution fluorescence imaging and proteomics[J]. Expert Rev Proteomics.2013,10(1):25-31
    [51] Tambor V, Kacerovsky M, Lenco J, et al. Proteomics and bioinformatics analysisreveal underlying pathways of infection associated histologic chorioamnionitis inpPROM[J]. Placenta.2013Feb;34(2):155-161
    [52] Cao Z, Han Z, Shao Y, et al. Proteomics analysis of differentially expressed proteinsin chicken trachea and kidney after infection with the highly virulent and attenuatedcoronavirus infectious bronchitis virus in vivo[J]. Proteome Sci.2012,10(3):24-30.
    [53] Liu Y, Zhang K, Zheng H, et al. Proteomics analysis of porcine serum proteins byLC-MS/MS after foot-and-mouth disease virus(FMDV)infection[J]. J Vet Med Sci.2011Dec;73(12):1569-72
    [54] Zhang JT, Lin Y. Use of comparative proteomics to identify potential resistancemechanisms in cancer treatment[J]. Cancer Treat Rev,2007,33(8):741-756
    [55] Pin E, Fredolini C, Petricoin EF3rd. The role of proteomics in prostate cancerresearch:Biomarker discovery and validation[J]. Clin Biochem.2013,46(6):524-538.
    [56] Yanagisawa K, Shyr Y, Xu BJ, et al. Proteomic pattern of tumor subsets innon-small-cell lung cancer. Lancet,2003,362:433-439
    [57] Sawai S, Umemum H, Mori M, et a1. Serum levels of complement CA fragmentscorrelate with disease activity in multiple sclerosis:Proteomic analysis[J]. JNeuroinununol,2010,218(1/2):112-115
    [58]杨红芹,李学军.化学蛋白质组学与药物靶点的发现[J].药学学报,2011,46(8):877-882
    [59]张浩,胡诗莉,王芳.蛋白质组学与新药开发[J].中国药业,2012,21(6):92-94
    [1] Ar'Ev A L, Kunitskaia N A, Kozina L S.[Gout and hyperuricemia today:prevalence,risk factors, features in the elderly][J]. Adv Gerontol,2012,25(3):540-544.
    [2] B L, T W, Hn Z, et al. The prevalence of hyperuricemia in China:a meta-analysis[J].BMC Public Health,2011,11:832.
    [3] Chuang S Y, Lee S C, Hsieh Y T, et al. Trends in hyperuricemia and goutprevalence:Nutrition and Health Survey in Taiwan from1993-1996to2005-2008[J].Asia Pac J Clin Nutr,2011,20(2):301-308.
    [4] Cohen E, Krause I, Fraser A, et al. Hyperuricemia and metabolic syndrome:lessonsfrom a large cohort from Israel[J]. Isr Med Assoc J,2012,14(11):676-680.
    [5] Ichida K.[Hyperuricemia and metabolic syndrome][J]. Nihon Yakurigaku Zasshi,2010,136(6):321-324.
    [6] Indraratna P L, Williams K M, Graham G G, et al. Hyperuricemia, cardiovasculardisease, and the metabolic syndrome[J]. J Rheumatol,2009,36(12):2842-2843,2844.
    [7] Li C, Hsieh M C, Chang S J. Metabolic syndrome, diabetes, and hyperuricemia[J].Curr Opin Rheumatol,2013,25(2):210-216.
    [8] Yamada Y. Deficiencies of hypoxanthine guanine phosphoribosyltransferase (HPRT)[J]. Nippon Rinsho,2008,66(4):687-693.
    [9] Torres RJ, Puig JG. Hypoxanthine-guanine phosophoribosyltransferase (HPRT)deficiency:Lesch-Nyhan syndrome[J]. Orphanet J Rare Dis,2007,2:48.
    [10] Hladnik U, Nyhan WL, Bertelli M. Variable expression of HPRT deficiency in5members of a family with the same mutation[J]. Arch Neurol,2008,65(9):1240-1243.
    [11]Yamada Y.[Deficiencies of hypoxanthine guanine phosphoribosyltransferase(HPRT)][J]. Nihon Rinsho,2008,66(4):687-693.
    [12]Yamada Y, Wakamatsu N, Taniguchi A, et al. Hypoxanthine guaninephosphoribosyltransferase (HPRT) mutations in the Asian population[J]. NucleosidesNucleotides Nucleic Acids,2011,30(12):1248-1255.
    [13]Liu H, Peng X, Zhao F, et al. N114S mutation causes loss of ATP-inducedaggregation of human phosphoribosylpyrophosphate synthetase1[J]. BiochemBiophys Res Commun,2009,379(4):1120-1125.
    [14]Liu H, Peng X, Zhao F, et al. N114S mutation causes loss of ATP-inducedaggregation of human phosphoribosylpyrophosphate synthetase1[J]. BiochemBiophys Res Commun,2009,379(4):1120-1125.
    [15]García-Pavía P, Torres RJ, Rivero M, et al. Phosphoribosylpyrophosphate synthetaseoveractivity as a cause of uric acid overproduction in a young woman[J]. ArthritisRheum,2003,48(7):2036-2041.
    [16]Nyhan WL. Inherited hyperuricemic disorders[J]. Contrib Nephrol,2005,147(10):22-34.
    [17]Taniguchi A, Urano W, Yamanaka M, et al. A common mutation in an organic aniontransporter gene, SLC22A12, is a suppressing factor for the development of gout[J].Arthritis Rheum,2005,52(8):2576-2577.
    [18]Ichida K, Hosoyamada M, Kamatani N, et al. Age and origin of the G774A mutationin SLC22A12causing renal hypouricemia in Japanese[J]. Clin Genet,2008,74(3):243-251.
    [19]Graessler J, Graessler A, Unger S, et al. Association of the human urate transporter1with reduced renal uric acid excretion and hyperuricemia in a German Caucasianpopulation[J]. Arthritis Rheum,2006,54(1):292-300.
    [20]Caulfield MJ, Munroe PB, O’Neill D, et al. SLC2A9is a high-capacity uratetransporter in humans[J]. Plos Med,2008,5(10):1509-1523.
    [21]Anzai N, Ichida K, Jutabha P, et al. Plasma urate level is directly regulated by avoltage-driven urate efflux transporter URATv1(SLC2A9)in humans[J]. J Biol Chem,2008,283(40):26834-26838.
    [22]Mckeigue P M, Campbell H, Wild S, et al. Bayesian methods for instrumentalvariable analysis with genetic instruments('Mendelian randomization'):example withurate transporter SLC2A9as an instrumental variable for effect of urate levels onmetabolic syndrome[J]. Int J Epidemiol,2010,39(3):907-918.
    [23]Matsuo H, Chiba T, Nagamori S, et al. Mutations in glucose transporter9geneSLC2A9cause renal hypouricemia[J]. Am J Hum Genet,2008,83(6):744-751.
    [24]Le MT, Shafiu M, Mu W, et al. SLC2A9-a fructose transporter identified as a noveluric acid transporter[J]. Nephrol Dial Transplant,2008,23(9):2746-2749.
    [25]Woodward OM, Tukaye DN, Cui J, Greenwell P, et al. Gout-causing Q141K mutationin ABCG2leads to instability of the nucleotide-binding domain and can be correctedwith small molecules[J]. Proc Natl Acad Sci U S A.2013,110(13):5223-5228.
    [26]Matsuo H, Takada T, Ichida K, et al. ABCG2/BCRP dysfunction as a major cause ofgout[J]. Nucleosides Nucleotides Nucleic Acids.2011,30(12):1117-1128.
    [27]Nakayama A, Matsuo H, Takada T, et al. ABCG2is a high-capacity urate transporterand its genetic impairment increases serum uric acid levels in humans[J].Nucleosides Nucleotides Nucleic Acids.2011,30(12):1091-1097
    [28]Woodward OM, Kottgen A, Coresh J, et al. Identification of a urate transporter,ABCG2, with a common functional polymorphism causing gout[J]. Proc Natl AcadSci,2009,106(5):10338-10342.
    [29]Han J, Liu Y, Rao F, Nievergelt CM, et al. Common genetic variants of the humanuromodulin gene regulate transcription and predict plasma uric acid levels[J]. KidneyInt.2013Apr;83(4):733-740.
    [30]Wei X, Xu R, Yang Z, et al. Novel uromodulin mutation in familial juvenilehyperuricemic nephropathy[J]. Am J Nephrol.2012,36(2):114-120.[31]Lhotta K,Piret SE, Kramar R, et al. Epidemiology of uromodulin-associated kidneydisease-results from a nation-wide survey[J]. Nephron Extra.2012,2(1):147-158.
    [32]Matsuo H, Takada T, Ichida K, et al. Common defects of ABCG2, a high-capacityurate exporter, cause gout:a function-based genetic analysis in a Japanesepopulation[J]. Sci Transl Med,2009,1(5):511.
    [33]Chou P, Lin KC, Lin HY, et al. Gentler diffendnces in the relationships of serum uricacid with fasting serum insulin and plasma glucose in patients without diabetes[J]. JRheumatal,2001,28(3):571-576.
    [34]Modan M, Halkin H, Karasik A, et al. Elevated serum uricacid affect ofhyperinsulinemia[J]. Diabetologia,2000,30:713-718.
    [35]Hu QH, Zhang X, Wang X, et al. Quercetin regulates organic ion transporter anduromodulin expression and improves renal function in hyperuricemic mice[J]. Eur JNutr.2012Aug;51(5):593-606
    [36]Cohen E, Krause I, Fraser A, et al. Hyperuricemia and metabolic syndrome:lessonsfrom a large cohort from Israel[J]. Isr Med Assoc J,2012,14(11):676-680.
    [37]Ichida K.[Hyperuricemia and metabolic syndrome][J]. Nihon Yakurigaku Zasshi,2010,136(6):321-324.
    [38]Indraratna P L, Williams K M, Graham G G, et al. Hyperuricemia, cardiovasculardisease, and the metabolic syndrome[J]. J Rheumatol,2009,36(12):2842-2844.
    [40]Yuan Y, Ikram MK, Jiang S, et al. Hyperuricemia accompanied with changes in theretinal microcirculation in a Chinese high-risk population for diabetes[J]. BiomedEnviron Sci.2011,24(2):146-154.
    [41]WU D, LIU H, LI SH. Association of elevated uric acid with metabolic disorders andanalysis of the risk factors of hyperuricemia in type2diabetes mellitus[J]. Nan FangYi Ke Da Xue Xue Bao.2011,31(3):544-547.
    [42]Alderman M, Aiyer KJ. Uric acid:role in cardiovascular disease and effects of losartan[J]. Curr Med Res Opin,2004,20:369-379.
    [43]Tsunoda S, Kamide K, Minami J, et al. Decreases in serum uric acid amelioration ofinsulin resistance in overweight hypert ensive patients:efect of a low-energy diet andinsulin-sensitizing agent[J]. Am J Hyper-tens,2002,15:697-701
    [44]冷静.高尿酸血症与冠心病的关系探讨(附190例报告)[J].贵州医药,2005,29(3):239-240.
    [45]Baker JF, Krishnan E, Chen L, et al. Serum uric acid and cardiovasculardisease:recentdevelopments, andwhere do they leave us?[J]. Am JMed,2005,118(8):816-826.
    [46]Bedir A, Topbas M, Tanyeri F, et al. Leptin might be a regulator of serum uric acidconcentrations in humans[J]. Jpn Heart J,2003,44(4):527-536.
    [47]Balasubramanian T. Uric acid or1-methyl uric acid in the urinary bladder increasesserum glucose, insulin, true triglyceride, and total cholesterol levels in Wistar rats[J].ScientificWorldJournal,2003,3:930-936.
    [48]Matsuura F, Yamashita S, Nakamura T, et al. Effect of visceral fat accumulation onuric acid metaboli sm in male obese subjects:visceral fat obesity is linked, closely tooverproduction of uric acid than subcutaneous fat obesity[J]. Metabolism,1998,47:929-933.
    [49]Bedir A, Topbas M, Tanyeri F, et al. Leptin might be a regulator of serum uric acidconcentration in human[J]. Heart J,2003,44:527-536

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700