用户名: 密码: 验证码:
第二信使cAMP/cGMP信号通路对哺乳动物卵巢功能的调控机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在哺乳动物卵巢中,卵泡的生长发育及分化需要颗粒细胞和卵母细胞特异性基因的协同表达。这一程序的执行依赖于卵母细胞与颗粒细胞之间交换的局部信号,以及促性腺激素的调控。因此,用信号转导通路来解释促性腺激素对哺乳动物卵巢卵泡生长发育的调控作用,可以很好的解释在这些过程中那些基因的适时表达与调控。卵巢卵泡的生长发育以及卵母细胞的成熟与排卵是一个复杂的内分泌、旁分泌和自分泌的作用过程,其都可以转为对环核苷酸水平的调控。胞内cAMP的变化可以调控促性腺激素对颗粒细胞与膜细胞功能的调节作用。由此可见,第二信使cAMP在细胞信号转导中起着重要作用,但为什么相同的cAMP信号可以诱导不同的生理反应。20年前,cAMP信号区域化的提出似乎解答了这一疑惑。哺乳动物卵巢产生可用的卵母细胞主要取决于促性腺激素对卵泡发育、颗粒细胞成熟,排卵及黄体化的调节作用。LH和FSH的作用很大程度上取决于cAMP依赖性信号转导,现在也已经发现许多其他因子可以通过激活其他信号转导通路来调节促性腺激素对卵巢的作用。因此,目前研究表明第二信使cGMP对卵巢功能有重要的调节作用。
     1第二信使cAMP/cGMP通路对大鼠颗粒细胞体外成熟的调控及其机制研究
     颗粒细胞中第二信使cAMP/cGMP的失活很大程度上取决于一系列相应的PDE的表达及其活性的变化。为了研究第二信使通路在大鼠颗粒细胞体外成熟过程中的调控作用,本试验体外培养了未成熟大鼠卵巢颗粒细胞,利用FSH处理颗粒细胞,并检测了E2,cAMP和cGMP浓度的变化,同时分析了PDE4蛋白的表达及cAMP-PDE活性的变化。结果清楚地表明颗粒细胞在48h成熟时,试验组cAMP浓度显著高于对照组,而cGMP没有明显变化;蛋白印迹试验发现试验组出现两条PDE4条带,约80和70KDa;cAMP-PDE活性分析结果表明对照组在整个48h过程中的活性都较低,而试验组在6到12h时,cAMP-PDE活性显著升高。综上所述,在大鼠颗粒细胞体外成熟过程中FSH使cAMP-PDE活性升高主要与PDE4蛋白的表达有关,同时颗粒细胞中cAMP的累积不是通过cAMP-PDE活性的变化来实现的。
     2第二信使cAMP/cGMP通路在大鼠胚胎早期卵巢发育过程中的作用
     为了研究第二信使cAMP/cGMP通路在哺乳动物早期卵巢生长发育过程中的作用,本试验通过组织学观察确定胎鼠卵巢发育,通过RIA研究胎鼠卵巢中cAMP/cGMP水平及其相应PDE活性变化。结果发现胎鼠卵巢cAMP水平在12日龄时最低,到15日龄之后显著升高,直到出生后1日龄没有明显变化;而胎鼠卵巢cAMP-PDE活性呈相反的变化,12日龄时最高,其他时期差异不显著。胎鼠卵巢cGMP水平变化在整个妊娠后期,卵巢分化形成之后,一直没有明显变化;而cGMP-PDE活性变化在12日龄时最高,15日龄时显著降低,之后虽然有所下降,但不显著。这些结果表明cAMP信号通路可能参与雌性胎鼠卵巢的生长发育,同时表明cAMP/cGMP信号通路中PDE在这个过程中作用方式也是不同的。
     3第二信使cAMP/cGMP通路在新生大鼠卵巢卵泡发育过程中的作用
     为了研究第二信使cAMP/cGMP通路在哺乳动物卵巢卵泡生长启动与发育过程中的作用,本试验通过组织学观察确定新生大鼠卵巢卵泡发育,通过RIA研究新生大鼠卵巢中cAMP/cGMP水平和相应PDE活性变化。结果发现新生大鼠在10日龄前cAMP浓度逐步升高,与卵巢卵泡发育是一致的,21日龄时显著降低;而cAMP-PDE活性在10日龄前没有明显变化,21日龄时则显著升高。cGMP水平在出生时较高,在5日龄时显著降低,然后到10日龄时升高到最高水平,紧接着在21日龄时降低;而cGMP-PDE活性在1到10日龄期间没有显著性变化,但在21日龄时显著升高了。这些结果表明cAMP信号通路可能参与大鼠卵巢卵泡生长的启动与发育,而PDE在卵巢卵泡的早期发育中没有显著性作用;21日龄cAMP/cGMP水平和PDE活性变化同时表明cAMP/CGMP信号通路之间存在着复杂的对话。
     4第二信使cAMP/cGMP通路在未成熟大鼠卵巢卵泡发育过程中的作用
     为了研究第二信使cAMP/cGMP通路在哺乳动物卵巢卵泡发育过程中的作用,本试验通过组织学观察确定未成熟大鼠卵巢卵泡发育模型,通过RIA研究未成熟大鼠卵巢cAMP/cGMP水平和相应PDE活性变化。结果发现未成熟大鼠卵巢cAMP水平在eCG处理后显著升高,hCG处理后24h继续显著性升高,到72h时则显著性下降;而cAMP-PDE活性在eCG处理后没有明显变化,hCG处理后则先是升高,紧随着开始下降。cGMP水平的变化与cAMP变化相似,eCG处理后显著升高,hCG处理后24h继续显著性升高,到72h时则显著性下降;而cGMP-PDE活性在eCG处理后显著下降,hCG处理后则显著升高。这些结果表明cAMP/cGMP信号通路可能参与大鼠卵巢卵泡生长与发育,而PDE在卵巢卵泡发育中的作用呈阶段特异性。
     5第二信使cAMP/cGMP通路在成年大鼠卵巢卵泡发育过程中的作用
     为了研究第二信使cAMP/cGMP通路在哺乳动物发情周期中对卵巢卵泡发育的调控作用,本试验通过阴道涂片的方法确定成年大鼠的发情周期,通过组织学观察确定成年大鼠卵巢卵泡发育模型,通过RIA研究成年大鼠卵巢cAMP/cGMP水平和相应PDE活性变化。结果发现成年大鼠卵巢cAMP水平除发情期(E)外的其他三个发情阶段之间没有显著差异,其中发情期(E)卵巢cAMP水平则显著低于发情周期的其他各个阶段;而AMP-PDE活性在整个发情周期中都没有显著性的变化。cGMP水平在发情期(E)和乏情期(D)较低,在间情期(M)和发情前期(P)较高;而cGMP-PDE活性与cGMP水平相比呈现相反的变化趋势,cGMP-PDE活性在发情期(E)和乏情期(D)较高,在间情期(M)和发情前期(P)较低;相关性分析发现卵巢cGMP水平与cGMP-PDE活性之间存在显著性负相关(r=-0.7715,n=16,P<0.05)。这些结果表明cAMP/cGMP信号通路可能参与大鼠卵巢卵泡生长与发育,其中cAMP-PDE在发情周期中对cAMP信号的调控受多种因素的影响,而在发情周期中cGMP-PDE可能是调控cGMP信号的主要影响因素。
     6第二信使cAMP/cGMP通路在老年大鼠卵巢卵泡发育过程中的作用
     为了研究第二信使cAMP/cGMP通路在老年哺乳动物卵巢功能中的作用,本试验通过组织学观察确定老年大鼠卵巢卵泡发育模型,通过RIA研究老年(PE)大鼠卵巢cAMP/cGMP水平和相应PDE活性变化。结果发现老年(PE)大鼠卵巢cAMP水平与成年大鼠发情期(E)卵巢cAMP水平相比没有明显差异,而老年(PE)大鼠卵巢cAMP-PDE活性则显著低于大鼠发情期(E)卵巢cAMP-PDE活性。发现老年(PE)大鼠卵巢cGMP水平虽然高于成年大鼠发情期(E)卵巢cGMP水平,但差异不显著,而老年(PE)大鼠卵巢cGMP-PDE活性则显著低于大鼠发情期(E)卵巢cGMP-PDE活性。这些结果表明cAMP/cGMP信号通路可能与雌性老年(PE)大鼠卵巢囊肿直接相关,尤其是cAMP-PDE与cGMP-PDE活性的降低可能就是由于雌性老年(PE)大鼠卵巢囊肿的形成。
     7第二信使cAMP/cGMP通路对哺乳动物妊娠期卵巢功能的调节及相关机制研究
     为了研究第二信使cAMP/cGMP通路对哺乳动物妊娠期卵巢功能的调控作用,本试验通过组织学观察确定不同妊娠日龄时大鼠卵巢卵泡的发育情况,并通过RIA研究了妊娠奶牛血液雌激素(E2)、孕酮(P)和cAMP/cGMP水平。结果发现在大鼠妊娠期间,其卵巢卵泡有不同程度的发育,与妊娠阶段有关。奶牛血液雌激素检测结果发现其在不同的妊娠时期没有显著变化;而孕酮随着妊娠日龄的增加呈逐步升高的趋势,且差异显著。奶牛血液cAMP/cGMP水平变化相似,在妊娠中期最高,在妊娠晚期最低。这些结果表明第二信使cAMP/cGMP信号通路可能调节生殖激素的方式参与维持哺乳动物妊娠期卵巢的功能。
     8第二信使cAMP/cGMP信号通路元件蛋白在中国荷斯坦奶牛卵巢中的定位研究
     应用七种特异性抗体(sGCα、sGCβ、nNOS、FOXO1、PDE4、PKB/Akt和Inhibinα)对中国荷斯坦奶牛卵巢卵泡细胞进行免疫组织化学定位。结果表明PKB主要存在于原始卵泡、腔前卵泡和有腔卵泡颗粒细胞,黄体细胞中没有;FoxO1主要位于原始卵泡、腔前卵泡和有腔卵泡颗粒细胞;PDE4仅位于部分有腔卵泡的颗粒细胞;抑制素α、nNOS、sGCα和β存在于各级卵泡的颗粒细胞层,其中sGCα和β主要存在于原始卵泡和腔前卵泡的颗粒细胞。这七种蛋白的阶段/细胞特异性表达表明它们在中国荷斯坦卵巢卵泡的发育、闭锁和黄体化过程中起非常重要的作用。
     综上所述,本试验研究利用一个颗粒细胞体外培养模型和六个大鼠卵巢发育模型系统地研究了第二信使cAMP/cGMP信号通路在整个卵巢卵泡发育过程中作用,结果表明在大鼠颗粒细胞体外成熟过程中FSH使cAMP-PDE活性升高主要与PDE4蛋白的表达有关,颗粒细胞中cAMP的累积不是通过cAMP-PDE活性的变化来实现的;同时表明cAMP-PDE在卵巢卵泡发育中的作用呈阶段特定性;另外,我们还研究了cGMP-PDE在哺乳动物卵巢卵泡发育过程中的作用;以及第二信使cAMP/cGMP信号通路元件蛋白在中国荷斯坦奶牛卵巢中的定位研究,验证了本文中提出的cAMP区域化及cGMP作用的潜在意义,并提出了第二信使cAMP/cGMP对哺乳动物卵巢功能调控的主要信号通路模式图。
In the mammalian ovary,the growth and terminal differentiation of the follicle require the coordinated expression of specific genes in granulosa cells and the oocyte.The execution of the programs in a timely and coordinated fashion is dependent on local signals exchanged between the gamete and somatic cells and on gonadotropin regulation. Therefore,signaling pathways can be used to interpret the regulatory role of gonadotropin on the development of mammalian ovarian follicles,and suggest how to control the switching on and off of genes at the appropriate time during these phases of growth and differentiation.The development of the ovarian follicle,oocyte maturation,and ovulation require a complex set of endocrine,paracrine,and autocrine inputs that are translated into the regulation of cyclic nucleotide levels.Changes in intracellular cAMP mediate the gonadotropin regulation of granulose and theca cell functions.Thus it can be seen that cyclic AMP(cAMP),as a second messenger,plays a critical role in cellular signaling transduction.However,it is not clear how this apparently identical cAMP signal induces divergent physiological re-sponses.The potential explanation that cAMP signaling is compartmentalized was proposed by Buxton and Brunton twenty years ago.The production of a viable oocyte is dependent upon the critical influences of gonadotrophins in follicular development,granulose cell maturation,ovulation,and luteinizafion.While the effects of LH and FSH are due in large part to cyclic AMP dependent signaling mechanisms,it is clear that a number of other factors modulate the actions of gonadotrophins on the ovary via activation of alternative signaling pathways.In this regard,recent studies indicate that the second messenger guanosine 3',5'-cyclic monophosphate(cGMP) mediates a wide range of influences on the ovary.
     1 Regulation and Its Mechanism of the Second Messenger cAMP/cGMP Signaling in the Rat Granulose Cell Maturation in vitro
     Inactivation of the cyclic nucleotide signal in granulosa cells depends on a complex array of cyclic nucleotide phosphodiesterases(PDE).In order to examine the role of PDE in cyclic AMP(cAMP) signaling in granulosa cells,the present study cultured rat ovarian granulosa cells treated with FSH,examined the changes of E2,cAMP and cGMP,and analysis the the expression of PDE4 proteins and regulation of cAMP-PDE activities.The results showed that cAMP level in the experimental group was significantly higher than that in control group,while cGMP level has no difference between two groups,when granulose cells were cultured 48 hours for maturation.The results of immunoblot analyses showed that two predominant PDE4D subtypes of approximately 80 and 70 kDa appeared when immature rat granulosa cells were treated with FSH.Immature rat granulosa cells treated with medium alone displayed low cAMPPDE activity throughout 48 h of culture while those treated with FSH(2 ng·mL-1) showed a marked increase in cAMP-PDE activity between 6 and 12 h of culture,followed by a decline.The findings from the present study indicate that the increased cAMP-PDE activity by FSH is mainly related to the changes of PDE4D protein levels,and that cAMP accumulation in rat granulosa cells are not via the increased cAMP-PDE activity.
     2 Role of the Second Messenger cAMP/cGMP Signaling during the Ovarian Early Development in the Rat Embryo
     In order to examine the role of the second messenger cAMP/cGMP signaling during the ovarian early development in mammalian,the present study was conducted to investigate the fetal ovarian development through histology and to analysis the ovarian cGMP levels and cGMP-PDE activities in the fetal female rat model by radioimmunoassay (RIA).The results showed ovarian cAMP levels is low at Day 12,increased significantly after Day 15,then no difference until birth in the fetal rats.While the contrary changes were discovered in the ovarian cAMP-PDE activity,which was the highest at Day 12 and there was no difference between other stages.Ovarian cGMP levels changed in the whole late pregnancy,then no difference was found after ovarian differentiation;while cGMP-PDE activity was high at Day 12,and decreased significantly at Day 15,then no marked decline. Together,the results of our present study have indicated that cAMP signaling may take part in the development of female fetal ovary,and that PDE in the cAMP/cGMP signaling have different roles during this development process.
     3 Role of the Second Messenger cAMP/cGMP Signaling during the Ovarian Follicular Development in the Postnatal Rat
     In order to examine the role of the second messenger cAMP/cGMP signaling during the ovarian follicular initial development in mammalian,the present study was conducted to investigate the ovarian follicular development through histology and to analysis the ovarian cGMP levels and cGMP-PDE activities in the postnatal rat model by radioimmunoassay(RIA).The results of the present study showed in postnatal rats,cAMP level was very high in ovaries of 10-day-old females,while cAMP-PDE activity was the highest at 21 days of age.cGMP levels were high at birth day and decreased dramatically at Day 5,then increased to the highest level at Day 10 and followed by a decline at Day 21. While,the cGMP-PDE activity was not significantly changed during Day 1 to 10,but increased significantly at Day 21.Together,these findings indicate that ovarian cAMP signaling may be involved in ovarian follicular invitation and development in the rat,while PDE seems no significant roles in the early development of ovarian follicles.The changes of cAMP/cGMP levels and PDE activity at Day 21 implied that there are complex crosstalking between cAMP and cGMP signaling pathways.
     4 Role of the Second Messenger cAMP/cGMP Signaling during the Ovarian Follicular Development in the Immature Rat
     In order to examine the role of the second messenger cAMP/cGMP signaling during the ovarian follicular development in mammalian,the present study was conducted to investigate the ovarian follicular development through histology and to analysis the ovarian cGMP levels and cGMP-PDE activities in the immature rats during gonadotropin-primed follicular development,ovulation and luteinization by radioimmunoassay(RIA).The results of the present study showed in immature female rats,the cAMP level increased remarkably with treatment with equine chorionic gonadotropin(eCG),while cAMP-PDE activity was similar to cAMP change;induction of ovulation and luteinization by an ovulatory dose of human chorionic gonadotropin(hCG) increased ovarian cAMP level and cAMP-PDE activity,then followed a significant decline,cGMP levels decreased remarkably with treatment of equine chorionic gonadotropin(eCG),while cGMP-PDE activity did not show any significant changes;however,ovarian cGMP level and cGMP-PDE activity increased after injection of an ovulatory dose of human chorionic gonadotropin(hCG) for induction of ovulation and luteinization.Together,these findings indicate that ovarian cAMP/cGMP signaling may take part in the growth and development of ovarian follicles,while roles of PDE during the development of ovarian follicles were in stage-specific manner.
     5 Role of the Second Messenger cAMP/cGMP Signaling during the Ovarian Follicular Development in the Adult Rat
     In order to examine the role of the second messenger cAMP/cGMP signaling during the ovarian follicular development in mammalian,the present study was conducted to investigate the ovarian follicular development through histology and to analysis the ovarian cGMP levels and cGMP-PDE activities in the adult rats during normal estrous cycling by radioimmunoassay(RIA).The results of the present study showed in young adult rats during normal estrus cycle,cAMP levels were low at estrus day,while cAMP-PDE activities had no significant change in each day of estrus cycle,cGMP levels were high at proestrus and metestrus days,while cGMP-PDE activities were high at estrus day.In addition,there was a significant negative relationship between ovarian cGMP contents and cGMP-PDE activities during normal estrous cycles in the adult rat(r=-0.7715,n=16, P<0.05),but not in the postnatal rat(r=-0.1055,n=20,P>0.05).Together,these findings indicate that ovarian cAMP/cGMP signaling may take part in the growth and development of ovarian follicles,especially that cAMP-PDE regulation of cAMP signal was affected by many kinds of factors,while cGMP-PDE may be a major factor to mediate cGMP during normal estrus cycle.
     6 Role of the Second Messenger cAMP/cGMP Signaling during the Ovarian Follicular Development in the Persistent Estrus Rat
     In order to examine the role of the second messenger cAMP/cGMP signaling during the ovarian follicular development in mammalian,the present study was conducted to investigate the ovarian follicular development through histology and to analysis the ovarian cGMP levels and cGMP-PDE activities in the persistent estrus(PE) rats by radioimmunoassay(RIA).The results of the present study showed in persistent estrus(PE) rats,ovarian cAMP levels were similar to that in young adult rats at estrus day but lower than that at the other estrus cycle days;ovarian cAMP-PDE activities were lower than that at every estrus cycle day.ovarian cGMP levels were similar to that in adult rats at estrus and diestrus days but lower than that at proestrus and metestrus days;ovarian cGMP-PDE activities were lower than that at estrus day but similar to the other estrous cycle days. Together,these findings indicate that ovarian cAMP/cGMP signaling may be involved in ovarian cysts,especially the decline of cAMP/cGMP-PDE activity may be caused by the formation of ovarian cysts in PE rats.
     7 Regulation and Its Mechanism of Ovarian Functions via Second Messenger cAMP/cGMP Signaling in Mammalian Gestation
     In order to examine the regulation of cAMP/cGMP signaling on ovarian functions in mammalian gestation,the present study was conduct to investigate the ovarian follicular development in different-day gestation rat via histology,and analysis the blood E2,P and cAMP/cGMP levels in pregnancy daily cows by radioimmunoassay(RIA).The results of the present study showed ovarian follicles have developed in a different degree,which is related to different stages of gestation during the rat pregnancy.There was no significant difference in blood E2 levels of daily cows,while P levels increased significantly with the day of pregnancy.There were similar changes between cAMP and cGMP in daily cow blood,which were high in the middle of pregnancy and were low during the late pregnancy. Together,these findings indicate that second messenger cAMP/cGMP signaling maybe play a critical role in maintaining ovarian functions via mediating reproduction hormones in mammalian gestation.
     8 Study on the Localization of Element Proteins of cAMP/cGMP Signaling Pathway in Ovaries from Chinese Holstein Cows
     Experiments were conducted to examine the cellular localization of PKB/Akt,FoxO1, PDE4,inhibinα-subunit,nNOS,sGCαandβsubunit proteins in the ovarian follicular cells of Chinese Holstein Cows by immunohistochemistry.The results indicated that PKB was localized in the granulosa cells of primordial,preantral and antral follicles,but were not localized in corpora lutea.FoxO1 was mainly localized in the granulosa cells of of primary, preantral and antral follicles.PDE4 was only localized in the granulosa cells of some antral follicles.Inhibinα-subunit nNOS,sGCαandβsubunits were localized in the granulosa cells of follicles at all stages but were not localized in corpora lutea,but sGCαandβsubunit staining were intense in the granulosa cells of primordial and preantral follicles. Together,the stage- and cell- specific expression patterns of PKB/Akt,FoxO1,PDE4, inhibinα-subunit,nNOS,sGCαandβsubunits suggest that these proteins might play potential roles in follicular development,atresia,and luteinization in the Chinese Holstein Cow.
     In conclusion,we use a kind of granulose cell model cultured in vitro and six models of rat ovarian development to examine the roles of second messenger cAMP/cGMP signaling pathways during the development of rat ovarian follicles.The results of the present study have indicated that the increased cAMP-PDE activity by FSH is mainly related to the changes of PDE4D protein levels,and that cAMP accumulation in rat granulosa cells is not via the increased cAMP-PDE activity.The results of animal models suggested that roles of cAMP-PDE during the development of ovarian follicles are in a stage-specific manner.Furthermore,we investigated the roles of cGMP-PDE in these physical processes and the localization of element proteins of cAMP/cGMP signaling pathway in ovaries from Chinese Holstein cows,which validated cAMP compartmentalization and cGMP potential effects showed in the present thesis and developed a signaling pathway model of regulations of second messengers cAMP/cGMP on ovarian functions in mammalian.
引文
[1]Gonzalez-Robayna IJ,Falender AE,Ochsner S,Firestone GL,Richards JS.Follicle-stimulating hormone(FSH) stimulates phosphorylation and activation of protein kinase B(PKB/Akt) and serum and glucocorticoid-induced kinase(Sgk):evidence of A kinase-independent signaling by FSH in granulansa cells.Mol Endocrinol 2000;14:1283-1300.
    [2]Broillet MC,Firestein S.Cyclic nucleotide-gated channels.Molecular mechanisms of activation.Ann N YAcad Sci 1999 868:730-740.
    [3]Francis SH,Corbin JD.Cyclic nucleotide-dependent protein kinases:intracellular receptors for cAMP and cGMP action.Crit Rev Clin Lab Sci 1999 36:275-328.
    [4]Thomson DM,Herway ST,Fillmore N,Kim H,Brown JD,Barrow JR,Winder WW. AMP-activated protein kinase phosphorylates transcription factors of the CREB family.J Appl Physiol.2008,104(2):429-438.
    [5]Skalhegg BS,Tasken K.Specificity in the cAMP/PKA signaling pathway.Differential expression,regulation,and subcellular localization of subunits of PKA.Front Biosci 2000 5:D678-693.
    [6]Bos JL,de Rooij J,Reedquist KA.Rapl signalling:adhering to new models.Nat Rev Mol Cell Biol 2001 2:369-377.
    [7]Glickman SE,Short RV,Renfree MB.Sexual differentiation in three unconventional mammals:spotted hyenas,elephants and tammar wallabies.Horm Behav.2005,48(4):403-417.
    [8]Richards JS.Perspective:the ovarian follicle—a perspective in 2001.Endocrinology 2001 142:2184-2193
    [9]Woodruff TK,Shea LD.The role of the extracellular matrix in ovarian follicle development.Reprod Sci.2007,14(8 Suppl):6-10.
    [10]Steinberg SF,Brunton LL.Compartmentation of G protein-coupled signaling pathways in cardiac myocytes.Annu Rev Pharmacol Toxicol 2001 41:751-773.
    [11]Ji TH,Ryu KS,Gilchrist R,Ji I.Interaction,signal generation,signal divergence,and signal transduetion of LH/CG and the receptor.Recent Prog Horm Res 199752:431-453.
    [12]Hsu SY,Kudo M,Chen T,Nakabayashi K,Bhalla A,van der Spek PJ,van Duin M,Hsueh AJ.The three subfamilies of leucine-rich repeat-containing G protein-coupled receptors(LGR):identification of LGR6 and LGR7 and the signaling mechanism for LGR7.Mol Endocrinol 2000 14:1257-1271.
    [13]Jayawardana BC,Shimizu T,Nishimoto H,Kaneko E,Tetsuka M,Miyamoto A.Hormonal regulation of expression of growth differentiation factor-9 receptor type Ⅰand Ⅱ genes in the bovine ovarian follicle.Reproduction.2006,131(3):545-553.
    [14]Herrlieh A,Kuhn B,Grosse R,Schmid A,.Schultz G,Gudermann T.Involvement of Gs and Gi proteins in dual coupling of the luteinizing hormone receptor to adenylyl cyclase and phospholipase C.J Biol Chem 1996 271:16764-16772.
    [15]Conti M.Specificity of the cyclic adenosine 3',5'-monophosphate signal in granulosa cell function.Biol Reprod 2002 67:1653-1661.
    [16]Zhang FP,Poutanen M,Wilbertz J,Huhtaniemi I.Normal prenatal but arrested postnatal sexual development of luteinizing hormone receptor knockout(LuRKO) mice. Mol Endocrinol 2001 15:172-183
    [17]Themmen APN,Huhtaniemi IT.Mutations of gonadotropins and gonadotropin receptors:,elucidating the physiology and pathophysiology of pituitary-gonadal function.Endocr Rev 2000 21:551-583.
    [18]Bebia Z,Somers JP,Liu G,Ihl-ig L,Shenker A,Zeleznik AJ.Adenovirus-directed expression of functional luteinizing hormone(LH) receptors in undifferentiated rat granulosa cells:evidence for differential signaling through follicle-stimulating hormone and LH receptors.Endocrinology 2001 142:2252-2259.
    [19]Davis JS,Weakland LL,Coffey RG,West LA.Acute effects of phorbol esters on receptor-mediated IP3,cAMP,and progesterone levels in rat granulosa cells.Am J Physiol.1989,256(3Pt1):E368-374.
    [20]Veldhuis JD.Mechanisms subserving hormone action in the ovary:role of calcium ions as assessed by steady state calcium exchange in cultured swine granulosa cells.Endocrinology 1987 120:445-449.
    [21]Gudermann T,Nichols C,Levy FO,Bimbaumer M,Bimbaumer L.Ca~(2+) mobilization by the LH receptor expressed in Xenopus oocytes independent of 3',5'-cyclic adenosine monophosphate formation:evidence for parallel activation of two signaling pathways.Mol Endocrinol 1992 6:272-278.
    [22]Wang Z,Liu X,Ascoli M.Phosphorylation of the lutropin/choriogonadotropin receptor facilitates uncoupling of the receptor from adenylyl cyclase and endocytosis of the bound hormone.Mol Endocrinol 1997 11:183-192.
    [23]Shinozaki H,Fanelli F,Liu X,Jaquette J,Nakamura K,Segaloff DL.Pleiotropic effects of substitutions of a highly conserved leucine in transmembrane helix Ⅲ of the human lutropin/ehoriogonadotropin receptor with respect to constitutive activation and hormone responsiveness.Mol Endoerinol 2001 15:972-984.
    [24]Hirsch B,Kudo M,Naro F,Conti M,Hsueh AJ.The C-terminal third of the human luteinizing hormone(LH) receptor is important for inositol phosphate release:analysis using chimeric human LH/follicle-stimulating hormone receptors.Mol Endocrinol 1996 10:1127-1137.
    [25]Christ B.Inhibition of glucagon-signaling and downstream actions by interleukin lbeta and tumor necrosis factor alpha in cultured primary rat hepatocytes.Horm Metab Res.2008,40(1):18-23.
    [26]Gudermann T,Kalkbrenner F,Schultz G.Diversity and selectivity of receptor-G protein interaction.Annu Rev Pharmacol Toxicol 1996 36:429-459.
    [27]Schwartz JH.The many dimensions of cAMP signaling.Proc Nail Acad Sci U S A 2001 98:13482-13484.
    [28]Lewis RS.Calcium signaling mechanisms in T lymphocytes.Annu Rev Immunol 200119:497-521.
    [29]Dolmetsch RE,Xu K,Lewis RS.Calcium oscillations increase the efficiency and specificity of gene expression.Nature 1998 392:933-936.
    [30]Scott JD,Dell'Acqua ML,Fraser ID,Tavalin S J,Lester LB.Coordination of cAMP signaling events through PKA anchoring.Adv Pharmacol 2000 47:175-207
    [31]Parakh TN,Hemandez JA,Grammer JC,Week J,Hunzicker-Dunn M,Zeleznik A J,Nilson JH.Follicle-stimulating hormone/cAMP regulation of aromatase gene expression requires beta-catenin.Proc Natl Acad Sci USA.2006,103(33):12435-12440.
    [32]Sasseville M,Cote N,Vigneault C,Guillemette C,Richard FJ.3'5'-cyclic adenosine monophosphate-dependent up-regulation of phosphodiesterase type 3A in porcine cumulus cells.Endocrinology.2007,148(4):1858-1867.
    [33]Tsafriri A,Chun SY,Zhang R,Hsueh AJ,Conti M.Oocyte maturation involves compartmentalization and opposing changes of cAMP levels in follicular somatic and germ cells:studies using selective phosphodiesterase inhibitors.Dev Biol 1996178:393-402.
    [34]Conti M.Phosphodiesterases and cyclic nucleotide signaling in endocrine cells.Mol Endocrinol 2000 14:1317-1327.
    [35]Tasken KA,Collas P,Kemmner WA,Witczak O,Conti M,Tasken K.Phosphodiesterase 4D and protein kinase a type Ⅱ constitute a signaling unit in the centrosomal area.J Biol Chem 2001 276:21999-22002.
    [36]Dodge KL,Khouangsathiene S,Kapiloff MS,Mouton R,Hill EV,Houslay MD,Langeberg LK,Scott JD.mAKAP assembles a protein kinase A/PDE4phosphodiesterase cAMP signaling module.EMBO J 2001 20:1921-1930.
    [37]Huston E,Houslay TM,Baillie GS,Houslay MD.cAMP phosphodiesterase-4A1(PDE4A1) has provided the paradigm for the intracellular targeting of phosphodiesterases,a process that underpins compartmentalized cAMP signalling.Biochem Soe Trans,2006,34(Pt 4):504-509.
    [38]Mehats C,Andersen CB,Filopanti M,Jin SL,Conti M.Cyclic nucleotide phosphodiesterases and their role in endocrine cell signaling.Trends Endocrinol Metab,2002,13(1):29-35.
    [39]Jin SL,Bushnik T,Lan L,Conti M.Subcellular localization of rolipram-sensitive,cAMP-specific phosphodiesterases.Differential targeting and activation of the splicing variants derived from the PDE4D gene.J Biol Chem,1998,273(31):19672-19678.
    [40]Conti M,Richter W,Mehats C,Livera G,Park JY,Jin C.Cyclic AMP-specific PDE4phosphodiesterases as critical components of cyclic AMP signaling.J Biol Chem,2003,278(8):5493-5496.
    [41]Perry SJ,Baillie G,Kohout TA,McPhee I,Magiera MM,Ang KL,Miller WE,McLean A J,Conti M,Houslay MD,Lefkowitz RJ.Targeting of cyclic AMP degradation to beta 2-adrenergic receptors by beta-arrestins.Science,2002,298:834-836.
    [42]Baillie GS,Houslay MD.Arrestin times for compartmentalized cAMP signalling and phosphodiesterase-4 enzymes.Curt Opin Cell Biol,2005,17(2):129-134.
    [43]Bolger GB,Baillie GS,Li X,Lynch MJ,Herzyk P,Mohamed A,Mitchell LH,McCahill A,Hundsrucker C,Klussmann E,Adams DR,Houslay MD.Scanning peptide army analyses identify overlapping binding sites for the signalling scaffold proteins,beta-arrestin and RACK1,in cAMP-specific phosphodiesterase PDE4D5.Biochem J.2006,398(1):23-36.
    [44]Lugnier C.Cyclic nucleotide phosphodiesterase(PDE) superfamily:A new target for the development of specific therapeutic agents.Pharmacol Therapeut,2006,109:366-398.
    [45]Schmidt M,Evellin S,Weernink PA,yon Dorp F,Rehmann H,Lomasney JW,Jakobs KH.A new phospholipase-C-calcium signalling pathway mediated by cyclic AMP and a Rap GTPase.Nat Cell Biol 2001 3:1020-1024.
    [46]Gonzalez-Robayna IJ,Falender AE,Ochsner S,Firestone GL,Richards JS.Follicle-stimulating hormone(FSH) stimulates phosphorylation and activation of protein kinase B(PKB/Akt) and serum and glueoeorticoid-induced kinase(Sgk):evidence for A idnase-independent signaling by FSH in granulosa cells.Mol Endocrinol 2000 14:1283-1300.
    [47]Das S,Maizels ET,DeManno D,St Clair E,Adam SA,Hunzicker-Dunn M.A stimulatory role of cyclic adenosine 3',5'-monophosphate in follicle-stimulating hormone-activated mitogen-activated protein kinase signaling pathway in rat ovarian granulosa cells.Endocrinology 1996 137:967-974.
    [48]Cameron MR,Foster JS,Bukovsky A,Wimalasena J.Activation of mitogen-activated protein kinases by gonadotropins and cyclic adenosine 5'-monophosphates in porcine granulosa cells.Biol Reprod 1996 55:111-119.
    [49]Maizels ET,Cottom J,Jones JC,Hunzicker-Dunn M.Follicle stimulating hormone (FSH) activates the p38 mitogen-activated protein kinase pathway,inducing small heat shock protein phosphorylation and cell rounding in immature rat ovarian granulosa cells.Endocrinology 1998 139:3353-3356.
    [50]Maizels ET,Mukherjee A,Sithanandam G,Peters CA,Cottom J,Mayo KE,Hunzicker-Dunn M.Developmental regulation of mitogen-activated protein kinase-activated kinases-2 and -3(MAPKAPK-2/-3) in vivo during corpus luteum formation in the rat.Mol Endocrinol 2001 15:716-733.
    [51]Webster MK,Goya L,Ge Y,Maiyar AC,Firestone GL.Characterization of SGK,a novel member of the serine/threonine protein kinase gene family which is transcriptionally induced by glucocorticoids and serum.Mol Cell Biol 199313:2031-2040.
    [52]Park J,Leong ML,Buse P,Maiyar AC,Firestone GL,Hemmings BA.Serum and glucocorticoid-inducible kinase(SGK) is a target of the PI 3-kinase-stimulated signaling pathway.EMBO J 1999 18:3024-3033.
    [53]Loffing J,Zecevic M,Feraille E,Kaissling B,Asher C,Rossier BC,Firestone GL,Pearce D,Verrey F.Aldosterone induces rapid apical translocation of ENaC in early portion of renal collecting system:possible role of SGK.Am J Physiol Renal Physiol 2001 280:F675-F682.
    [54]Bell LM,Leong ML,Kim B,Wang E,Park J,Hernmings BA,Firestone GL.Hyperosmotic stress stimulates promoter activity and regulates cellular utilization of the serum- and glucocorticoid-inducible protein kinase(SGK) by a p38MAPK-dependent pathway.J Biol Chem 2000 275:25262-25272
    [1]Stefan E,Wiesner B,Baillie GS,Mollajew R,Henn V,Lorenz D,Furkert J,Santamaria K,Nedvetsky P,Hundsrucker C,Beyermann M,Krause E,Pohl P,Gall I,Maclntyre AN,Bachmann S,Houslay MD,Rosenthal W,Klussmann E.Compartmentalization of cAMP-dependent signaling by phosphodiesterase-4D is involved in the regulation of vasopressin-mediated water reabsorption in renal principal cells.J Am Soc Nephrol.2007,18(1):199-212.
    [2]Wang Z,Shi F.Phosphodiesterase 4 and compartmentalization of cyclic AMP signaling.Chinese Science Bulletin.2007,52,34-46.
    [3]Houslay MD,Schafer P,Zhang KY.Keynote review:Phosphodi-esterase-4 as a therapeutic target.Drug Discov Today,2005,10(22):1503-1519.
    [4]Conti M,Richter W,Mehats C,Livera G,Park JY,Jin C.Cyclic AMP-specific PDE4phosphodiesterases as critical components of cyclic AMP signaling.J Biol Chem,2003,278(8):5493-5496.
    [5]Houslay MD,Milligan G.Tailoring cAMP signalling responses through isoform multiplicity.Trends Bioehem Sci,1997,22:217-224.
    [6]Buxton IL,Brunton LL.Compartments of eyelie AMP and protein kinase in mammalian eardiomyocytes.J Biol Chem,1983,258(17):10233-10239.
    [7]Beavo JA,Brunton LL.Cyclic nueleotide research-still expandingafter half a century.Nat Rev Mol Cell Biol,2002,3:710-718.
    [8]Evellin S,Mongillo M,Terrin A,Lissandron V,Zaecolo M.Measuring dynamic changes in cAMP using fluorescence resonance energy transfer.Methods Mol Biol,2004,284:259-270.
    [9]Houslay MD,Adams DR.PDE4 cAMP phosphodiesterases:Modular enzymes that orchestrate signalling cross-talk,desensitization and com-partmentalization.Biochem J,2003,370(Pt 1):1-18.
    [10]Dousa TP.Cyelic-3',5'-nucleotide phosphodiesterase isozymes in cell biology and pathophysiology of the kidney.Kidney Int,1999,55(1):29-62.
    [11]Matsumoto T,Kobayashi T,Kamata K.Phosphodiesterases in the vascular system.J Smooth Muscle Res,2003,39(4):67-86.
    [12]Herin V,Stefan E,Baillie GS,Houslay MD,Rosenthal W,Klussmann E.Compartmentalized cAMP signalling regulates vasopressin-mediated water reabsorption by controlling aquaporin-2.Biochem Soc Trans.2005,33(Pt 6):1316-1318.
    [13]Huang T,McDonough CB,Abel T.Compartmentalized PKA sig-naling events are required for synaptic tagging and capture during hippocampal late-phase long-term potentiation.Eur J Cell Biol,2006,85(7):635-642.
    [14]Alto NM,Scott JD.The role of A-kinase anchoring proteins in cAMP-mediated signal transduction pathways.Cell Biochem Bio-phys,2004,40(3 Suppl):201-208.
    [15]Levine CG,Mitra D,Sharma A,Smith CL,Hegde RS.The efficiency of protein compartmentalization into the secretory pathway.Mol Biol Cell,2005,16(1):279-291.
    [16]Wang Z,Huang R.,Pan L,Li X,Sift F.Molecular structures,physiological roles and regulatory mechanisms of cyclic nucleotide-gated ion channels.Chinese J Biochem Mol Biol 2006;22:282-288.
    [17]Beard MB,Olsen AE,Jones RE,Erdogan S,Houslay MD,Bolger GB.UCR1 and UCR2 domains unique to the cAMP-specific phosphodiesterase family form a discrete module via electrostatic interactions.J Biol Chem,2000,275:10349-10358.
    [18]Lugnier C.Cyclic nucleotide phosphodiesterase(PDE) superfamily:A new target for the development of specific therapeutic agents.Pharmacol Therapeut,2006,109:366-398.
    [19]Torphy TJ.Phosphodiesterase isozymes:Molecular targets for novel antiasthma agents.Am J Respir Crit Care Med,1998,157(2):351-370.
    [20]Conti M,Jin SL.The molecular biology of cyclic nucleotide phos-phodiesterases.Prog Nucleic Acid Res Mol Biol,1999,63:1-38.
    [21]Conti M.Phosphodiesterases and cyclic nucleotide signaling in endocrine cells.Mol Endocrinol,2000,14(9):1317-1327.
    [22]Mehats C,Andersen CB,Filopanti M,Jin SL,Conti M.Cyclic nucleotide phos-phodiesterases and their role in endocrine cell signaling.Trends Endocrinol Metab,2002,13(1):29-35.
    [23]Wong W,Scott JD.AKAP signalling complexes:focal points in space and time.Nat Rev Mol Cell Biol,2004,5(12):959-970.
    [24]Tasken K,Aandahl EM.Localized effects of cAMP mediated by dis-tinct routes of protein kinase A.Physiol Rev,2004,84:137-167.
    [25]Cooper DM.Compartmentalization of adenylate cyclase and cAMP signalling.Biochem Soc Trans,2005,33(Pt 6):1319-1322.
    [26]Bolger GB,Baillie GS,Li X,Lynch MJ,Herzyk P,Mohamed A,Mitchell LH,McCahill A,Hundsrucker C,Klussmann E,Adams DR,Houslay MD.Scanning peptide array analy-ses identify overlapping binding sites for the signalling scaffold proteins,beta-arrestin and RACK1,in cAMP-specific phosphodi-esterase PDE4D5.Biochem J.2006,398(1):23-36.
    [27]Willoughby D,Wong W,Schaack J,Scott JD,Cooper DM.An anchored PKA and PDE4 complex regulates subplasmalemmal cAMP dynamics.EMBO J,2006,25(10):2051-2061.
    [28]McConnachie G,Langeberg LK,Scott JD.AKAP signaling com-plexes:Getting to the heart of the matter.Trends Mol Med,2006,12(7):317-323.
    [29]Lim J,Pahlke G,Conti M.Activation of the cAMP-specific phos-phodiesterase PDE4D3 by phosphorylation.Identification and function of an inhibitory domain.J Biol Chem,1999,274:19677-19685.
    [30]Hoffmann R,Wilkinson IR,McCallum JF,Engels P,Houslay MD.cAMP-specifc phosphodiesterase HSPDE4D3 mutants which mimic activation and changes in rolipram inhibition triggered by protein kinase A phosphorylation of Ser-54:Generation of a molecular model.Bio-chem J,1998,333:139-149.
    [31]Oki N,Takahashi SI,Hidaka H,Conti M.Short term feedback regulation of cAMP in FRTL-5 thyroid cells.Role of PDE4D3 phosphodiesterase activation.J Biol Chem,2000,275:10831-10837.
    [32]Jin SL,Richard FJ,Kuo WP,D'Ereole AJ,Conti M.Impaired growth and fertility of cAMP-specific phosphodiesterase PDE4D-deficient mice.Proc Nail Acad Sci USA,1999,96:11998-12003.
    [33]Hoffmann R,Baillie GS,MacKenzie SJ,Yarwood SJ,Houslay MD.The MAP kinase ERK2 inhibits the cAMP-specifc phosphodiesterase,HSPDE4D3 by phos-phorylating it at Ser579.EMBO J,1999,18:893-903.
    [34]Houslay MD,Kolch W.Cell-type specific integration of cross-talk between extracellular signal-regulated kinase and cAMP signaling.Mol Pharmacol,2000,58:659-668.
    [35]Dodge-Kafka KL,Soughayer J,Pare GC,Carlisle Michel JJ,Langeberg LK,Kapiloff MS,Scott JD.The protein kinase A anchoring protein mAKAP coordinates two integrated cAMP ef-fector pathways.Nature,2005,437:574-578.
    [36]Park JY,Richard F,Chun SY,Park JH,Law E,Horner K,Jin SL,Conti M.Phosphodiesterase regulation is critical for the differentiation and pattern of gene expression in granulosa cells of the ovarian follicle.Mol Endocrinol,2003,17(6):1117-1130.
    [37]Shi F,Perez E,Wang T,Peitz B,Lapolt PS.Stage and cell-specific expression of soluble guanylyl cyclase alpha and beta subunits,cGMP-Dependent protein kinase I-alpha and I-beta,cyclic nucleotide-gated chan-nel subunit-1 in the rat testis.J Androl,2005,26(2):258-263.
    [38]Shi F,Stewart RL,Pere E,Chen JY,LaPolt PS.Cell-specific expression and regulation of soluble guanylyl cyclase alpha and beta subunit in the rat ovary.Bio Reprod,2004,70:1552-1561.
    [39]Shi F,LaPolt PS.Relationship between FoxO1 protein levels and follicular development,atresa,and luteinization.J Endocr,2003,179:195-203.
    [40]Conti M,Andersen CB,Richard F,Mehats C,Chun SY,Horner K,Jin C,Tsafriri A.Role of cyclic nucleotide signaling in oocyte maturation.Mol Cell Endocrinol,2002,187(1-2):153-159.
    [41]Paruthiyil S,Majdoubi ME,Conti M,Weiner RI.Phosphodiesterase expression targeted to gonadotropin-releasing hormone neurons inhibits luteinizing hormone pulses in transgenic rats.Proc Natl Acad Sci USA,2002,99(26):17191-17196.
    [42]Sadler SE.Type Ⅲ phosphodiesterase plays a necessary role in the growth-promoting actions of insulin,insulin-like growth fac-tor-I,and Ha p21ras in Xenopus laevis oocytes.Mol Endocrinol,1991,5:1939-1946.
    [1]Gonzalez-Robayna IJ,Falender AE,Ochsner S,Firestone GL,Richards JS.Follicle-stimulating hormone(FSH) stimulates phosphorylafion and activation of protein kinase B(PKB/Akt) and serum and glucocorticoid-induced kinase(Sgk):evidence of A kinase-independent signaling by FSH in granulansa cells.Mol Endocrinol 2000;14:1283-1300.
    [2]Wang Z,Shi F.Phosphodiesterase 4 and compartmentalization of cyclic AMP signaling.Chinese Science Bulletin.2007,52,34-46.
    [3]Shi F,Stewart RL,Pere E,Chen JY,LaPolt PS.Cell-specific expression and regulation of soluble guanylyl cyclase alpha and beta subunit in the rat ovary.Bio Reprod,2004,70:1552-1561.
    [4]Koesling D,Friebe A.Soluble guanylyl cyclase:structure and regulation.Rev Physiol Biochem Pharmacol.1999;135:41-65.
    [5]Chen YH,Tafoya M,Ngo A,LaPolt PS.Effects of nitric oxide and cGMP on inhibin A and inhibin subunit mRNA levels from cultured rat granulosa cells.Fertil Steril.2003,79(S1):687-693.
    [6]Middendorff R,Kumm M,Davidoff MS,Holstein AF,M(u|¨)ller D.Generation of cyclic guanosine monophosphate by heme oxygenases in the human testis-a regulatory role for carbon monoxide in Sertoli cells? Biol Reprod.2000,63(2):651-657.Christova T et al.Acta Physiol Pharmacol Bulg,2000,25:9
    [7]Christova T,Diankova Z,Setchenska M.Heme oxygenase--carbon monoxide signalling pathway as a physiological regulator of vascular smooth muscle cells.Acta Physiol Pharmacol Bulg.2000;25(1):9-17.
    [8]Ravanelli MI,Branco LG.Role of locus coeruleus heine oxygenase-carbon monoxide-cGMP pathway during hypothermic response to restraint.Brain Res Bull.2008,75(5):526-532
    [9]Sehulz S,Waldman SA.The guanylyl cyclase family of natriuretic peptide receptors.Vitam Horm.1999;57:123-151.
    [10]Noubani A,Farookhi R,Gutkowska J.B-type natriuretic peptide receptor expression and activity are hormonally regulated in rat ovarian cells.Endocrinology.2000,141(2):551-559.
    [11]Van Voorhis BJ,Dunn MS,Snyder GD,Weiner CP.Nit fie oxide:an autocrine regulator of human granulose luteal cell steroidogenesis.Endocrinology.1994,135: 1799-1806.
    [12]Jablonka-Shariff A,Olson LM.Hormonal regulation of nitric oxide synthases and their cell special expression during the follicular development in the rat ovary.Endocrinology.1997,138:460-480.
    [13]Van Voorhis BJ,Moore K,St ripbos PLM,Nelson S,Baylis SA,Grzybicki D,Weiner CP.Expression and localization of inducible and endothelial nitric oxide synthase in the rat ovary.Clin.Invest.1995,96:2719-2726.
    [14]Zachrisson U,Mikuni M,Wallin A,Delbro D,Hedin L,Br(a|¨)nnstr(o|¨)m M.Cell specific localization of nitric oxide in the rat ovary during follicular development,ovulation and luteal formation.Hum Reprod.1996,11:2667-26736.
    [15]Ishimaru RS,Leung K,Hong L,LaPolt PS.Inhibitory effects of nitric oxide on estrogen production and cAMP levels in rat granulosa cell cultures.J Endocrinol.2001,168(2):249-255.
    [16]Grasselli F,Ponderato N,Basini G,Tamanini C.Nitric oxide synthase expression and nitric oxide/cyclic GMP pathway in swine granulosa cells.Domest Anim Endocrinol.2001,20(4):241-252.
    [17]LaPolt PS,Leung K,Ishimaru R,Tafoya MA,You-hsin Chen J.Roles of cyclic GMP in modulating ovarian functions.Reprod Biomed Online.2003,6(1):15-23.
    [18]Piquette GN,LaPolt PS,Oikawa M,Hsueh AJ.Regulation of luteinizing hormone receptor messenger ribonucleic acid levels by gonadotropins,growth factors,and gonadotropin-releasing hormone in cultured rat granulosa cells.Endocrinology.1991,128(5):2449-2456.
    [19]Snyder GD,Holmes RW,Bates JN,Van Voorhis BJ.Nitric oxide inhibites aromatase activity:mechanisms of action.J Steroid Biochem Biol.1996,58:63-69.
    [20]Kagabu S,Kodama H,Fukuda J,Karube A,Murata M,Tanaka T.Inhibitory effect s of nitric oxide on the expression and activity of aromatase in human granulose cells.Mol Hum Reprod.1999,5:396-401.
    [21]Lapolt PS,Hong LS.Inhibitory effects of superoxide dismutase and cyclic guanosine 3',5'-monophosphate on estrogen production in cultured rat granulose cells.Endocrinology.1995,136:5533-5539.
    [22]Motta AB,Franchi AM,Gimeno MFetal.Role of nitric oxide on the uterine and ovarian prostaglandin synthesis during luteolysis in the rat.Postaglandins Leukot.Essent.Fatty Acids.1997,56:265-269.
    [23]Salvemini D,Misko TP,Masferrer JL,Seibert K,Currie MG,Needleman P.Nitric oxide activates cyclooxygenase enzymes.Proc Nat Acad Sci USA,1993,90:7240-7244.
    [24]Ellman C,Corvett JA,Misko TP.McDaniel M,Beckerman KP.Nitric oxide mediates interleukin-1 induced cellular cytoxicity in the rat ovary.Clin Invest.1993,92:3053-3056.
    [25]Ben-Shlomo I,Adashi EY,Payne DW.The morphogenic/cyctotoxic and prostaglandin activities of interleukin-1 beta in the rat ovary are nitric oxide independent.J Clin Invest.1994,94:1463-1469.
    [26]Mat sumi H,Yano T,Koji T,Ogura T,Tsutsumi O,Taketani Y,Esumi H.Expression and localization of inducible nitric oxide synthase in the rat ovary:A possible involvement of nitric oxide in the follicular development.Biochem Biophys Res Commun.1998,243:67-72.
    [27]Yeh J,Kim B.Increasing blunting of inhibin responses to dynamic ovarian challenge is associated with reproductive aging in the rat.Reprod Sci.2007,14(1):10-19.
    [28]Wang Z,Huang R,Pan L,Li X,Shi F.Molecular structures,physiological roles and regulatory mechanisms of cyclic nucleotide-gated ion channels.Chinese J Biochem Mol Biol 2006;22:282-288.
    [29]Orstavik S,Natarajan V,Tasken K,Jahnsen T,Sandberg M.Characterization of the human gene encoding the type Ⅰ alpha and type Ⅰ beta cGMP-dependent protein kinase (PRKG1).Genomics.1997,42(2):311-318.
    [30]Gudi T,Casteel DE,Vinson C,Boss GR,Pilz RB.NO activation of los promoter elements requires nuclear translocation of G-kinase I and CREB phosphorylation but is independent of MAP kinase activation.Oncogene.2000,19(54):6324-6333.
    [31]Lu YF,Kandel ER,Hawkins RD.Nitric oxide signaling contributes to late-phase LTP and CREB phosphorylation in the hippocampus.J Neurosci.1999,19(23):10250-10261.
    [32]Sumii K,Sperelakis N.cGMP-dependent protein kinase regulation of the L-type Ca2+current in rat ventricular myocytes.Circ Res.1995,77(4):803-812.
    [33]Komalavilas P,Lincoln TM.Phosphorylation of the inositol 1,4,5-trisphosphate receptor.Cyclic GMP-dependent protein kinase mediates cAMP and cGMP dependent phosphorylation in the intact rat aorta.J Biol Chem.1996,271(36):21933-21938.
    [34]Karczewski P,Kuschel M,Baltas LG,Barrel S,Krause EG.Site-specific phosphorylation of a phospholamban peptide by cyclic nucleotide-and Ca2+/calmodulin-dependent protein kinases of cardiac sarcoplasmic reticulum.Basic Res Cardiol.1997,92(S1):37-43.
    [35]Li SJ,Sun NL.Regulation of intracellular Ca2+ and calcineurin by NO/PKG in proliferation of vascular smooth muscle cells.Acta Pharmacol Sin.2005,26(3):323-328.
    [36]McCoy DE,Guggino SE,Stanton BA.The renal cGMP-gated cation channel:its molecular structure and physiological role.Kidney Int.1995,48(4):1125-1133.
    [37]Weyand I,Godde M,Frings S,Weiner J,M(u|¨)ller F,Altenhofen W,Hart H,Kaupp UB.Cloning and functional expression of a cyclic-nucleotide-gated channel from mammalian sperm.Nature.1994,368(6474):859-863.
    [38]Shi F,Perez E,Wang T,Peitz B,Lapolt PS.Stage-and cell-specific expression of soluble guanylyl cyclase alpha and beta subunits,cGMP-dependent protein kinase I alpha and beta,and cyclic nucleotide-gated channel subunit 1 in the rat testis.J Androl.2005,26(2):258-263.
    [39]Conti M,Nemoz G,Sette C,Vicini E.Recent progress in understanding the hormonal regulation of phosphodiesterases.Endoer Rev.1995,16(3):370-389.
    [40]Draijer R,Atsma DE,van der Laarse A,van Hinsbergh VW.cGMP and nitric oxide modulate thrombin-induced endothelial permeability.Regulation via different pathways in human aortic and umbilical vein endothelial cells.Cite Res.1995,76(2):199-208.
    [41]Gao Y,Tolsa JF,Shen H,Raj JU.Effect of selective phosphodiesterase inhibitors on response of ovine pulmonary arteries to prostaglandin E2.J Appl Physiol.1998,84(1):13-18.
    [42]Kurtz A,G(o|¨)tz KH,Hamann M,Wagner C.Stimulation of renin secretion by nitric oxide is mediated by phosphodiesterase 3.Proc Natl Acad Sci USA.1998,95(8):4743-4747.
    [43]MacFarland RT,Zelus BD,Beavo JA.High concentrations of a cGMP-stimulated phosphodiesterase mediate ANP-induced decreases in cAMP and steroidogenesis in adrenal glomerulosa cells.J Biol Chem.1991,266(1):136-142.
    [1]Beavo JA.Cyclic nucleotide phosphodiesterases:functional implications of multiple isoforms.Physiol Rev 1995,75:725-748.
    [2]Soderling SH,Beavo JA.Regulation of cAMP and cGMP signaling:new phosphodiesterases and new functions.Curr Opin Cell Biol 2000,12:174-179.
    [3]Michaeli T,Bloom TJ,Martins T,Loughney K,Ferguson K,Riggs M,Rodgers L,Beavo JA,Wigler M.Isolation and characterization of a previously undetected human cAMP phosphodiesterase by complementation of cAMP phosphodiesterase-deficient Saccharomyces cerevisiae.J Biol Chem 1993,268:12925-12932.
    [4]Jin SL,Richard FJ,Kuo WP,D'Ercole AJ,Conti M.Impaired growth and fertility of cAMP-specific phosphodiesterase PDE4Ddeficient mice.Proc Natl Acad Sci USA 1999,96:11998-12003.
    [5]Park JY,Richard F,Chun SY,Park JH,Law E,Homer K,Jin SL,Conti M.Phosphodiesterase regulation is critical for the differentiation and pattern of gene expression in granulose cells of the ovarian follicle.Mol Endocrinol 2003,17: 1117-1130.
    [6]Crossthwaite AJ,Valli H,Williams RJ.Inhibiting Src family tyrosine kinase activity blocks glutamate signalling to ERK1/2 and Akt/PKB but not JNK in cultured striatal neurones.J Neurochem 2004,88:1127-1139.
    [7]Filippa N,Sable CL,Filloux C,Hemmings B,Van Obberghen E.Mechanism of protein kinase B activation by cyclic AMP-dependent protein kinase.Mol Cell Biol 1999,19:4989-5000.
    [8]Mei FC,Qiao J,Tsygankova OM,Meinkoth JL,Quilliam LA,Cheng X.Differential signaling of cyclic AMP:opposing effects of exchange protein directly activated by cyclic AMP and cAMP-dependent protein kinase on protein kinase B activation.J Biol Chem 2002,277:11497-11504.
    [9]Shi F,Stewart RL,Perez E,Chen JY,LaPolt PS.Cell-specific expression and regulation of soluble guanylyl cyclase alpha and beta subunits in the rat ovary.Biol Reprod 2004,70:1552-1561.
    [10]Bradford MM.A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding.Anal Biochem 1976,72:248-254.
    [11]Liu G,Shi F,Blas-Machado U,Duong Q,Davis VL,Foster WG,Hughes CL.Ovarian effects of high lactose diet in the female rat.Reprod Nutr Dev 2005,45:185-192.
    [12]Ishimaru RS,Leung K,Hong L,LaPolt PS.Inhibitory effects of nitric oxide on estrogen production and cAMP levels in rat granulose cell cultures.J Endocrinol 2001,168:249-255.
    [13]LaPolt PS,Hong LS.Inhibitory effects of superoxide dismutase and cyclic guanosine 3',5'-monophosphate on estrogen production in cultured rat granulosa cells.Endocrinology 1995,1362:5533-5539.
    [14]Ignarro LJ.Signal transduction mechanisms involving nitric oxide.Biochem Pharm 1991,41:485-490.
    [15]Bredt DS,Snyder SH.Nitric oxide:a physiological messenger molecule.Ann Rev Biochem 1994,63:175-195.
    [16]Pan L,Zhou Z,Wang T,Shi F.Regulation of functional proteins by nitric oxide in the ovarian.Acta Ecologiae Animalis Domastici 2006,27(2):92-96.
    [17]Zhou Z,Pan L,Wang T,Shi F.Regulation of ovarian function by cGMP.Chinese J cell Biol 2005,27:603-606.
    [18]Kofinas AD,Rose JC,Koritnik DR,Meis PJ.Progesterone and estradiol concentrations in nonpregnant and pregnant human myometrium:Effect of progesterone and estradiol on cyclic adenosine monophosphate-phosphodiesterase activity.J Reprod Med 1990,35:1045-1050.
    [19]Lacasa D,Agli B,Giudicelli Y.Hormonal activation of the cGMP-inhibited low-Km cyclic AMP phosphodiesterase of rat adipocytes from different sites:influence of ovariectomy.Biochim Biophys Acta 1992,1136:99-104.
    [20]Zachow RJ,Woolery JK.Effects of hepatocyte growth factor on cyclic nucleotidedependent signaling and steroidogenesis in rat ovarian granulosa cells in vitro.Biol Reprod 2002,67:454-459.
    [21]Beard MB,Olsen AE,Jones RE,Erdogan S,Houslay MD,Bolger GB.UCR1 and UCR2 domains unique to the cAMP-specific phosphodiesterase family form a discrete module via electrostatic interactions.J Biol Chem 2000,275:10349-10358.
    [22]Bolger GB.Molecular biology of the cyclic AMP-specific cyclic nucleotide phosphodiesterases:a diverse family of regulatory enzymes.Cell Signal 1994,6:851-859.
    [23]Hill EV,Houslay MD,Baillie GS.Investigation of extracellular signal-regulated kinase 2 mitogen-activated protein kinase phosphorylation and regulation of activity of PDE4cyclic adenosine monophosphate-specific phosphodiesterases.Methods Mol Biol 2005,307:225-237.
    [24]MacKenzie SJ,Baillie GS,McPhee I,Bolger GB,Houslay MD.ERK2mitogen-activated protein kinase binding,phosphorylation,and regulation of the PDE4D cAMP-specific phosphodiesterases.The involvement of COOH-terminal docking sites and NH2-terminal UCR regions.J Biol Chem 2000,275:16609-16617.
    [25]Richter W,Conti M.Dimerization of the type 4 cAMP-specific phosphodiesterases is mediumted by the upstream conserved regions(UCRs).J Biol Chem 2002,277:40212-40221.
    [1]陈大元.受精生物学[M].北京:科学出版社,2000:1-2.
    [2]Jhohan E,Smitz J,Cortvrindt RG.The earliest stages of folliculigenesis in vitro.Reproduction,2002,123:185-202.
    [3]Fazel AR,Schulte BA,Spicer SS.Glycoconjugate unique to migrating germ cells differs with genes.Anat Rec,1990,228:177-184.
    [4]Ginsburg M,Snow HL,Mclaren A.Primordial germ cells in the mouse embryo during gastrulation.Development,1990,110:521-528.
    [5]Shi F,Stewart RL,Pete E,Chen JY,LaPolt PS.Cell-specific expression and regulation of soluble guanylyl cyclase alpha and beta subunit in the rat ovary.Bio Reprod,2004,70:1552-1561.
    [6]Shi F,LaPolt PS.Relationship between FoxO1 protein levels and follicular development,atresa,and luteinization.J Endocr,2003,179:195-203.
    [1]Richards JS,Fitzpatrick SL,Clemens JW,Morris JK,Alliston T,Sirois J.Ovarian cell differentiation:a cascade of multiple hormones,cellular signals,and regulated genes.Recent Prog Horm Res 1995,50:223-254.
    [2]Ski F,Stewart RL,Pere E,Chen JY,LaPolt PS.Cell-specific expression and regulation of soluble guanylyl cyclase alpha and beta subunit in the rat ovary.Bio Reprod 2004,70:1552-1561.
    [3]Tatsukawa Y,Bowolaksono A,Nishimura R,Komiyarna J,Acosta TJ,Okuda K.Possible roles of intracellular cyclic AMP,protein kinase C and calcium ion in the apoptotic signaling pathway in bovine luteal cells.J Reprod Dev 2006,52(4):517-522.
    [4]Chaube SK,Prasad PV,Tripatki V,Shrivastav TG.Clomiphene citrate inhibits gonadotropin-induced ovulation by reducing cyclic adenosine 3',5'-cyclic monophosphate and prostaglandin E2 levels in rat ovary.Fertil Steril 2006,86(Suppl 4):1106-1111.
    [5]Das S,Maizels ET,DeManno D,St Clair E,Adam SA,Hunzicker-Dunn M.A stimulatory role of cyclic adenosine 3',5'-monophosphate in follicle-stimulating hormone-activated mitogen-activated protein kinase signaling pathway in rat ovarian granulosa cells.Endocrinology 1996,137(3):967-774.
    [6]Aharoni D,Dantes A,Oren M,Amsterdam A.cAMP-mediated signals as determinants for apoptosis in primary granulosa cells.Exp Cell Res 1995,218(1):271-282.
    [7]Sirotkin AV,Makarevich AV,Pivko J,Kotwica J,Genieser H,Bulla J.Effect of cGMP analogues and protein kinase G blocker on secretory activity,apoptosis and the cAMP/protein kinase A system in porcine ovarian granulosa cells in vitro.J Steroid Biochem Mol Biol 2000,74(1-2):1-9.
    [8]LaPolt PS,Leung K,Ishirnaru R,Tafoya MA,You-hsin Chen J.Roles of cyclic GMP in modulating ovarian functions.Reprod Biomed Online 2003,6(1):15-23.
    [9]Beavo JA.Cyclic nucleotide phosphodiesterases:functional implications of multiple isoforms.Physiol Rev 1995,75:725-748.
    [10]Soderling SH,Beavo JA.Regulation of cAMP and cGMP signaling:new phosphodiesterases and new functions.Curr Opin Cell Biol 2000,12:174-179.
    [11]Michaeli T,Bloom TJ,Martins T,Loughney K,Ferguson K,Riggs M,Rodgers L,Beavo JA,Wigler M.Isolation and characterization of a previously undetected human cAMP phosphodiesterase by complementation of cAMP phosphodiesterase-deficient Saccharomyces cerevisiae.J Biol Chem 1993,268(17):12925-12932.
    [12]Wang Z,Shi F.Phosphodiesterase 4 and compartmentalization of cyclic AMP signaling.Chinese Science Bulletin.2007,52:34-46.
    [13]Park JY,Richard F,Chun SY,Park JH,Law E,Horner K,Jin SL,Conti M.Phosphodiesterase regulation is critical for the differentiation and pattern of gene expression in granulosa cells of the ovarian follicle.Mol Endocrinol 2003,17(6):1117-1130.
    [14]Davies SA.Signalling via cGMP:lessons from Drosophila.Cell Signal 2006,18(4):409-421.
    [15]Shi F,Stewart RL,Perez E,Chen JY,LaPolt PS.Cell-specific expression and regulation of soluble guanylyl cyclase alpha and beta subunits in the rat ovary.Biol Reprod 2004,70:I552-1561.
    [16]Wang Z,Huang R,Pan L,Li X,Shi F.Molecular structures,physiological roles and regulatory mechanisms of cyclic nucleotide-gated ion channels.Chinese J Biochem Mol Biol 2006,22:282-288.
    [17]Xin W,Tran TM,Richter W,Clark RB,Rich TC.Roles of GRK and PDE4 activities in the regulation of beta2 adrenergic signaling.J Gen Physiol 2008,131(4):349-364.
    [18]Murthy KS.Activation of phosphodiesterase 5 and inhibition of guanylate cyclase by cGMP-dependent protein kinase in smooth muscle.Biochem J 2001,360(Pt 1):199-208.
    [19]Broderick KE,MacPherson MR,Regulski M,Tully T,Dow JA,Davies SA.Interactions between epithelial nitric oxide signaling and phosphodiesterase activity in Drosophila.Am J Physiol Cell Physiol 2003,285(5):C1207-1218.
    [20]Mullershausen F,Friebe A,Feil R,Thompson WJ,Hofmann F,Koesling D.Direct activation of PDE5 by eGMP:long-term effects within NO/cGMP signaling.J Cell Biol 2003,160(5):719-727.
    [21]Piriev NI,Yamashita CK.,Shih J,Farber DB.Expression of cone photoreceptor cGMP-phosphodiesterase a subunit in Chinese hamster ovary,293 human embryonic kidney,and Y79 retinoblastoma cells.Mol Vis 2003,9:80-86.
    [22]Patwardhan VV,Lanthier A.Ovarian cyclic GMP concentration and guanylate cyclase activity in immature rats after treatment with pregnant mare serum gonadotrophin.J Endocrinol 1985,107:77-81.
    [23]Patwardhan W,Lanthier A.Cyclic GMP phosphodiesterase and guanylate cyclase activities in rabbit ovaries and the effect of in-vivo stimulation with LH.J Endocrinol 1984,101(3):305-310.
    [24]Gelety T J,Magoffin DA.Ontogeny of steroidogenic enzyme gene expression in ovarian thca-interstitial cells in the rat:regulation by a paraerine theca-differentiating factor prior to achieving luteinizing hormone responsiveness.Biol Reprod 1997,56:938-945.
    [25]Nilsson E,Parrott JA,Skinner MK.Basic fibroblast growth factor induces primordial follicle development and initiates folliculogenesis.Mol Cell Endocrinol 2001,175:123-130.
    [26]Herath CB,Yamaslaita M,Watanabe G,Jin W,Tangtrongsup S,Kojima A,Groome NP,Suzuki AK,Taya K.Regulation of follicle-stimulating hormone secretion by estradiol and dimeric inhibins in the infantile female rat.Biol Reprod 2001,65:1623-1633.
    [27]Thomas RE,Armstrong DT,Gilehrist RB.Differential effects of specific phosphodiesterase isoenzyme inhibitors on bovine oocyte meiotic maturation.Dev Biol 2002,244(2):215-225.
    [28]Tsafrifi A, Chun S, Zhang R, Hsueh A, Conti M. Oocyte maturation involves compartmentalization and opposing changes of cAMP levels in follicular somatic and germ cells: studies using selective phosphodiesterase inhibitors. Dev Biol 1996, 178:393-402.
    [29] Conti M, Andersen CB, Richard F, Mehats C, Chun SY, Horner K, Jin C, Tsafriri A.Role of cyclic nucleotide signaling in oocyte maturation. Mol Cell Endocrinol 2002,187: 153-159.
    [30]Nilsson E, Parrott JA, Skinner MK. Basic fibroblast growth factor induces primordial follicle development and initiates folliculogenesis. Mol Cell Endocrinol 2001, 175:123-130.
    [31]Shi F, Stewart R L, Pere E, Chen JY, LaPolt PS.. Cell-specific expression and regulation of soluble guanylyl cyclase alpha and beta subunit in the rat ovary. Bio Reprod 2004, 70: 1552-1561.
    [1]Riehards JS,Fitzpatrick SL,Clemens JW,Morris JK,Alliston T,Sirois J.Ovarian cell differentiation:a cascade of multiple hormones,cellular signals,and regulated genes.Recent Prog Horm Res 1995,50:223-254.
    [2]Shi F,LaPolt PS.Relationship between FoxO1 protein levels and follicular development,atresa,and luteinization.J Endocr 2003,179:195-203.
    [3]Tatsukawa Y,Bowolaksono A,Nishimura R,Komiyama J,Acosta T J,Okuda K.Possible roles of intraceUular cyclic AMP,protein kinase C and calcium ion in the apoptotic signaling pathway in bovine luteal cells.J Reprod Dec 2006,52(4):517-522.
    [4]Chaube SK,Prasad PV,Tripathi V,Shrivastav TG Clomiphene citrate inhibits gonadotropin-induced ovulation by reducing cyclic adenosine 3',5'-cyclic monophosphate and prostaglandin E2 levels in rat ovary.Fertil Steril 2006,86(Suppl 4):1106-1111.
    [5]Sirotkin AV,Makarevich AV,Pivko J,Kotwica J,Genieser H,Bulla J.Effect of cGMP analogues and protein kinase G blocker on secretory activity,apoptosis and the cAMP/protein kinase A system in porcine ovarian granulosa cells in vitro.J Steroid Biochem Mol Biol 2000,74(1-2):1-9.
    [6]LaPolt PS,Leung K,Ishimaru R,Tafoya MA,You-hsin Chen J.Roles of cyclic GMP in modulating ovarian functions.Reprod Biomed Online 2003,6(1):15-23.
    [7]Wang Z,Shi F.Phosphodiesterase 4 and compartmentalization of cyclic AMP signaling. Chinese Science Bulletin.2007,52,34-46.
    [8]Bo WJ,Krueger WA,Rudeen PK,Symmes SK.Ethanol-induced alterations in the morphology and function of the rat ovary.Anat Rec,1982,202:255-260.
    [9]Petroff BK,Gao X,Ohshima K,Shi F,Son DS,Roby KF,Rozman KK,Watanabe G,Taya K,Terranova PF.Effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin(TCDD) on serum inhibin concentrations and inhibin immumostaining during follicular development in female sprague-dawley rats.Reprod Toxiol,2002,16:97-105.
    [10]Gomez R,Lima I,Simon C,Pellicer A.Administration of low-dose LH induces ovulation and prevents vascular hyperpermeability and vascular endothelial growth factor expression in superovulationed rats.Reproduction,2004,127:483-489.
    [11]Petroff BK,Roby KF,Gao X,Son D,Williams S,Johnson D,Rozman KK,Terranova PF.A review of mechanisms controlling ovulation with implications for the anovulatory effects of polychlorinated dibenzo-p-dioxins in rodents.Toxicology,2001,148:91-107.
    [12]Shi F,Ozawa M,Komura H,Yang P,Trewin AL,Hutz RJ,Watanabe G,Taya K.Secretion of ovarian inhibin and its physiologic roles in the regulation of follicle-stimulating hormone secretion during the estrous cycle of the female guinea pig.Biol Reprod,1999,60:78-84.
    [13]Liu G,Shi F,Blas-Machado U,Duong Q,Davis VL,Foster WG,Hughes CL.Ovarian effects of high lactose diet in the female rat.Reprod Nutr Dev,2005,45:185-192.
    [14]Liang CG,Huo LJ,Zhong ZS,Chen DY,Schatten H,Sun QY.Cyclic adenosine 3',5'-monophosphate-dependent activation of mitogen-activated protein kinase in cumulus cells is essential for germinal vesicle breakdown of porcine cumulus-enclosed oocytes.Endocrinology,2005,146(10):4437-4444.
    [15]Cheng J,Thompson MA,Walker HJ,Gray CE,Warner GM,Zhou W,Grande JP.Differential regulation of mesangial cell mitogenesis by cAMP phosphodiesterase isozymes 3 and 4.Am J Physiol Renal Physiol,2004,287:F940-F953.
    [16]Conti M,Hsieh M,Park JY,Su YQ.Role of the epidermal growth factor network in ovarian follicles.Mol Endocrinol,2006,20(4):715-723.
    [17]Park JY,Richard F,Chun SY,Park JH,Law E,Horner.K,Jin SL,Conti M.Phosphodiesterase regulation is critical for the differentiation and pattern of gene expression in granulosa cells of the ovarian follicle.Mol Endocrinol,2003,17(6):1117-1130.
    [18]Patwardhan VV,Lanthier A.Ovarian cyclic GMP concentration and guanylate cyclase activity in immature rats after treatment with pregnant mare serum gonadotrophin.J Endocrinol 1985,107:77-81.
    [19]Patwardhan VV,Lanthier A.Cyclic GMP phosphodiesterase and guanylate cyclase activities in rabbit ovaries and the effect of in-vivo stimulation with LH.J Endocrinol 1984,101(3):305-310.
    [20]Shi F,Stewart R L,Pere E,Chen JY,LaPolt PS..Cell-specific expression and regulation of soluble guanylyl cyclase alpha and beta subunit in the rat ovary.Bio Reprod,2004,70:1552-1561.
    [1]Arai KY,Ohshima K,Wantanabe G,Arai K,Uehara K,Taya K.Dynamics of messengers RNAs encoding inhibin/activin subunits and follistatin in the ovary during the rat estrous cycle.Biol Reprod 2002;.66:1119-1126.
    [2]Shirota M,Mukai M,Sakurada Y,Doyama A,Inode K,Haishima A,Akahori F,Shirota K.Effectsof vertically transferred 3,3',4,4',5-pentachlorobiphenyl(PCB-126) on the reproductive development of female rats.J Reprod Dev 2006;52:751-761.
    [3]Cooper RL,Goldman JM,Vandenbergh JG.Monitoring of the estrous cycle in the laboratory rodent by vaginal lavage.In:Heindel JJ,Chapin RE(Eds),Female Reproductive toxicity,Academic Press,Inc,New York,1993,p 45-56.
    [4]Shi F,Stewart RL,Pete E,Chen JY,LaPolt PS.Cell-specific expression and regulation of soluble guanylyl cyclase alpha and beta subunit in the rat ovary.Bio Reprod,2004,70:1552-1561.
    [5]Gay VL,Midgley AR,Niswender GD.Patterns of gonadotropin secretion associated with ovulation.Fed Proc,1970,29:1880-1887.
    [6]Danner TA,Parlow AF.Periovulatory patterns of rat serum follicle stimulating hormone and luteinizing hormone during the normal estrous cycle:effects of pentrobarbital.Endocrineology,1971,88:653-663.
    [7]Gomez R,Lima I,Simon C,Pellicer A.Administration of low-dose LH induces ovulation and prevents vascular hyperpermeability and vascular endothelial growth factor expression in superovulationed rats.Reproduction,2004,127:483-489.
    [8]Hoff JD,Quigley ME,Yen SSC.Hormone dynamics at midcycle:a reevaluation.J Clinic Endoerinol Medtabl,1983,57:792-796.
    [9]Conti M,Hsieh M,Park JY,Su YQ.Role of the epidermal growth factor network in ovarian follicles.Mol Endocrinol,2006,20(4):715-723.
    [10]Insler V,Kleinman D,Sod-Moriah U.Role of midcycle FSH surge in follicular development.Gynecol Obstet Invest,1990,30(4):228-233.
    [11]Hillier SG,Tetsuka M.Role of androgens in follicle maturation and atresia.Baillieres Clin Obstet Gynaecol,1997,11(2):249-260.
    [12]Yogo K,Ogawa T,Akiyama M,Ishida-Kitagawa N,Sasada H,Sato E,Takeya T.PKA implicated in the phosphorylation of Cx43 induced by stimulation with FSH in rat granulosa cells.J Reprod Dev,2006,52(3):321-328.
    [13]Sakumoto R,Shibaya M,Okuda K.Tumor necrosis factor-alpha(TNF alpha) inhibits progesterone and estradiol-17beta production from cultured granulosa cells:presence of TNFalpha receptors in bovine granulosa and theca cells.J Reprod Dev,2003,49(6):441-449.
    [14]Conti M,Andersen CB,Richard F,Mehats C,Chun SY,Horner K,Jin C,Tsafriri A. Role of cyclic nucleotide signaling in oocyte maturation.Mol Cell Endocrinol 2002;187:153-159.
    [15]Franks S,Mason H,Willis D.Follicular dynamics in the polycystic ovary syndrome.Mol Cell Endocrinol,2000,163(1-2):49-52.
    [16]Fares F.The role of O-linked and N-linked oligosaccharides on the structure-function of glycoprotein hormones:development of agonists and antagonists.Biochim Biophys Acta 2006;1760:560-567.
    [17]Amsterdam A,Keren-Tal I,Aharoni D,Dantes A,Land-Bracha A,Rimon E,Sasson R,Hirsh L.Steroidogenesis and apoptosis in the mammalian ovary.Steroids 2003;68:861-867.
    [18]Hubbard CJ.The effect in vivo of alterations in gonadotropins and cyclic nucleotides on oocyte maturation in the hamster.Life Sci 1983;33(17):1695-1702.
    [1]Anzalone CR,Lu JK,LaPolt PS.Influences of age and reproductive status on ovarian ovulatory responsiveness to gonadotropin stimulation.Proc Soei Exper Biol Medic,1998,217:455-460.
    [2]Chern BY,Chen YH,Hong LS,Lapolt PS.Ovarian steroidogenic respondiveness to exogenous gonadotropin stimulation in young and middle-aged female rats.Proc Soci Exper Biol Medic,2000,224:285-291.
    [3]LoPolt PS,Lu JK.Effects of aging on luteinizing hormone secretion,ovulation,and ovarian tissue-type plasminogen activator expression. Experi Biol Medic, 2001, 226:127-132.
    [4] Shi F, LaPolt PS. Relationship between FoxO1 protein levels and follicular development, atresa, and luteinization. J Endocrinol, 2003,179: 195-203.
    [5] Shi F, Stewart RL, Pere E, Chen JY, LaPolt PS. Cell-specific expression and regulation of soluble guanylyl cyclase alpha and beta subunit in the rat ovary. Bio Reprod, 2004,70: 1552-1561.
    [1]Etgen AM,Ansonoff MA,Quesada A.Mechanisms of ovarian steroid regulation of norepinephrine receptor-mediated signal transduction in the hypothalamus:implications for female reproductive physiology.Horm Behav.2001,40(2):169-177.
    [2]Dube F,Amireault P.Local serotonergic signaling in mammalian follicles,oocytes and early embryos.Life Sci.2007,81(25-26):1627-3167.
    [3]Zeleznik AJ.Modifications in gonadotropin signaling:a key to understanding cyclic ovarian function.J Soc Gynecol Investig.2001,8(S1):S24-25.
    [4]Nulsen JC,Silavin SL,Kao LC,Ringler GE,Kliman HJ,Strauss JF.Control of the steroidogenic machinery of the human trophoblast by cyclic AMP.J Reprod Fertil Suppl.1989,37:147-153.
    [5]Salas SP.Role of nitric oxide in maternal hemodynamics and hormonal changes in pregnant rats.Biol Res.1998,31(3):243-250.
    [6]Shi F,LaPolt PS.Relationship between FoxO1 protein levels and follicular development,atresa,and luteinization.J Endocr 2003,179:195-203.
    [7]Shi F,Stewart RL,Pere E,Chen JY,LaPolt PS.Cell-specific expression and regulation of soluble guanylyl cyclase alpha and beta subunit in the rat ovary.Bio Reprod,2004,70:1552-1561.
    [1]Wei KJ.Current situation of milk industry and prospect of development in our country.China Dairy Cattle.2006,1:1-3.
    [2]Song G.Ouyang G,Bao S.The activation of Akt/PKB signaling pathway and cell survival.J Cell Mol Med.2005,9:59-71.
    [3]Gonzalez-Robayna IJ,Falender AE,Ochsner S,Firestone GL,Richards JS.Follicle-Stimulating hormone(FSH) stimulates phosphorylation and activation of protein kinase B(PKB/Akt) and serum and glucocorticoid-lnduced kinase(Sgk):evidence for A kinase-independent signaling by FSH in granulosa cells.Mol Endocrinol 2000,14:1283-1300.
    [4]Birkenkamp KU,Coffer PJ.Regulation of cell survival and proliferation by the FOXO (Forkhead box,class O) subfamily of Forkhead transcription factors.Biochem Soc Trans 2003,31:292-297.
    [5]Nakae J,Biggs WH,Kitamura T,Cavenee WK,Wright CV,Arden KC,Accili D.Regulation of insulin action and pancreatic beta-cell function by mutated alleles of the gene encoding forkhead transcription factor Foxol.Nat Gene.t 2002,32:245-253.
    [6]Ski F,Mockida K,Suzuki O,Matsuda J,Ogura A,Ozawa M,Watanabe G,Suzuki AK,Taya K.Ovarian localization of immunoglobulin G and inkibin α-subunit in guinea pigs after passive immunization against the inhibin α-subunit.J Reprod Dev.2000,46:293-299.
    [7]Shi F,Perez E,Wang T,Peitz B,Lapolt PS.Stage and Cell-Specific Expression of Soluble Guanylyl Cyclase alpha and beta Subunits,cGMP-Dependent Protein Kinase I-alpha and I-beta,Cyclic Nucleotide-Gated Channel Subunit-1 in the Rat Testis.J Androl.2005,26(2):258-263.
    [8]Shi F,Stewart RL,Perez E,Chen JY,LaPolt PS.Cell-specific expression and regulation of soluble guanylyl cyclase alpha and beta subunits in the rat ovary.Biol Reprod.2004,70:1552-1561.
    [9]Wendel HG,De Stanchina E,Fridman JS,Malina A,Ray S,Kogan S,Cordon CC,Pelletier J,Lowe,SW.Survival signalling by Akt and eIF4E in oncogenesis and cancer therapy.Nature.2004,428:332-337.
    [10]Johnson AL,Bridgham JT,Swenson JA.Activation of the Akt/Protein kinase B signaling pathway is associated with granulosa cell survival.Biol Reprod 2001;64:1566-1574.
    [11]Wang Z,Shi F.Phosphodiesterase 4 and compartmentalization of cyclic AMP signaling.Chinese Science Bulletin.2007;52:34-46.
    [12]Park JY,Richard F,Chun SY,Park JH,Law E,Homer K,Jin SL,Conti M.Phosphodiesterase regulation is critical for the differentiation and pattern of gene expression in granulosa cells of the ovarian follicle.Mol Endocrinol,2003,17(6):1117-1130.
    [13]Medan MS,Takedom T,Aoyagi Y,Konishi M,Yazawa S,Watanabe G,Taya K.The effect of active immunization against inhibin on gonadotropin secretions and follicular dynamics during the estrous cycle in cows.J Reprod Devlop.2006,52:107-113.
    [14]Shi F,Ozawa M,Komura H,Watanabe G,Tsonis CG,Suzuki AK and Taya K.Induction of superovulation by inhibin vaccine in cyclic guinea pigs.J Reprod Fertil.2000,118:1-7.
    [15]Shi F,Mochida K,Ogura A,Matsuda J,Suzuki O,Watanabe G,Hutz RJ,Tsonis CG,Suzuki AK and Taya K.Follicle selection in guinea pigs with active immunization against inhibin alpha-subunit.Life Sci.2000,66:2489-2497.
    [16]Matsumi H,Yano T,Osuga Y,Kugu K,Tang X,Xu J-P,Yano N,Kurashima Y,Ogura T,Tsutsumi O,Koji T,Esumi H,Taketani Y.Regulation of nitric oxide synthase to promote cytostasis in ovarian follicular development.Biol Reprod.2000,63(1):141-146.
    [17]Chun SY,Eisenhauer KM,Kubo M,Hsueh AJ.Interleukin-1 beta suppresses apoptosis in rat ovarian follicles by increasing nitric oxide production.Endocrinology.1995,136(7):3120-3127.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700