用户名: 密码: 验证码:
盐富集条件下矿物复合纤维沥青混合料路用性能及腐蚀损伤研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着国民经济的发展和西部大开发战略的深入,我国西部地区沥青路面通车里程不断增加。但在广袤的盐富集环境下,沥青路面的结构与材料设计、铺筑及养护技术面临巨大挑战,且已建成的沥青路面在盐类物质的侵蚀作用下,早期病害加剧。目前,在沥青混合料中掺入增强纤维成为提高沥青混合料路用性能的有效手段,在这一背景下,MiberⅠ矿物复合纤维经研发而成。然而,在盐富集环境下,针对沥青混合料的性能变化规律及腐蚀损伤研究,国内外鲜有报道;且纤维沥青混合料的适用性及矿物复合纤维的使用性能尚待深入探讨。因此,对这些问题进行深入、系统的研究对于延长盐富集地区沥青路面使用寿命具有重要理论价值和工程意义。
     论文在对矿物复合纤维材料技术性能评价的基础上,提出了盐富集环境下热拌沥青混合料路用纤维的要求;采用流变学理论和试验模拟方法研究了纤维种类、掺量以及温度、荷载作用频率等因素对纤维沥青胶浆性能的影响,分析流变参数(复数剪切模量、相位角等)的变化规律;利用数值分析方法,拟合纤维沥青胶浆粘弹性的修正Burgers模型参数;基于盐富集地区的气候和环境状况,采用干湿循环加速腐蚀试验方法,通过锥入度试验和拉伸试验研究了硫酸盐腐蚀作用下矿物复合纤维沥青胶浆的抗剪性能和拉伸性能;通过车辙试验、小梁低温弯曲试验和四点弯曲疲劳寿命试验研究了在硫酸盐腐蚀作用下矿物复合纤维沥青混合料的高温稳定性、低温抗裂性、疲劳性能及其损伤规律,并深入探讨了盐富集条件下纤维增强沥青混合料作用机理,得出纤维通过加筋增强作用、增韧作用、阻裂作用和提高材料的自愈合能力等方式提高了沥青混合料的路用性能;对矿物复合纤维进行了经济性分析,表明与聚酯纤维和玄武岩纤维相比,矿物复合纤维具有一定价格优势;在此基础上,提出了通过掺入矿物复合纤维以改善盐富集条件下沥青混合料路用性能的理念;论文分析了沥青混合料在干湿循环与硫酸盐腐蚀共同作用下的宏观损伤机理;引入GM(1,N)灰色预测模型,对盐富集地区沥青路面普遍使用的AC-13混合料在干湿循环与硫酸盐腐蚀共同作用下的力学性能进行了预测,且预测结果与实际吻合较好。
With the development of national economy and the deepening implementation of theWestern Development Strategy, the traffic mileage of asphalt pavement continuouslyincreases in Western China. However, the structure design, material composition, paving andmaintenance technology of asphalt pavement under salt enrichment environment are facingenormous challenges which can be certified by the aggravation of early diseases with theerosion of salt substance in built asphalt pavement. At present, the incorporation of reinforcedfiber has become an effective mean to enhance the pavement performance of asphalt mixture.Therefore, the mineral composition fiber MiberⅠwas developed. However, reports onperformance variation law and corrosion damage of asphalt mixture under salt enrichmentenvironment are rare and the applicability of fiber asphalt mixture as well as the serviceperformance of the mineral composition fiber needs further discussion. Therefore, thein-depth, systematic study of these issues has a great theoretical value and engineeringsignificance to extend the service life of asphalt pavement in salt enrichment environment.
     On the basis of the evaluation of the technical performance of the mineral compositionfiber material, the requirements of fiber used in hot-mix asphalt mixture under saltenrichment environment were proposed. Rheological theory and experiment simulationmethod were used to study the effect of different factors such as fiber species, mixingamount, temperature and the frequency of loading action on the performance and therheological parameters (complex shear modulus, phase angle) variation law of fiber-asphaltglue. The viscoelastic behavior of fiber-asphalt glue was analyzed by modified Burgersmodel and the rheological parameters of the model were determined.
     Based on the climate and environment condition of salt enrichment regions, the shearbehavior and tensile property of fiber-asphalt motar under sulfate corrosive effect werestudied with dry-wet cycle method, cone penetration test and tensile test. The hightemperature stability, low-temperature crack resistance, fatigue property and the damage lawof mineral composition fiber asphalt mixture under sulfate solution corrosion effect werestudied through rutting test, trabecular low-temperature bend test and four-point bendingfatigue life test. Fiber-reinforced mechanism of asphalt mixture was deeply probed and the road performance of asphalt mixture was enhanced through means such as reinforcedenhancement, toughening effect, action of crack arrest and self-healing performanceenhancement. Compared with polyester fiber and basalt fiber, mineral compound fiber hasobvious price advantage by the economics analysis. Therefore, the idea of adding mineralcomposition fiber to modify the combination property of asphalt mixture under corrosionconditions was proposed. The dissertation Besides, the macroscopic damage mechanism ofasphalt mixture under the combined action of both dry-wet cycle and sulfate corrosion wasanalyzed. GM(1,N)gray prediction model was introduced to make a higher accuracyprediction of AC-13asphalt mixture mechanical properties under the dry-wet cycle andsulfate corrosion condition and the prediction results had a good coincidence with the reality.
引文
[1]沈金安.沥青及沥青混合料路用性能[M].北京:人民交通出版社,2003
    [2]沙庆林.高速公路沥青路面早期破坏现象及预防[M].北京:人民交通出版社,2005
    [3]叶永.沥青混合料粘弹塑性本构模型的实验研究[D].武汉:华中科技大学,2009
    [4]刘连新.察尔汗盐湖及超盐渍土地区混凝土腐蚀及预防初探[J].建筑材料学报,2001,4(4):395-400
    [5]王复生,孙瑞莲,秦小鹃.察尔汗盐湖条件下水泥混凝土耐久性调查研究[J].硅酸盐通报,2002(4):16-22
    [6]金祖权.西部地区严酷环境下混凝土的耐久性与寿命预测[D].南京:东南大学,2006
    [7]李志农,韩志强,郑明权.盐渍土地区路基路面病害防治技术研究[R].乌鲁木齐:新疆交通科学研究院,2009
    [8]封基良.纤维沥青混合料增强机理及其性能研究[D].南京:东南大学,2006
    [9]严伊莎.盐分对沥青及沥青混合料路用性能影响的分析研究[D].西安:长安大学,2007
    [10]李宜池,薛明,房建宏.盐渍土微观图集[M].上海:同济大学出版社,2004
    [11]徐攸在.盐渍土地基[M].北京:中国建筑出版社,1993
    [12]宋丹丹,薛明,李建中.盐渍土地区公路沥青路面的养护维修技术的研究[J].公路交通科技(应用技术版),2007(7):32-34
    [13]Coetzee N. F., Monismith C. L. Analytical Study of Minimization of ReflectionCracking in Asphalt Concrete Overlays by Use of Rubber-asphalt Interlayer[J].TRR700,1981:101-108
    [14]Monismith C. L., Coetzee N. F. Reflection Cracking: Analysis, Laboratory State andDesign Considerations[C]. Proceeding of AAPT,1980, V49:268-313
    [15]Coetzee N. F. Some Considerations on Reflection Cracking in Aaphalt ConcreteOverlay Pavement[D]. Univ. of Califoria,1979
    [16]Franken L., Vanelstraete A. Inerface Systems to Prevent Reflective Cracking:Modelling and Experimental Testing Methods[C]. Proceeding of the7thISAP,1992,V1:45-60
    [17]Marchand J. P., Goacolou H. Cracking in Wearing Course[C]. Proceeding of the5thISAP,1982:45-60
    [18]James. A Plane Stress Finite Element Model for Elastic-Plastic Model I/II CrackGrowth[D].Department of Mechanical and Nuclear Engineering,Kansas StateUniversity,Manhattan,Kansas,1998
    [19]Hall K. D., Williams S. G. Effects of specimen configuration and compaction methodon rutting and stripping behavior in asphalt concrete wheel-tracking tests.Transportation Research Board of the79thAnnual Meeting(CD-ROM), TRB,Washington DC,2000
    [20]Davies R. M., Sorenson J. Pavement preservation:Preserving our investment inhighways.Public Road,2000,63(2):63-69
    [21]郑健龙.沥青路面温度收缩开裂的热粘弹特性研究[D].西安:长安大学,2001.
    [22]周志刚.交通荷载下沥青类路面疲劳损伤开裂研究[D].长沙:中南大学,2003
    [23]薛强,盛谦.沥青路面破坏的多场耦合效应及控制技术[M].北京:科学出版社,2009
    [24]张俊,薛明.基于盐渍土环境的沥青抗剪强度试验分析[J].公路工程,2007,32(6):61-64
    [25]任传军,施惠生,关函非. SBS改性沥青混合料耐海水侵蚀性能研究[J].中南公路工程,2006,31(6):58-60
    [26]王骁.纳米蒙脱土改性沥青及其混合料的流变特性研究[D].武汉:武汉理工大学,2010
    [27]叶群山.纤维改性沥青胶浆与混合料流变特性研究[D].武汉:武汉理工大学,2007
    [28]Romberg J. W., Traxler R. Rheology of asphalt[J]. Journal of colloid science,1947,2(1):33-47
    [29]Francisco M. B., Pedro P., et al. Rheology and macrostructure of asphalt binders[J].Rheology Acta,2001,4:135-141
    [30]Airey G. D., Rahimzadeh B., CollopA. C. Linear rheological behavior of bituminousPaving materials[J]. Joumal of Materials in Civil Engineering,2004,(4):212-220
    [31]黄卫东,孙立军,游宏. SBS改性沥青流变性质与显微结构的关系[J].同济大学学报,2003,31(8):916-920
    [32]宋晓燕,刘圆杰,杜月宗.用动态力学方法分析SBS改性沥青的流变性质[J].石油沥青,2004,18(4):10-13
    [33]付海英,谢雷东,虞鸣,等. SBS改性沥青动态剪切流变性能评价的研究[J].公路交通科技,2005,22(12):9-12
    [34]Ouyang C. F., Wang S. F., et al. Thermo-rheological properties and storage stability ofSEBS/Kaolinite elay compound modified asphalts [J]. European Polymer Journal,2006,42:446-457
    [35]陈俊,肖维,黄晓明.沥青高温流变规律研究[J].石油沥青,2006,20(6):17-22
    [36]张久鹏,黄晓明.沥青混合料高温性能的流变指标评价[J].公路,2006,7:145-148
    [37]Wu Shaopeng,et al. Effects of fiber additive on the high temperature property of asphaltbinder[J].Journal of Wuhan University of technology-Mater.Sci.Ed.2006,21(l):28-31
    [38]邹桂莲,张肖宁,袁燕.应用流变学的方法研究填料对沥青胶浆高温性能的影响[J].公路,2004(3):94-96
    [39]胡学斌,张肖宁,邹桂莲.西部环境下沥青胶浆的性能评价[J].石油沥青,2004,18(4):18-22
    [40]魏培君,张双寅,吴永礼.粘弹性力学的对应原理及其数值反演方法[J].力学进展,1999,(29):337-339
    [41]Williams M. L., Landel R. F., Ferry J. D. The temperature dependence of relaxationmechanismsin amorphous polymers and other glassy-forming liquids[J].J Am ChemSoc,1955,77(4):3701~3707
    [42]Duncan J. M., Monismith C. L., Wilson E. L. Finite ElementAnalysis of Pavememt[J].Highway Research Board,1968,(45):247-254
    [43]Dehlen G. L. The Effect of Non-Linear Material on the Behavior of PavememtsSubjected to Traffic Loads[D]. Califormia: University of Califormia,1969
    [44]Hicks R. G. Factors Influencing the Resilient Properties of Granular Materials[D].Califormia: University of Califormia,1970
    [45]Abbas A. R., Papagiannakis A. T., Masad E. A. Linear and Nonlinear Vis coelasticAnalysisof the Microstructure of Asphalt Concretes.Journal of m aterials in civilengineering,2002,(4):506-510
    [46]詹小丽,张肖宁,卢亮.沥青低温粘弹性能的预测[J].吉林大学学报(工学版),2008,38(3):530-534
    [47]原健安,纪东,祝志刚. SBS剂量对改性沥青性质的影响[J].长安大学学报(自然科学版),2005,25(3):19-22
    [48]钱国平,郑健龙,周志刚,等.沥青混合料增量型热粘弹性本构关系研究[J].应用力学学报,2006,23(3):338-343
    [49]郑健龙,吕松涛,田小革.基于蠕变试验的沥青粘弹性损伤特性[J].工程力学,2008,25(2):193-196
    [50]冀健.沥青与沥青混合料粘弹性表征与车辙预估研究[D].北京:交通运输部公路科学研究所,2011
    [51]Halit O. Investigation of Rutting Performance of Asphalt Mixture Containing PolymerModifier[J].the Construction and Building Materials,2007,21(2):328-337
    [52]Saad A.Q. Prediction of Bituminous Mixture Fatigue Life Based on AccumulatedStrain [J].Construction and Building Materials,2007,21(6):1370-1376
    [53]Serkan T. The Effect of Polypropylene Fibers onAsphalt Performance [J].Building andEnvironment,2008,43(6):1065-1071
    [54]Abdelaziz M.,Mohamed R. K. Fatigue and Deformation Properties of Glass FiberReinforced Bituminous Mixes[J].Journal of the Easten Asia Society forTransportation Studies,2005,6:997-1007
    [55]Brown S. F., Rowlett R. D., Boucher J. L.Asphalt Modification [A].Proceedings of theConference on the United States Strategic Highway Research Program:Sharing theBenefits[C]. London:Thomas Telford,1990:181-203
    [56]Serfass J. P., Smanaos J. Fiber-ModifiedAsphalt Concrete Characteristics,Applicationsand Behavior[J].Asphalt Paving Technologies,1996,65:193-230
    [57]Cleven M. A. Investigation of the Properties of Carbon Fiber Modified AsphaltMixtures [D]. Michigan:Michgan Technological University,2000
    [58]Fitgzerald R. L. Novel Applications of Carbon Fiber for Hot Mix AsphaltReinforcement and Carbon-Carbon Pre-forms [D].Michigan:Michigan TechnologicalUniversity,2000
    [59]Bueno B. D., Silva W. R., Lima D. C.,et al. Engineering Properties of fiber reinforcedcold asphalt mixes[J]. Journal of Environmental Engineering,2003,129(10):952-955
    [60]Cooley L. A., Brown E. R., Watson D. E. Evaluation of open-graded friction coursemixtures containing cellulose fibers[J]. Transportation Research Record,2000(1723):19-25
    [61]张晓冰.玻璃纤维格栅在沥青罩面中的应用[J].国外公路,1997,17(02):46-49
    [62]李炜光,张争奇,张登良,等.纤维加强沥青路面的研究[J].西安公路交通大学学报,1998,18(3):235-238
    [63]杨红辉,袁宏伟,郝培文,等.木质素纤维沥青混合料路用性能研究[J].公路交通科技,2003,8(4):10-11
    [64]陈华鑫.纤维沥青混凝土路面研究[D].西安:长安大学,2002
    [65]陈华鑫,张争奇,胡长顺.纤维沥青混合料的低温抗裂性能[[J].华南理工大学学报,2004,32(4):82-86
    [66]Ye Qunshan, Wu Shaopeng, Chen Zheng.Rheological properties of asphalt mixturescontaining various fibers [J].J. Cent. South Univ. Technol,200815(s1):333-336
    [67]彭广银,钱振东,傅栋梁.短切玄武岩纤维沥青混合料路用性能研究[J].石油沥青,2009,23(1):8-11
    [68]郭乃胜,赵颖华,李刚.聚醋纤维沥青混凝土的低温抗裂性能分析[J].沈阳建筑工程学院学报(自然科学版),2004(01):1-3
    [69]杨锡武.不同纤维沥青混合料路用性能的室内试验研究[J].公路,9:188-194
    [70] Xiong R, Chen S F, Guan B W, et al. High Temperature Stability ofBrucite-fiber-reinforced Asphalt Concrete[C]. Proceedings of the3rd InternationalConference on Transportation Engineering. ASCE,2011:2002-2007
    [71]熊锐,陈拴发,关博文,等. MiberⅠ型矿物复合纤维沥青混合料路用性能研究[J].武汉理工大学学报,2011,33(7):24-27
    [72]史建方.软纤维加筋沥青混凝土性能研究[D].河北工业大学,2001
    [73]李海军,吕伟民.纤维在SMA混合料中作用机理分析与试验研究[J].石油沥青,1998,12(4):1-8.
    [74]倪良松,陈华鑫,胡长顺.纤维沥青混合料增强作用机理分析[J].合肥工业大学学报(自然科学版),2003(5):1033-1037
    [75]陈华鑫,张争奇,胡长顺.纤维沥青路用性能研究[J].长安大学学报(自然科学版),2002,22(6):5-7
    [76]刘中林等.高等级公路沥青凝土路面新技术[M].北京:人民交通出版社.2002
    [77]沈荣熹,崔琪,李清海.新型纤维增强水泥基复合材料[M].北京:中国建筑工业出版社.2004
    [78]易志坚,杨庆国,李祖伟,等.基于断裂力学原理的纤维砼阻裂机理分析[J].重庆交通学院学报,2004,23(6):43-45
    [79]董振英.纤维混凝土细观机理及应用研究[D].北京:清华大学,2003
    [80]董发勤,潘兆橹,万朴.陕南黑木林纤维水镁石应用矿物学研究[J].地球科学-中国地质大学学报,1993(5):642
    [81]DONG Fa-qin, John Huang, WAN Pu. The solubility and health effect of fibrousbrucite[A]. Abstracts of30th IGC[C]. Beijing: China Geological Press,1996,46
    [82]LIU Kai-ping, Cheng He-wei, Zhou Jing'en. Investigation of brucite fiber reinforcedmixture[J]. Cement and Mixture Research,2004,34(11):1981-1986
    [83]林蔚,李青山,于天诗.纤维水镁石应用与开发[J].化工时刊,2000,(11):29-32
    [84]王复生,孙瑞莲,秦晓娟.察尔汗盐湖条件下水泥混凝土耐久性调查研[J].硅酸盐通报,2002,21(4):16-22
    [85]王潘劳,张伟勤,杨幼坤等.青海察尔汗盐湖地区水泥混凝土的腐蚀破坏调查分析[J].青海大学学报(自然科学版),2003,21(6):57-59
    [86]余红发.盐湖地区高性能混凝土的耐久性一机理与使用寿命预测方法[D].南京:东南大学,2004
    [87]王琴,杨鼎宜.干湿循环对混凝土硫酸盐侵蚀的影响[J].混凝土,2008(3):22-24
    [88]Kosa K,NaamanAE,Corrosion of steel fiber reinforce concrete,ACI Materials Journal,1990,87(1):27~37
    [89]阎西康,王铁成,张玉敏等,海水侵蚀下钢筋混凝土梁正截面承载力试验研究,建筑施工,2003,25(2):133~139。
    [90]袁晓露,李北星,崔巩.干湿循环-硫酸盐侵蚀下混凝土损伤机理的分析[J].公路,2009(2):163-166
    [91] Rob B.Polder,Willy H.A.Peelen,Characterisation of chloride transport andreinforcement corrosion in concrete under cyclic wetting and drying by electricalresistivity[J]. Cement&Concrete Composites24(2002):427-435
    [92]Hong.K,Hooton R.D,Effects of cyclic chloride exposure on penetration of concretecover[J]. Cement and Concrete Research,1999,29(9):1279-1386
    [93]邢明亮.排水路面沥青混合料的胶浆特性与矿料组成研究[D].西安:长安大学,2010
    [94]李晓民.基于动态粘弹力学的沥青胶浆高温性能试验研究「J].公路交通科技,2007,24(4):11-15
    [95]丛培良.环氧沥青及其混合料的制备与性能研究[D].武汉:武汉理工大学,2009
    [96]刘亮.沥青结合料高温性能评价指标试验研究[D].长沙:长沙理工大学,2005
    [97]Shenoy A. V., Saini D. R. Thermoplastic melt rheology and processing [M]. NewYork: Marcel Dekker Inc,1996
    [98]邓聚龙.灰色系统理论教程[M].武汉:华中理工大学出版社,1990
    [99]张岐山,郭喜江,邓聚龙.灰关联熵分析方法[J].系统工程理论与实践,1996(8):7-11
    [100]熊锐,陈拴发,关博文,等.乳化沥青混合料强度影响因素的灰关联熵分析[J].郑州大学学报(工学版),2010,31(6):60-64
    [101]美国沥青协会.高性能沥青路面(Superpave)基础参考手册[M].北京:人民交通出版社,2005
    [102]冯浩.基于粘弹性理论的沥青胶浆试验特性研究[D].长沙:长沙理工大学,2008
    [103]王锦燕.聚合物流变参数拟合及主曲线的生成[D].郑州:郑州大学,2004
    [104]张肖宁,任永利,迟凤霞.基于动态频率扫描的环氧沥青混合料性能研究[J].华中科技大学学报(自然科学版),2009,37(7):102-105
    [105]詹小丽.基于DMA方法对沥青粘弹性能的研究[D].哈尔滨:哈尔滨工业大学,2007
    [106]赵延庆,杨建新,叶勤.温度和频率对沥青模量的综合影响[J].石油沥青,2006,20(4):14-16
    [107]王幼平,余剑英,谭宇宏.改性沥青的动态流变特性[J].中国公路学报,1998,11(4):23–28
    [108]王启宏.材料流变学[M].北京:中国建筑工业出版社,1985
    [109]朱磊.沥青混合料粘弹性能研究报告[R].北京:交通部公路科学研究院,2010
    [110]ARA.Guide for Mechanistic-Empirical Design[A].National Cooperative HighwayResearch Program1-37A[M].TRB,2004
    [111]徐世法.表征沥青及沥青混合料高低温蠕变性能的流变学模型[J].力学与实践,1992,14(1):37-40
    [112]周剑平.精通Origin7.0[M].北京:北京航空航天大学出版社,2004
    [113]延西利,扈惠敏,张登良.沥青混合料线性流变模型的数值模拟[J].西安公路交通大学学报,1999,19(1):7-12
    [114]熊锐.农村公路乳化沥青混合料路用性能试验研究[D].重庆:重庆交通大学,2009
    [115]赖增成. SEAM改性沥青及沥青混合料路用性能试验研究[D].重庆:重庆交通大学,2008
    [116] Xiong R, Chen S F, Guan B W, et al. High Temperature Stability ofBrucite-fiber-reinforced Asphalt Concrete[C]. Proceedings of the3rd InternationalConference on Transportation Engineering. ASCE,2011:2002-2007
    [117]熊锐,陈拴发,关博文,等.硫酸盐腐蚀环境下沥青混合料耐久性能研究[J].长安大学学报(自然科学版),2011,31(6):11-15
    [118]Guan B W, Chen S F, Xiong R, et al. Road Performance of Brucite fiber asphaltconcrete [C]. Proceedings of the3rd International Conference on TransportationEngineering. ASCE,2011:1499-1504
    [119]张肖宁.沥青与沥青混合料的粘弹力学原理及应用[M].北京:人民交通出版社,2006
    [120]吕伟民.沥青混合料设计原理与方法[M].上海:同济大学出版社,2000
    [121]JTG E20-2011,公路工程沥青及沥青混合料试验规程[S].北京:人民交通出版社,2011
    [122]罗志刚,周志刚,郑健龙.沥青路面水损害问题研究现状[J].长沙交通学院学报,2003,19(3):39-44
    [123]Prithvi S.Kandhal and Carl W Lubold, Jr. Water damage to asphalt overlays:Casehistories[R].NCAT Report No.89-1,Feb.20-22,1989
    [124]刘红瑛,戴经梁.水位对沥青混合料水稳定性的影响[J].长安大学学报(自然科学版),2004,24(4):18-21
    [125]Thomas W K. Prevention of water damage in asphalt mixtures[M]. ASTM SpecialTechnical Publication899,1984.119-133
    [126]郑晓光,杨群,吕伟民.沥青路面水损害的病害特征与机理分析[J].中南公路工程,2006,31(2):96-98
    [127]兰宏.沥青路面水损害行为及机理研究[D]西安:长安大学,2011
    [128]张龙庭,罗佑新.试验数据处理的多因素灰色模型GM(1,N)及其应用[J].机械设计,2003,20(3):23-24
    [129]王丰效.多变量灰色预测GM(1, m)模型及其应用[J].系统工程与电子技术,2007,29(4):113-115

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700