用户名: 密码: 验证码:
水泥基材料碳硫硅钙石型硫酸盐侵蚀破坏及预防措施研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
碳硫硅钙石型硫酸盐侵蚀(Thaumasite form of sulfate attack,TSA)直接破坏水泥石中的C-S-H凝胶,将其转化为无胶凝性烂泥状物质,导致水泥基材料性能劣化,严重影响混凝土工程耐久性。尽管早在1965年就有人提出TSA问题,但它真正为人们所重视只是近10多年的事情,许多问题需进一步研究。
     碳硫硅钙石的化学组成、晶体结构与钙矾石十分相似,常规测试分析易混淆,且大多数只能实现定性或半定量分析。TSA影响因素还存在学术争议和研究盲点,如粉煤灰是否能抑制TSA破坏。多因素耦合作用下水泥基材料发生TSA破坏的可能性、性能退化规律及破坏机理研究极少。此外,尚未建立有效的水泥基材料TSA破坏预防措施。这些问题严重制约了混凝土结构工程的服役寿命,造成巨大的破坏和浪费。
     针对上述问题,结合我国新疆地区腐蚀环境特点,本文研究了内掺法加速碳硫硅钙石形成的可行性和碳硫硅钙石的量化表征;研究了温度、粉煤灰及氯离子等因素对TSA的影响规律和作用机理;研制了适用于多因素耦合试验中对混凝土试件准确加载的设备;通过大量系统试验获得了多因素耦合作用下水泥基材料性能劣化规律和破坏机理;在上述成果基础上,开发了预防水泥基材料TSA破坏的TSA抑制剂。主要研究结论如下:
     1.内掺10%硫酸镁显著加速水泥基材料中碳硫硅钙石形成,6个月后,样品中有23.73%碳硫硅钙石形成,具有典型的TSA破坏特征。基于样品外观、IR及XRD/Rietveld精修等手段,建立了一种碳硫硅钙石的快速定量鉴别方法,有助于提高水泥基材料TSA研究的精确性、快捷性。
     2.借助碳硫硅钙石的快速定量鉴别方法,阐明了温度、粉煤灰及氯离子对水泥基材料TSA影响规律。⑴(5±2)℃下,掺石灰石粉水泥基材料发生TSA,腐蚀产物以碳硫硅钙石、石膏为主,性能劣化严重。(20±1)℃下,掺石灰石粉水泥基材料发生钙矾石/石膏型硫酸盐侵蚀,腐蚀产物以钙矾石、石膏为主,性能劣化较轻。⑵粉煤灰对水泥基材料TSA的影响与其组成、掺量及细度等因素有关。粉煤灰活性指数对碳硫硅钙石形成影响最大,可作为筛选粉煤灰预防TSA破坏的指标。活性指数大于80%的粉煤灰掺量达到50%时可显著改善水泥基材料抗TSA性能。⑶氯离子降低碳硫硅钙石形成速度,进而减缓TSA破坏进程,并且复合溶液中氯离子浓度越高,减缓效果越显著。依据宏观性能、腐蚀产物物相演变过程,提出氯离子对水泥基材料TSA影响的三个阶段:抑制期、衰退期及失效期。
     3.开发了一种自定位可拆卸式混凝土耐久性试验应力加载装置,适用于多因素耦合试验研究中对混凝土试件准确施加弯拉应力。该装置由可拆卸的应力加载夹具、自定位夹具和应力测控夹具组成,便于定期校正、保持应力恒定,克服了传统装置加载不准确、应力松弛问题。
     4.揭示了低温硫酸盐侵蚀、干湿循环、弯拉应力耦合作用下水泥基材料性能劣化规律和破坏机理。⑴“低温硫酸盐侵蚀+干湿循环”双因素作用下,干湿循环减缓内掺10%硫酸镁样品TSA破坏程度,但引起的盐类结晶侵蚀导致内掺10%盐湖卤水样品发生剥蚀性破坏,性能劣化程度较低温硫酸盐侵蚀单因素损伤加重。⑵“低温硫酸盐侵蚀+弯拉应力”双重因素作用下,样品发生突然断裂破坏,主裂缝在弯拉应力作用下形成、扩展并发生失稳,断裂时水泥基材料未发生TSA破坏。⑶“低温硫酸盐侵蚀+干湿循环+弯拉应力”三因素作用下,“干湿循环+弯拉应力”累计叠加损伤加速水泥基材料断裂破坏,断裂时水泥基材料均未发生TSA破坏。
     5.提出了水泥基材料中预防TSA破坏发生的理论,抑制剂的作用机理有两个方面,即物理固化、化学固化。依据TSA化学侵蚀过程及Ba~(2+)多级长效缓释,化学固化分为三个阶段,即BaSO_4形成期、硫酸盐侵蚀过渡期及碳硫硅钙石、钙矾石分解期。采用“叠加包裹”技术开发了KM型、K型TSA抑制剂,具有Ba~(2+)多级长效缓释特性,显著提高水泥基材料抗TSA性能,抑制效果KM型优于K型。此外,TSA抑制剂对新拌混凝土工作性、硬化混凝土强度性能及耐久性具有一定的改善作用。
Thaumasite form of sulfate attack (TSA) directly destroys the main binding phasecalcium-silicate-hydrate (C-S-H) in hardened cement. Cement matrixes are convertedinto mush from the surface inwards. The properities of cement-based materials andconcrete structure durability are strongly influenced by TSA. Although the first caseof TSA was reported in1965, TSA has only received considerable attention in recentyears. There are still many problems remained unsolved by now.
     Thaumasite is very difficult to distinguish from ettringite due to the close similarityin crystal structure and morphology. Meanwhile, there exist some disputes aboutinfluence factors of TSA, such as whether fly ash can inhibit TSA. The investigationon the possibility of TSA, degradation and deterioration mechanism of cement-basedmaterials under combined actions are also rare. And above all, effective preventivemeasures of TSA have not yet been established. These problems not only influencethe service life of concrete structure seriously but also make great economic loss.
     A serial of experimental programs were designed to solve the above problems.Accelerating thaumasite formation by internal doping method and quantitativecharacterization of thaumasite were explored. The researches on mechanism andeffects of temperature, fly ash and chloride ions on TSA had also been carried out. Anappropriate setup was designed to exert controllable flexural stress to concretespecimens. The properities and deterioration mechanism of concrete under combinedactions were investigated deeply. TSA inhibitors were developed to prevent TSA inthis paper as well. Main conclusions of this paper are as follows:
     Thaumasite formation was successfully accelerated by internal doping10%ofmagnesium sulfate in cement-limestone powder pastes at (5±2)℃. Thaumasitecontent was up to23.73%after6-month immersion in water with a typicalcharacteristic of TSA damage. A rapid quantitative identification method ofthaumasite including visual inspection, IR spectrum and XRD/Rietveld refinementwas also established which would improve the accuracy and rapidness of TSA’sresearch.
     The influences of temperature, fly ash and chloride ions on TSA in cement-basedmaterials were illustrated.⑴Cement-based materials with limestone powder tookplace TSA and the corrosion products were mainly thaumasite and gypsum at (5±2)℃.But the corrosion products were mainly ettringite and gypsum at (20±1)℃.⑵Effects of fly ash on TSA were closely related to the composition, content andfineness of fly ash. The activity index of fly ash had a maximum gray relevancedegree with quantity of thuamasite formation which could be used as an index forfiltering fly ash to prevent TSA. Fly ash with an activity index>80%could improvethe resistance to TSA in cement-based materials when the replacement reached50%.⑶Chloride ions could slow down the process of TSA by reducing the rate ofthaumasite formation. With the increment of chloride ions concentration in NaCl/Na2SO_4solution, the influence grew gradually. The processes of chloride ions’effects on TSA were divided into three stages: inhibition stage, recession stage andfailure stage.
     A self-localization detachable stress loading device was invented to exertcontrollable flexural stress to concrete specimens in combined action tests as well.This device consisted of stress loading fixture, self-localization fixture and stressmonitoring fixture which easy to apply regular calibration and maintain constantflexural stress. The new device overcomed inaccurate stress loading and stressrelaxation problems of common setup.
     The degradation and deterioration mechanism of cement-based materials undercombined actions of low-temperature sulfate attack, wetting-drying cycle and flexuralstress were obtained.⑴When samples subjected to the combined action of lowtemperature sulfate attack and wetting-drying cycles, the latter greatly weakened thedamage degree of samples with magnesium sulfate by slowing down TSA. Butcrystallization pressure caused by salt crystallization corrosion due to wetting-dryingcycles had destructive effects on samples with salt lake brine.⑵A sudden breakwas the main-type destroys of cement-based materials under the action of both lowtemperature sulfate attack and flexural stress. The latter promoted a major crackforming and propagating rapidly throughout the specimens. And there was nothaumasite in corrosion products.⑶When samples subjected to the combined actionof three-factors, the deterioration was greatly accelerated due to cumulative damagescaused by “wetting-drying cycles+flexural stress”. Moreover, corrosion productswere free from of thaumasite.
     The mechanism for preventing TSA damage in cement-based materials includingphysical solidification and chemical solidification was also presented in this paper. Inview of TSA chemical process and slow release of Ba~(2+)of TSA inhibitors, the processof chemical solidification was divided into three stages: barium sulfate formationstage,sulfate attack transitional stage and thaumasite/ettringite decomposition stage. KMtype and K type TSA inhibitors prepared by “multi-coating technique” had along-term multilevel slow release of Ba~(2+). The resistance to TSA of cement-basedmaterials could be significantly improved by these TSA inhibitors. Furthermore, TSAinhibitors had certain improving effects on workability of fresh concrete, strength anddurability of hardened concrete.
引文
[1] B. Erlin, D.C. Stark. Identification and occurrence of thaumasite in concrete. Highway ResRecord.1965,113(2):108-113.
    [2] G. R. Gouda, D. M. Roy, A. Arkar. Thaumasite in deteriorated soil cements. Cem. Concr. Res.1975,5(5):519-522.
    [3] R. Lachaud. Thaumasite and ettringite in building materials. Ann ITBTP.1979,370:3.
    [4] N. Crammond. The occurrence of thaumasite in modern construction-a review. Cem. Concr.Compos.2002,24(4):393-402.
    [5] K. Eriksen. Thaumasite attack on concrete at Marbjerg Waterworks. Cem. Concr. Compos.2003,25(8):1147-1150.
    [6] M.Révay, V. Gável. Thaumasite sulphate attack at the concrete structures of the FerencPuskás stadium in Budapest. Cem. Concr. Compos.2003,25(8):1151-1155.
    [7] R.P.J. van Hees, T.J. Wijfels, L.J.A.R. van der Klugt. Thaumasite swelling in historic mortars:field observations and laboratory research. Cem. Concr. Compos.2003,25(8):1165-1171.
    [8] N.J. Crammond. The thaumasite form of sulfate attack in the UK. Cem. Concr. Compos.2003,25(8):809-818.
    [9] P. Hagelia, R.G. Sibbick. Thaumasite Sulfate Attack, Popcorn Calcite Deposition and acidattack in concrete stored at the Blindtarmen test site Oslo, from1952to1982. Mater.Charact.2009,60:686-699.
    [10] B.G. Ma, X.J. Gao, A. B. Ewan, et al. Thaumasite formation in a tunnel of Bapanxia Dam inWestern China. Cem. Concr. Res.2006,36(4):716-722.
    [11] M.Y. Hu, F.M. Long, M.S. Tang. The thaumasite form of sulfate attack in concrete ofYongan Dam. Cem. Concr. Res.2006,36(10):2006-2008.
    [12]张彭熹,张保珍,唐渊,等.中国盐湖自然资源及其开发利用.北京:科学出版社,1999.
    [13] R. A. Edge, H. F. W. Taylor. Crystal structure of thaumasite,[Ca3Si (OH)6.12H2O](SO4)CO3). Acta Crystallogr B.1971,27:594-601.
    [14] A.E. Moore, H. F. W. Taylor. Crystal structure of ettringite. Acta Crystallogr B.1970,26:386-393.
    [15] S. J.Barnett, D. E. Macphee, E. E. Lachowshi, et al. XRD, EDX and IR analysis of solidsolutions between thaumasite and ettringite. Cem. Concr. Compos.2002,32(5):719-730.
    [16] E. Freyburg. A. M. Berninger. Field experiences in concrete deterioration by Thaumasiteformation: possibilities and problems in thaumasite analysis. Cem. Concr. Compos.2003,25(8):1105-1110.
    [17] S. J. Barnett, C. D. Adam, A.R. W. Jackson, et al. Identification and characterization ofthaumasite by XRPD techniques. Cem. Concr. Compos.1999,21(2):123-128.
    [18] S.J. Barnett, M.A. Halliwell, N.J. Crammond, et al. Study of thaumasite and ettringitephases formed in sulfate/blast furnace slag slurries using XRD full pattern fitting. Cem.Concr. Compos.2002,24(3-4):339-346.
    [19] P. Brown, R.D. Hooton, B. Clark. Microstructural changes in concretes with sulfateexposure. Cem. Concr. Compos.2004,26(8):993–999.
    [20] T.L. Hughes, C.M. Methven, T.G.J. Jones, et al. Determining cement composition by Fouriertransform infrared spectroscopy. Adv. Cem. Res.1995,2(3):91–104.
    [21] S. Sadananda, L. E. David, P. N. Matthew. Identification of thaumasite in concrete byRaman chemical imaging. Cem. Concr. Compos.2002,24(3-4):347–350.
    [22] J. Skibsted, L. Hjorth, H.J. Jakobsen. Quantification of thaumasite in cementitious materialsby29Si {1H} cross-polarization magicangle spinning NMR spectroscopy. Adv. Cem. Res.1995,7:69-83.
    [23] J. Bensted, S.P. Varma. Studies of thaumasite part II. Silic. Ind.1974,39(1):11-19.
    [24] R. Yang, N. R. Buenfeld. Microstructural identification of thaumasite in concrete bybackscattered electron imaging at low vacuum. Cem. Concr. Res.2000,30(5):775-779.
    [25] I. K. Iden, P. C. Hagelia. O and S isotopic signatures in concrete which have sufferedthaumasite formation and limited thaumasite form of sulfate attack. Cem. Concr. Compos.2003,25(8):839-846.
    [26] J. Bensted. Thaumasite-direct, woodfordite and other possible formation routes. Cem. Concr.Compos.2003,25(8):873-877.
    [27] M.E. Gaze, N.J. Crammond. The formation of thaumasite in cement: lime: sand mortarexposed to cold magnesium and potassium sulfate solution. Cem. Concr. Compos.2000,22(3):209-220.
    [28] M. Santhanam, M. D. Cohen, J. Olek. Effects of gypsum formation on the performance ofcement mortars during external sulfate attack. Cem. Concr. Res.2003,33(3):325-332.
    [29] S.J. Barnett, D.E. Macphee. Solid solution between thaumasite and ettringite [A]. Extendedabstracts: cement and concrete science. London: University of Sheffield.2000:9-16.
    [30] P. Purnell, O. J. Francis, C. L. Page. Formation of thaumasite in synthetic cement mineralslurries. Cem. Concr. Compos.2003,25(8):857-860.
    [31] S. K hler, D. Heinz, L. Urbonas. Effect of ettringite on thaumasite formation. Cem. Concr.Res.2006,36(4):697-706.
    [32] M. J. Wilson. Occurrence of thaumasite in weathered furnace slag, Merthyr Tydfil.Mineral. Mag.1978,42(3):290-291.
    [33] M.T. Blanco-Varela, J. Aguilera, S. Martínez-Ramírez, et al. Thaumasite formation due toatmospheric SO2–hydraulic mortar interaction. Cem. Concr. Compos.2003,25(8):983–990.
    [34] J. A. Bickley, R. T. Hermmings, R. D. Hooton, et al. Thaumasite related deterioration ofconcrete structures. Proceedings of the Concrete Technology: Past, present and future. USA:ACI, SP144-8.1995:159-175.
    [35] S. Sadnand, B. Steve, T. Niels. Mechanism of thaumasite formation in concrete slabs ongrade in Southern California. Cem. Concr. Compos.2003,25(8):889-897.
    [36] P. Hagelia, R. G. Sibbick, N. J. Crammond, et al. Thaumasite and secondary calcite in someNorwegian concretes. Cem. Concr. Compos.2003,25(8):1131-1140.
    [37] G. Colletta, N. J. Crammond, R. N. Swamy, et al. The role of carbon dioxide in theformation of Thaumasite. Cem. Concr. Res.2004,34(9):1599-1612.
    [38] F. Bellmann, J. Stark. Prevention of thaumasite formation in concrete exposed to sulphateattack. Cem. Concr. Res.2007,37(8):1215-1222.
    [39]杨长辉,张靖,叶建雄,等.早期养护条件对水泥石碳硫硅钙石型硫酸盐腐蚀的影响.土木建筑与环境工程.2010,32(2):135-139.
    [40]雷伟,杨长辉,张靖,等.碳化对水泥基材料TSA及其产物稳定性的影响.建筑监督检测与造价.2009,2(9):41-45.
    [41] J. Bensted. Thaumasite-a deterioration product of hardened cement structures. II Cement.1988,85(1):3-10.
    [42] J. Aguiler, M. T. Blanco-Varela, T. Zquez. Procedure of synthesis of thaumasite. Cem. Concr.Res.2001,31(8):1163-1168.
    [43]高礼雄,姚燕,王玲.温度对碳硫硅钙石形成的影响.硅酸盐学报.2005,33(4):525-527.
    [44] L. X. Gao, Y. Yao, L. Wang. Effects of Thaumasite Formation on the Performance ofPortland-limestone Concrete Stored in Magnesium Sulfate Solution. Journal of WuhanUniversity of Technology-Mater.Sci.Ed.2005,20(4):113-115.
    [45] M.T. Blanco-Varela, J. Aguilera, S. Martínez-Ramírez. Effect of cement C3A content,temperature and storage medium on thaumasite formation in carbonated mortars. Cem.Concr. Res.2006,36(4):707-715.
    [46] P. Pipilikakia, D. Papageorgioub, M. Dimitroula, et al. Microstructure changes in mortarsattacked by sulphates at5℃. Constr. Build. Mater.2009,23(6):2259-2264.
    [47]楼梁伟.水泥基材料低温抗硫酸盐侵蚀性能研究.重庆大学硕士学位论文.2008:36-42.
    [48] T. Schmidt, B. Lothenbach. A thermodynamic and experimental study of the conditions ofthaumasite formation. Cem. Concr. Res.2008,38(3):337–349.
    [49]罗忠涛.水泥混凝土TSA破坏机理及其预防措施研究.武汉理工大学硕士学位论文.2007:68-69.
    [50] X.J. Gao, B.G. Ma, Y.Z. Yang. Sulfate Attack of Cement-Based Material with LimestoneFiller Exposed to Different Environments. J. Mater. Eng. Perform.2008,17(4):543–549.
    [51] X.J. Gao, B.G. Ma, Q.Z. Zhou. Influence of temperature on sulfate attack of limestone fillercement mortar. Journal of Wuhan University of Technology-Mater.Sci.Ed.2006,21suppl:80-85.
    [52] S. Martinez-Ramirez, M.T. Blanco-Varela, J. Rapazote. Thaumasite formation in sugarysolutions: Effect of temperature and sucrose concentration. Constr. Build. Mater.2011,25(1):21–29.
    [53]马保国,罗忠涛,高小建,等.不同品种水泥的抗碳硫硅酸钙型硫酸盐侵蚀性能[J].硅酸盐学报.2006,34(5):622-625.
    [54] P. Nobst, J. Stark. Investigations on the influence of cement type on thaumasite formation.Cem. Concr. Compos.2003,25(8):899-906.
    [55] F. Bellmann, J. Stark. The role of calcium hydroxide in the formation of Thaumasite. Cem.Concr. Res.2008,38(10):1154–1161.
    [56] A. Skaropoulou, S. Tsivilis, G. Kakali, et al. Thaumasite form of sulfate attack in limestonecement mortars: A study on long term efficiency of mineral admixtures. Constr. Build. Mater.2009,23(6):2338-2345.
    [57]马保国,高小建,罗忠涛.矿物掺合料对水泥砂浆TSA侵蚀的影响.材料科学与工程学报.2006,24(2):230-234.
    [58] D. M. Mulenga, J. Stark, P. Nobst. Thaumasite formation in concrete and mortars containingfly ash. Cem. Concr. Res.2003,25(8):907-912.
    [59] S. Tsivilis, G. Kakal, A. Skaropoulou, et al. Use of mineral admixtures to prevent thaumasiteformation in limestone cement mortar. Cem. Concr. Res.2003,25(8):969-976.
    [60]尹耿.超细石灰石水泥基材料水化与TSA侵蚀规律研究.武汉理工大学硕士学位论文.2009:43-48.
    [61]高礼雄.掺矿物掺合料水泥基材料的抗硫酸盐侵蚀性研究.中国建筑材料科学研究总院博士学位论文.2005:60-62.
    [62] J.H.P. Van Aardt, S. Visser. Thaumasite formation: a cause of deterioration of Portlandcement, and related substances in the presence of sulphates. Cem. Concr. Res.1975,5(3):225–232.
    [63] N.J. Crammond. Thaumasite in failed cement mortars and renders from exposed brickwork.Cem. Concr. Res.1985,15(6):1039-1050.
    [64] N.J. Crammond, P.J. Nixon. Deterioration of concrete foundation piles as a result ofthaumasite formation, in: S. Nagatak (Ed.), Proc. Sixth International Conference onDurability of BuildingMaterials and Components, Omiya, Japan,1993:1-33.
    [65] H. Kollman, G. Strübel, F. Trost. Mineralsynthetische Untersuchungen zu Treibursachendurch Ca-Al-Hydrat und Ca-Si-Carbonat-Hydrat. Tonind.-Ztg. Keram. Rundsch.1977,101:63–70.
    [66] L.J. Struble. Synthesis and characterization of ettringite and related phases. Proceeding ofthe8thinternal congress on the chemistry of cement. Rio de Janeiro,1986:582-588.
    [67]高礼雄,姚燕,王玲,等.碳硫硅钙石的形成及其对混凝土性能的影响.建筑材料学报.2003,8(4):431-435.
    [68] B.G. Ma, Z.T. Luo, X.G. Li, et al. Influence of environmental characteristics on sulfateattack types of cement mortars. J Chin Ceram Soc,2007,35(11):1561-1566.
    [69]马保国,罗忠涛,高小建,等.水泥砂浆TSA侵蚀机理及其预防技术研究.混凝土与水泥制品.2006,6:5-7.
    [70]张靖.水泥基材料碳硫硅钙石型硫酸盐侵蚀影响因素研究.重庆大学硕士学位论文.2009:19-24.
    [71]高小建,马保国.水泥基材料抗TSA侵蚀性能影响因素研究.工业建筑.2006,36(12):1-4.
    [72]李长成,姚燕,王玲.内掺硫酸镁加速水泥基材料TSA破坏.硅酸盐学报.2010,38(7):1197-1200.
    [73] E.F. Irassar, V.L. Bonavetti, M. Gonza′lez. Microstructural study of sulfate attack onordinary and limestone Portland cements at ambient temperature. Cem. Concr. Res.2003,33(1):31-41.
    [74] I. Pajares, S. Martínez-Ramírez, M.T. Blanco-Varela. Evolution of ettringite in presence ofcarbonate, and silicate ions. Cem. Concr. Compos.2003,25(8):861–865.
    [75] R.S.Gollop, H.F.W. Taylor, Microstructural and microanalytical studies of sulfate attack: I.Ordinary Portland cement paste. Cem. Concr. Res.1992,22(6):1027-1038.
    [76]高小建,马保国,邓宏卫.水泥砂浆TSA侵蚀破坏过程的性能演变.江苏大学学报(自然科学版).2007,28(1):68-71.
    [77] D. Wimpenny, D. Slater. Evidence from the highways agency thaumasite investigation inGloucestershire to support or contradict postulated mechanisms of thaumasite formation (TF)and thaumasite sulfate attack (TSA). Cem. Concr. Compos.2003,25(8):879–888.
    [78]邓德华,肖佳,元强.水泥基材料的碳硫硅钙石型硫酸盐侵蚀(TSA).建筑材料学报.2005,8(5):532-541.
    [79] E. Ciliberto, S. Ioppolo, F. Manuell. Ettringite and thaumasite: A chemical route for theirremoval from cementious artifacts. J. Cult. Herit.2008,(9):30-37.
    [80] D.M. Roy, K. Luke, S. Diamond. Characterization of fly ash and its reactions in concrete.Materials research society symposium proceeding,1985,43:20.
    [81] J. Bensted, P. Barnes. Structure and performance of cements. Second edition. London: Sponpress,2002.
    [82] W. Lukas. Substitution of Si in the lattice of ettringite. Cem. Concr. Res.1976,6:225-234.
    [83] E.E. Lachowski, S.J. Barnett, D.E. Macphee. Transmission electron optical study ofettringite and thaumasite. Cem. Concr. Compos.2003,25(8):819–822.
    [84] A.R. Brough, A. Atkinson. Micro-Raman spectroscopy of thaumasite. Cem. Concr. Res.2001,31(3):421-424.
    [85] M. Gregerová, Da. V iansky. Identification of concrete deteriorating minerals by polarizingand scanning electron microscopy. Mater. Charact.2009,60(7):680-685.
    [86]张风臣,马保国,万雪峰,等. TSA环境中水泥基材料腐蚀过程物相分析.武汉理工大学学报.2008,30(3):60-63.
    [87] N.J. Crammond. Quantitative X-ray diffraction analysis of ettringite, thaumasite andgypsum in concretes and mortars. Cem. Concr. Res.1985,15:431-441.
    [88] R. Brueckner. Accelerating the thaumasite form of sulfate attack and an investigation of itseffects on skin friction. University of Birmingham. Ph.D. thesis,2008:98-145.
    [89] T. Schmidt, B. Lothenbach, M. Romer, et al. Physical and microstructural aspects of sulfateattack on ordinary and limestone blended Portland cements. Cem. Concr. Res.2009,39(11):1111-1121.
    [90] K. Tosun, B. Feleko lu, B. Baradan, et al. Effects of limestone replacement ratio on thesulfate resistance of Portland limestone cement mortars exposed to extraordinary highsulfate concentrations. Constr. Build. Mater.2009,23(7):2534-2544.
    [91] Rietveld H M. A Profile Refinement Method for Nuclear and Magnetic Structures. J.Applied. Cryst,1969,(2):65-71.
    [92] Rietveld H M. Line Profiles of Neutron Powder-diffraction Peaks for Structure Refinement.Acta. Cryst.1967,22:151-152.
    [93]刘齐文,陈常连,陈斐,等. CaO稳定ZrO2陶瓷Rietveld定量相分析.武汉理工大学学报,2010,32(8):13-17.
    [94]许聚良,李亚伟,陈汀水. Rietveld全谱拟合法测定莫来石固溶体含量.耐火材料,2009,43(4):303-305.
    [95] A. Martucci, G. Cruciani. In situ time resolved synchrotron powder diffraction study ofthaumasite. Phys. Chem. Minerals.2006,33:723-731.
    [96] S.A. Hartshorn, J.H. Sharp, R.N. Swamy. Thaumasite formation in Portland-limestonecement pastes. Cem. Concr. Res.1999,29(8):1131-1140.
    [97]江绍英.我国硅灰石膏的发现及其矿物特征.地质论评.1979,25(2):21-28.
    [98]何永佳,胡曙光.29Si固体核磁共振技术在水泥化学研究中的应用.材料科学与工程学报.2007,25(1):147-153.
    [99]马保国.海洋高性能混凝土的研究.武汉工业大学博士论文,2000:12-13.
    [100] K. Yamada, M. Ichikawa, K. Honma, et al. Possibility of thaumasite formation in marineenvironments. ACI Spec Publ,2006,234:507–520.
    [101] K. Sotiriadis, E. Nikolopoulou, S. Tsivilis. The effect of chloride on the Thaumasite formof sulfate attack in lime stone cement concrete. Mater Sci Forum,2010,636–637:1349–1354.
    [102] D. Slater, J. C. Knights, D. E. Wimpenny. Sulfate and chloride profiles and the visualcharacteristics with depth from the face in buried concrete subject to TSA. Proceedings ofthe First International Conference on Thaumasite in Cementitious Materials, London,2002.
    [103] S.B. Mar, M. Mohammed, A. B. Yaser. Role of chloride ions on expansion and strengthreduction in plain and blended cements in sulfate environments. Constr. Build. Mater,1995,9(1):25–33.
    [104]肖佳,赵金辉,陈雷,等.水泥–石灰石粉胶凝材料在硫酸盐和氯盐共同作用下的腐蚀破坏.混凝土,2009,231:32–35.
    [105]金祖权,孙伟,张云升,等.混凝土在硫酸盐、氯盐溶液中的损伤过程.硅酸盐学报,2006,34(5):630–635.
    [106]李长成,姚燕,王玲.氯离子对碳硫硅钙石形成的影响.硅酸盐学报,2011,39(1):25-29.
    [107]班克成.外加剂对混凝土TSA腐蚀的抑制作用.重庆大学硕士学位论文.2010年:39-43.
    [108]张靖,叶建雄,杨长辉,等.粉煤灰对水泥石抗碳硫硅钙石型硫酸盐腐蚀性能的影响.新型建筑材料,2010,4:16-20.
    [109]邓聚龙.灰色控制系统.武汉:华中工学院出版社,1985:348-355.
    [110] B.X. Li,X.L Yuan, G. Cui, et al. Application of the grey system theory to predict thestrength deterioration and service life of concrete subjected to sulfate environment. J. ChinCeram. Soc.2009,37(12):2112-2117.
    [111]冯蕾,张永娟,张雄,等.矿渣颗粒群特征与活性指数的灰色关联分析.建筑材料学报.2009,12(3):272-275.
    [112]沈旦申.粉煤灰混凝土.北京:中国铁道出版社,1989:151~153.
    [113] S.H. Liu, P.Y. Yan, J.W. Feng. Effect of limestone powder and fly ash on magnesiumsulfate resistance of mortar. J. Wuhan. Univ. Technol.2010,25(4):700-703.
    [114] X.L. Yuan, B.X. Li, G. Cui, et al. Effect of fly ash and early strength agent on durability ofconcrete exposed to the cyclic sulfate environment. J. Wuhan. Univ. Technol.2010,25(6):1065-1069.
    [115]钱文勋,蔡跃波.活性激发过程中粉煤灰硅氧多面体结构变化的核磁共振研究.材料科学与工程学报.2004,22(4):561-563.
    [116]谈政民,张永娟,张雄.粉煤灰组成与其胶砂活性的灰色关联分析.新世纪水泥导报.2004,69-72.
    [117]吴中伟,廉慧珍.高性能混凝土.北京:中国铁道出版社,1999:43.
    [118] P.K. Mehta, D. Manmohan. Pore size distribution and permeability of hardened cementpaste.7thinternal symposium of the chemistry of cement. Paris: International congress onthe chemistry of cement,1980:1-5.
    [119]张庆欢.粉煤灰在复合胶凝材料水化过程中的作用机理.清华大学硕士学位论文.2006:10-15.
    [120] D. D. Higgins, N. J. Crammond. Resistance of concrete containing ggbs to the thaumasiteform of sulfate attack. Cem. Concr. Compos.2003,25:921-929.
    [121]黄战,邢锋,董必钦,等.荷载作用下的混凝土硫酸盐腐蚀研究.混凝土.2008,2:66-69.
    [122] M.T. Bassuoni, M.L. Nehdi. Durability of self-consolidating concrete to sulfate attackunder combined cyclic environments and flexural loading. Cem. Concr. Res.2009,39(3):206-226.
    [123] M.L. Nehdi, M.T. Bassuoni. Durability of self-consolidating concrete to combined effectsof sulphate attack and frost action. Mater Struct.2008,41(10):1657-1679.
    [124] M. Sahmaran, T. K. Erdem, I. O. Yaman. Sulfate resistance of plain and blended cementsexposed to wetting–drying and heating–cooling environments [J]. Constr. Build. Mater,2007,21:1771–1778.
    [125] J. Hill, E. A. Byars, J. H. Sharp, et al. An experimental study of combined acid and sulfateattack of concrete. Cem. Concr. Compos.2003,25(8):997-1003.
    [126] X.L. Yuan, B.X. Li, G. Cui, et al. Effect of mineral admixtures on durability of concrete inwetting–drying cyclic sulfate environment. J. Chin. Ceram. Soc.2009,37(10):1754-1759.
    [127]高润东,赵顺波,李庆斌.复合因素作用下混凝土硫酸盐侵蚀劣化机理.建筑材料学报.2009,12(1):41-46.
    [128]郑佳明.干湿循环与碳化对混凝土硫酸盐侵蚀的影响研究.扬州大学硕士学位论文.2009:63-76.
    [129]余红发.盐湖地区高性能混凝土的耐久性、机理与使用寿命预测方法.东南大学博士学位论文.2004:5.
    [130]李长成,姚燕,王玲,等.自定位可拆卸式混凝土耐久性试验应力加载装置.CN201010515750.4.
    [131]袁晓露,李北星,崔巩,等.干湿循环-硫酸盐侵蚀下混凝土损伤机理的分析.公路.2009,2:163-166.
    [132]李志国.试论盐溶液对混凝土及钢筋混凝土的破坏.混凝土.1995,17(2):10-14.
    [133] R. J. Flatt. Salt damage in porous materials: how high super saturations are generated. J.Cryst. Growth.2002,242(3/4):435-454.
    [134] S.P. Shah, C. Ouyang. Measurement and modeling of fracture processes in concrete. Mater.Sci. Concr. Vol.III, American Ceramic Society, Westerville, OH,1992:243-270.
    [135]张秀芳.混凝土裂缝扩展全过程的新GR阻力曲线理论和能量转化分析.大连理工大学博士学位论文.2006:4.
    [136]高礼雄,荣辉,刘金革.钡盐对混凝土抗硫酸盐侵蚀的有效性研究.混凝土.2007,3:17-21.
    [137] P.M. Dove, C.A. Czank. Crystal chemical controls on the dissolution kinetics of theisostructural sulfates: celestite, anglesite and barite. Geochim. Cosmochim. Acta1995,(59):1907-1915.
    [138]李长成,姚燕,崔琪.改性碱激发水泥固化处置模拟放射性焚烧灰.硅酸盐学报,2010,38(7):65-69.
    [139] X.Y. Lu. Application of the Nernst-Einstein equation to concrete. Cem. Concr. Res.1997,27(2):293-302.
    [140] P.K. Metha. Concrete technology at the crossroads—problems and opportunities. ConcreteTechnology, Past, Present, and Future. Mohan Malhotra Symp, ed. P.K. Metha. ACI SpecialPubl.SP-144,1994:1-30.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700