用户名: 密码: 验证码:
镁合金焊接接头腐蚀行为及电弧喷涂防护研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
焊接和腐蚀、防护问题与镁合金的应用密切相关,随着焊接技术的快速发展,已逐步实现了镁合金与同质及异质材料之间的可靠连接。而镁合金焊接结构的应用,必然面临焊接接头在服役中的腐蚀与防护问题。但是目前关于镁合金腐蚀机制与防护技术的研究主要集中在基体上,针对具有复杂微观组织演变以及结构差异特征的镁合金焊接接头的腐蚀行为与防护机制的研究开展较少。因此系统开展镁合金同质与异质焊接接头的腐蚀行为与防护技术的研究,对于揭示接头的腐蚀机制、评价接头在服役过程中的可靠性、科学指导接头防护技术的选择以及提高接头的服役寿命,具有重要的理论研究意义和实际应用价值。
     本文以镁合金-镁合金、镁合金-铝合金和镁合金-钢焊接接头作为研究对象,分析了镁-铝系镁合金同质与异质焊接接头在NaCl作为腐蚀介质中的腐蚀行为,总结了威胁焊接接头性能的关键部位的腐蚀规律,阐明了焊接接头的腐蚀机制;在此基础上,采用电弧喷涂(热扩散作用)技术,通过在镁合金同质与异质接头表面制备金属间化合物涂层或镁-铝异质双丝涂层,实现了对焊接接头的有效防护,并系统研究了涂层对接头的防护机制。主要研究内容和结果如下:
     1.从焊接过程中的组织演变对于接头腐蚀行为影响的角度,系统研究了低功率YAG激光+钨极氩弧焊(TIG)复合热源焊接的镁合金-镁合金接头在NaCl溶液中的腐蚀特征。研究发现:焊缝、热影响区中的组织演变和接头差异对接头腐蚀行为的变化产生重要影响,但是接头各区均以点腐蚀特征为主,焊缝、热影响区的腐蚀产物仍以Mg(HO)2为主。首先,AZ31-AZ31接头中焊缝内部的晶粒细化作用导致该区在3.5%NaCl溶液中虽然腐蚀电位变化不大,但腐蚀电流密度由基体2.324×10-5A·cm-2下降至6.741X 10-6A·cm-2;其次,铝含量较高的镁-铝系镁合金焊缝中β相呈连续网状分布,有助于在腐蚀过程中形成耐腐蚀屏障,对焊缝腐蚀行为的提高起到了决定性作用,例如AZ91-AZ91焊缝在3.5%NaCl溶液中虽然电位变化不大,但腐蚀电流密度由基体1.624×10-5A·cm-2下降至1.213×10-6A·cm-2;再次,接头结合形式的差异也会影响接头的腐蚀行为,搭接接头焊缝边角处的高腐蚀倾向性,直接威胁接头在服役中的可靠性。
     此外,镁合金-镁合金焊接接头中,热影响区附近极易受到腐蚀侵蚀,威胁接头性能,在接头服役过程中需要重视。
     2.从焊接过程中组织演变、电偶腐蚀对镁合金异质接头腐蚀行为,尤其是接头界面腐蚀行为影响的角度,研究了镁合金-铝合金、镁合金-钢异质金属焊接接头的腐蚀特征。研究发现:对于镁-钢焊接接头,高电位阴极相在焊缝中的形成,增加了其附近区域的点腐蚀倾向,降低了焊缝自身的耐腐蚀性,晶粒细化对于接头腐蚀行为的影响几乎可以忽略,例如镁-钢焊接接头中,钢飞溅的卷入使焊缝在3.5%NaCl溶液中,不仅电位降低,且腐蚀电流密度由镁合金基体区域2.135×10-5A.cm-2升高至2.741×10-4A.cm-2;对于镁-铝接头,金属间化合物过渡层的生成,使其结合区表现出了极高的耐腐蚀性。
     此外,电偶腐蚀作用对接头的腐蚀破坏,尤其是界面区域的腐蚀破坏不容忽视。无论对于机械连接为主的镁-钢焊接接头,还是冶金连接为主的镁-铝焊接接头,腐蚀破坏最为严重的界面均发生在镁合金靠近高电位相或金属一侧。
     3.鉴于镁-铝金属间化合物在提高镁-镁接头中焊缝、镁-铝接头结合区耐腐蚀性方面发挥的重要作用,提出电弧喷涂铝涂层及后续热扩散技术,实现了镁-铝金属间化合物层在镁-镁焊接接头表面的均匀层状分布,研究了涂层对于镁-镁接头的防护机制。研究发现:镁-铝金属间化合物层的形成,改善了单纯铝涂层对接头的防护效果,使涂层在3.5%NaCl溶液中腐蚀电位较热扩散作用前升高了0.08V左右,且腐蚀电流密度下降了1个数量级(即3.60×10-4 A.cm-2下降至1.60×10-5A.cm-2);同时涂层与焊接接头之间的结合方式由机械结合转变为冶金结合,断裂位置发生在靠近铝涂层一侧的金属间化合物过渡层内,结合强度由不足4MPa升高到6MPa以上。
     此外,由于涂层的腐蚀电位要高于镁合金焊接接头,因此涂层主要依靠自身高耐腐蚀性对焊接接头起到物理隔离作用。
     4.提出镁-铝异质双丝电弧喷涂及后处理技术,利用涂层自身中镁、铝片层之间的扩散反应,实现镁-铝金属间化合物在镁合金异质金属接头表面的均匀分布,研究涂层对于镁合金异质接头的防护机制。研究发现:镁-铝异质双丝电弧喷涂涂层均匀致密,由镁、铝交错的片层组织构成。涂层具有高耐腐蚀性和低电位的特征,铝片层在腐蚀过程中会形成耐腐蚀性屏障,起到提高整个涂层耐腐蚀性的作用;而镁片层起到降低整个涂层电位的作用,使涂层的开路电位比铝合金还低300mV。热扩散处理后,可以形成以镁-铝金属间化合物为主的涂层,提高了涂层的耐腐蚀性以及微观硬度(200HVo.5)。
     此外,采用镁-铝异质双丝涂层作为物理隔离保护层进行防护的镁-铝焊接接头,在3.5%NaCl溶液腐蚀2h后,接头承受载荷几乎未发生变化;采用热扩散后形成的镁-铝金属间化合物层保护的镁-钢接头,在3.5%NaCl溶液腐蚀3h后,接头载荷波动不大(由4.8 kN降为4.5kN),表现出良好的稳定性。
Welding and corrosion protection have a close relation with the applacaiton of Mg alloys. At present, many methods have already been applied to welding Mg alloy-Mg alloy, Mg alloy-Al alloy and Mg alloy-steel, obtaining good strength. However, corrosion problem of weld joints is inevitable. Many sduties focus on the investigation of corrosion and protection of Mg alloy substrate, but the investigation on the weld joint is absent. Therefore, it has important theoretical significance and practical application value to study the corrosion mechanism and protection technology of weld joints.
     In this study, corrosion behaviours of Mg-Mg joints, Mg-Al joints and Mg-steel joints are investigated, and corrosion mechanisms of joints are clarified. It is found that the proper distribution of Mg-Al intermetallic compounds is benefit for enhancing the corrosion resistance of weld joint. Based on this, arc spray technology is applied to enhance the performance of joints. After post-heat treatment, the protection results could be improved further. The main research contents are as follows:
     1. The corrosion characteristics of laser-TIG hybrid welded Mg alloys are investigated including the butt and lap joints of similar Mg alloy AZ31-AZ31 and butt joint of dissimilar Mg alloys AZ31-AZ91. The results indicate that the corrosion resistance of butt joints is increased due to the grain refinement (current density of fusion zone from 2.324 X 10-5A·cm-2 to 6.741×10-6A·cm-2) or interactions of grain refinement and continuous net-shapedβphases (current density of fusion zone from 1.624×10-5A·cm-2 to 1.213 X 10-6A·cm-2). At the same time, for similar Mg alloy AZ31-AZ31 lap joint, its micro-structural variation is similar to that of butt joint. The corrosion resistance of lap joint is as good as butt joint, but the reliability of the lap joint is lower than that of butt joint due to the severe local corrosion of zone H in the lap joint during corrosion process.
     2. The corrosion characters of dismiss metal joints are investigated including Mg-Al joints and Mg-steel joints. The results show that the effect of galvanic corrosion on the joint could not be neglected. The potential difference between Mg and steel is much larger than that between Mg and Al, therefore, the Mg-steel joint suffers the more corrosion damage than that of Mg-Al joint. In addition, the corrosion extent of Mg frontier adjacent to the Al alloy or steel side is more serious. For the Mg-steel joint, the phases with high potential in the FZ play an important role in decreasing the corrosion resistance of joint, while the effect of grain refinement on the corrosion is slight in the Mg-steel joint.
     3. Mg-Mg weld joint are protected by the arc prayed Al coating and its post heat treatment (PHT). The microstructure, interface behaviors and protective mechanisms of the coating are investigated. The results display that the surface of TIG weld joint and laser-TIG weld joint could be deposited an Al coating with high corrosion resistance by arc spray technology. Al coating shows a mechanical bonding with the weld joint. After PHT, the bonding strength between coating and weld joint is improved from 4MPa to 6MPa by the mode transformation from mechanical to metallurgical bonding. In addition, Mg-Al diffusion layer composed of intermetallic compounds of Al12Mg17 and Al3Mg2 enhances the corrosion resistance of Al coating.
     4. Mg-Al and Mg-steel weld joints are protected by Al-Mg composite coating prepared by the wires combination of Mg-cathode and Al-anode and composite coating+PHT. The microstructure, interface behaviours and protective mechanisms of the composite coating are investigated. The results exhibit that the composite coating has a high corrosion resistance and low potential (300 mV lower than that of Al alloy). Al lamellas as a barrier play an important role in improving the corrosion resistance of the Mg-rich Al coating. Mg lamellas play an important role in decreasing the potential of the coating. After PHT, the intermetallic compounds layer composed of Al3Mg2 and Al12Mg17 with a high mircohardness (200HV0.5) forms on the Mg-steel weld joint due to the phase transition of arc-sprayed Al-Mg composite coating, which provides a good protection for the weld joint.
引文
[1]陆刚.铝、镁、钛合金材料在汽车工业中的应用和发展[J].金属世界,2005,5:45-47.
    [2]曾荣昌,柯伟,徐永波.Mg合金的最新发展及应用前景[J].金属学报.2001,37(7):673-685.
    [3]尹守义.国外镁合金的新发展[J].世界有色金属,1994,7:9-11.
    [4]耿浩然,崔红卫,赵鹏.镁合金的应用及发展动态[J].铸造技术,2002,23(4):200-202.
    [5]余琨,黎文献.变形镁合金的研究、开发及应用[J].中国有色金属学报,2003,13(2):277-288.
    [6]董长富,刘黎明,赵旭.变形镁合金添丝TIG焊接工艺及组织性能分析[J].焊接学报,2005,26(2):33-36.
    [7]Wu S H, Huang J C, Wang Y N. Evolution of microstructure and texture in Mg-Al-Zn alloys during electron-beam and gas tungsten arc welding[J]. Metallurgical and Materials Transactions A:Physical Metallurgy and Materials Science.2004,35(8):2455-2469.
    [8]Miao Y G, Liu L M, Wang J F, et al. Adaptive arc length control for magnesium alloy sheets TIG welding [J]. Transactions of the China Welding Institution,2003,24(6): 33-36.
    [9]徐锦锋,翟秋亚.AZ91B镁合金TIG焊接头组织与性能[J].特种铸造及有色合金,2004(4):23-25
    [10]苗玉刚,刘黎明,赵杰等.变形镁合金熔焊接头组织特征分析[J].焊接学报,2005,24(2):63-66.
    [11]Hiraga H, Inoue T, Kamado S, et al. Effect of shielding gas and laser wavelength in laser welding of magnesium alloy sheet[J]. Quarterly Journal of the Japan Welding Society,2001,19(4):591-599.
    [12]Dhahri M, Masse J E, Mathieu J F, et al. CO2 laser welding of magnesium alloys [J]. Proceedings of SPIE-The International Society for Optical Engineering,2000,3888: 725-732.
    [13]Pan L K, Wang C C, Hsiao Y C, et al. Optimization of Nd:YAG laser welding onto magnesium alloy via Taguchi analysis[J]. Optics and Laser Technology,2005,37(1):33-42.
    [14]刑丽,柯黎明,孙德超等.镁合金薄板的搅拌摩擦焊工艺[J].焊接学报,2001,12(6):18-20.
    [15]王快社,刘军帅,徐可为,等.MB3镁合金固态塑性连接组织性能研究[J].稀有金属材料与工程,2004,33(12):1344-1346.
    [16]Seung H C, Park Y S, Sato H K, et al. Effect of micro-texture on fracture location in friction stir weld of Mg alloy AZ61 during tensile test[J]. Scripta Materialia,2003, 49:161-166.
    [17]Jiuchun Y, Zhiwu X, Zhiyuan L, et al. Microstructure characteristics and performance of dissimilar welds between magnesium alloy and aluminum formed by friction stirring [J]. Scripta Materialia,2005,53:585-589.
    [18]张华,林三宝,吴林,等.AZ31镁合金搅拌摩擦焊接显微组织形成机制[J].稀有金属材料与工程,2005,34(7):1021-1024.
    [19]Liu L M, Zhao L M, Xu R Z. Effect of interlayer composition on the microstructure and strength of diffusion bonded Mg/Al joint[J]. Materials and Design,2009,30(10): 4548-4551.
    [20]刘鹏.Mg/Al活性异种金属焊接界面微观结构及元素扩散的研究[D]:博士学位论文.济南:山东大学,2006.
    [21]Song G, Liu L M, Chi M S, et al. Investigations on laser-TIG hybrid welding of magnesium alloys. Materials Science Forum,2005,488-489:371-375.
    [22]郝新锋,刘黎明,李长茂.镁合金激光氩弧复合热源冷添丝焊接工艺研究[J].焊接学报,2007,28(5):78-80.
    [23]郝新锋,宋刚,刘黎明.镁合金薄板的低功率激光-氩弧复合热源焊接工艺.IFWT2008轻金属与高强材料焊接国际会议.2008:73-77.
    [24]Liu L M, Hao X F. Improvement of laser keyhole formation with the assistance of arc plasma in hybrid welding process of magnesium alloy [J]. Optics & laser in Engineering. 2009,47(11):1177-1182.
    [25]陈振华,等.镁合金[M].北京:化学工业出版社,2004.
    [26]Chiu L H, Chen C C, Yang C F. Improvement of corrosion properties in an aluminum-sprayed AZ31 magnesium alloy by a post-hot pressing and anodizing treatment[J]. Surface and Coatings Technology,2005,191:181-187.
    [27]Song G L, Johannesson B, Hapugoda S, et al. Galvanic corrosion of magnesium alloy AZ91D in contact with an aluminium alloy, steel and zinc [J]. Corrosion Science.2004, 46:955-977.
    [28]Bernhard W, Silke M, Thomas G. Corrosion behaviour of soldered joints of magnesium alloys and dissimilar materials[J]. Microchim Acta.2007,156:151-157.
    [29]张永君,严川伟,王福会,等.镁的应用及其腐蚀与防护[J].2002,35:4-6.
    [30]Paglia C S, Buchheit R G. Scripta Mater[J].2008,58:998-1002.
    [31]Ben-Hamu G, Eliezer D, Cross C E, et al. The relation between microstructure and corrosion behavior of GTA welded AZ31B magnesium sheet Mate[J]. Materials Science and Engineering A,2007,452-453:210-218.
    [32]Youping M, Weixin W, Pengfei L, et al. Effects of treatment parameters on microstructure of diffusion alloyed coatings on pure magnesium [J]. Surface Engeneer.2004,20: 108-112.
    [33]Youping M, Kewei X, Weixin W, et al. The effect of solid diffusion surface alloying on properties of ZM5 magnesium alloy [J], Surface and Coatings Technology,2005,190: 165-170.
    [34]Zhang M X, Kelly P M. Surface alloying of AZ91D alloy by diffusion coat ing [J], Journal of Material Research,2002,17:2477-2479.
    [35]Robert E. Magnesium Alloys and Their Applications. Light Metal Age,2001:54-58.
    [36]关振中.激光加工工艺手册(第二版)[M].北京:中国计量出版社,1997.
    [37]陈彦宾.现代激光焊接技术[M].北京:科学出版社,2005.
    [38]阎毓禾,钟毓霖.高功率激光器加工及其应用[M].天津:天津大学科技出版社,1992.
    [39]Stern A, Munitz A. Partially melted zone microstructural characterization from gas tungsten-arc bead on plate welds of magnesium AZ91 alloy [J]. Journal of Materials Science Letters,1999,18(11):853-855.
    [40]Munitz A, Cotler C, Stern A. Mechanical properties and microstructure of gas tungsten arc welded magnesium AZ91D plates [J]. Materials Science and Engineering A,2001,302(1): 68-73.
    [41]肖锋,傅亚,李春天,等.TIG焊热循环对AZ91D镁合金硬度的影响[J].焊接,2005,6:10-13.
    [42]苗玉刚,刘黎明,赵杰,等.变形镁合金熔焊接头组织特征分析[J].焊接学报,2003,24(2):63-66.
    [43]Wohlfahrt H, Rethmeier M, Bouaif i B, et al. Metal-inert gas welding of magnesium alloys [J]. Welding and Cutting,2003,55(2):80-84.
    [44]Song G, Wang P. Pulsed MIG welding of AZ31B magnesium alloy[J].Materials Science and Technology, February 2011,27(2):518-524(7)
    [45]Weisheit A,Galun R,Mordike B L. CO2 laser beam welding of magnesium based alloys[J]. Welding Journal,1998,77(4):148-154.
    [46]Hirage H, Inoue T, Kamado S, et al. Effect of shielding gas and laser wavelength in laser welding of magnesium alloy sheet[J]. Quarterly Journal of the Japan, Welding Society,2001,19(4):591-599.
    [47]Bobby K M, Dietzel W, Blawert C, et al. Stress corrosion cracking behavior of Nd:YAG laser butt welded AZ31 Mg sheet[J].Materials Science and Engineering A,2007,444 (1-2): 220-226.
    [48]Steen W M, Eboo M. Arc augmented laser welding [J]. Metal Construction,1979,7:332-335.
    [49]Steen W M. Arc augmented laser processing of materials [J]. Journal of Applied Physics, 1980,51:5636-5641.
    [50]Alexander J, Steen W M. Penetration studies on arc augmented laser welding. International Conference on Welding Research in the 1980s,1980:121-125.
    [51]Tishide N M. Coaxial TIG-YAG & MIG-YAG welding methods. Welding International,2001, 15(12):940-945.
    [52]刘黎明,王继锋,宋刚.激光电弧复合焊接AZ31B镁合金[J].中国激光,2004,31(12):1523-1526.
    [53]宋刚,刘黎明,王继锋,等.激光-TIG复合焊接镁合金AZ31B焊接工艺[J].焊接学报,2004,25(3):31-34.
    [54]Liming liu, Song G and Chi M. S. Laser-tungsten inert gas hybrid welding of dissimilar AZ based magnesium alloys [J]. Materials Science and Technology,2005,21 (9):1078-1082.
    [55]Song G, Liu L M, Wang P C. Overlap welding of magnesium AZ31B sheets using laser-arc hybrid process [J]. Materials Science and Engineering A.2006,429(1-2):312-319.
    [56]武仲河,战中学,孙全喜,等.铝合金在汽车工业中的应用与发展前景[J].内蒙古科技与经济,2008(9):59-60.
    [57]霍烨.奥迪公司轿车铝材应用技术[J].汽车工业研究,2000(6):34-35.
    [58]任小灵,钟渝.浅谈汽车工业的发展与铝工业[J].上海有色金属,2000,21(2):80-87.
    [59]Borrisutthekul R, Miyashita Y, Mutoh Y. Dissimilar material laser welding between magnesium alloy AZ31B and aluminum alloy A5052-0 [J]. Science and Technology of Advanced Materials,2005,6(2):199-204.
    [60]王恒,刘黎明,柳绪静.镁铝异种材料TIG焊接接头扩散行为分析[J].焊接学报,2005,26(7):5-8.
    [61]Chen Y C, Nakata K. Friction stir lap joining aluminum and magnesium alloys [J]. Scripta Material ia,2008,58(6):433-436.
    [62]Liu L M, Tan J H, Zhao L M, et al. The relationship between microstructure and properties of Mg/Al brazed joints using Zn filler metal [J]. Materials characterization,2008, 59(4):479-483.
    [63]Liu L M, Zhao L M, Xu R Z. Effect of interlayer composition on the microstructure and strength of diffusion bonded Mg/Al joint [J]. Materials and Design,2009,30 (10):4548-4551.
    [64]TANABE T. Solid state welding of steeland magnesium alloy using arotating pin[J].焊接学会论文集,2006,24:108-115.
    [65]Watanabe T, Kazuhiko K, Atsushi Y, et al. Solid state welding of steel and magnesium alloy using a rotating pin-Solid state welding of dissimilar metals using a rotating pin (report 3) [J]. Journal of the Japan Welding Society,2006,24(1):108-115.
    [66]Abe Y, Watanabe T, Tanabe H, et al. Dissimilar metal joining of magnesium alloy to steel by FSW [J]. Advanced Materials Research,2007,15-17:393-397.
    [67]Liyanage T, Kilbourne J, Gerlich A P, et al. Joint formation in dissimilar Al alloy/steel and Mg alloy/steel friction stir spot welds [J]. Science and Technology of Welding and Joining,2009,14(6):500-508.
    [68]Elthalabawy W M, Khan T I. Microstructural development of diffusion-brazed austenitic stainless steel to magnesium alloy using a nickel interlayer [J]. Materials Characterization,2010,61(7):703-712.
    [69]Wielage B, Mucklich S, Grund T. Corrosion behaviour of soldered joints of magnesium alloys and dissimilar materials [J]. Microchim Acta,2007,156:151-157.
    [70]Miao Y G, Han DF, Yao J Z, et al. Effect of laser offsets on joint performance of laser penetration brazing for magnesium alloy and steel [J]. Materials and Design,2010, 31(6):3121-3126.
    [71]单闯,宋刚,刘黎明.激光—T1G复合热源焊接参数对镁/钢异种材料焊接接头的影响[J].焊接学报,2008,29(6):57-60.
    [72]赵旭,宋刚,刘黎明.镁和钢异种金属熔焊接头微观组织分析[J].焊接学报,2006,27(12):53-56.
    [73]Liu L M, Zhao X.Study on the weld joint of Mg alloy and steel by laser-GTA hybrid welding[J]. Materials Charaeterization,2008,59:1279-1284.
    [74]单闯,宋刚,刘黎明.激光-T1G复合热源焊接参数对镁/钢异种材料焊接接头的影响[J].焊接学报,2008,29(6):57-60.
    [75]Liu L M, Qi X D, Wu Z H. Microstructural characteristics of lap joint between magnesium alloy and mild steel with and without the addition of Sn element [J]. Materials Letters, 2010,64(1):89-92.
    [76]Kwok C T, Fong S L, Cheng F T, et al. Pitting and galvanic corrosion behavior of laser-welded stainless steels [J]. Journal of Materials Processing Technology,2006,176: 168-178.
    [77]Muthupandi V, Bala S P, Seshadri S K, et al. Corrosion behaviour of duplex stainless steel weld metals with nitrogen additions[J]. Corrosion. Engeneer Scienc and Technology,2003,38:303-308.
    [78]Satish K M P, Bala S P. Corrosion behaviour of a thin section martensitic stainless steel GTA weldment in chloride solutions[J]. Materials Letters,2008,62:2887-2890.
    [79]Huang C A, Wang T H, Han W C, et al. A study of the galvanic corrosion behavior of Inconel 718 after electron beam welding [J]. Materials Chemistry and Physics,2007,104:293-300.
    [80]崔文芳,孙秋霞,魏海荣.工业纯钦焊缝腐蚀性能研究[J].稀有金属材料与工程.1993,22:52-55.
    [81]Mujibur Rahman A B M, Kumar S, Gerson A R. Galvanic corrosion of laser weldments of AA6061 aluminium alloy[J]. Corrosion Science,2007,49:4339-4351.
    [82]Zhang D Q, Li J,Joo H G, et al. Corrosion properties of Nd:YAG laser-GMA hybrid welded AA6061 Al alloy[J]. Corrosion science, DOI 10.1016/j. corsci.2009.03.030
    [83]陈振华等.镁合金[M].北京:化学工业出版社,2004.
    [84]Song G L, Atrens A, Dargusch M, Influence of microstructure on the corrosion of diecast AZ91D[J], Corrosion Science,1999,41:249-273.
    [85]蒋百灵,张淑芬,镁合金微弧氧化陶瓷层耐蚀性的研究[J],中国腐蚀与防护学报2002,22:300-303.
    [86]Song G L, Atrens A,Understanding magnesium corrosion[J], Advance Engineering Materials,2003,5:837-858.
    [87]Eliezer D, Uzan P, Aghion E, Effect of second phases on the corrosion behavior of magnesium alloys[J],Materials Science Forum.2003,419:857-866.
    [88]Skar J I, Corrosion and corrosion prevention of magnesium alloys, Materials and Corrosion.1999,50:2-6.
    [89]战广深,姚春玲,牺牲阳极合金在海水中的接触腐蚀行为[J],材料保护,1999,32:31-34.
    [90]Zeng R C, Chen J,Dietzel W, et al. Corrosion of friction stir welded magnesium alloy AM50[J]. Corrosion Science,2009,51:1738-1746.
    [91]Wielage B, Mucklich S, Grund T. Corrosion behaviour of soldered joints of magnesium alloys and dissimilar materials[J]. Microchim Acta,2007,156:151-157.
    [92]Zeng R C. Zhang J, Huang W J, et al. Review of studies on corrosion of magnesium alloys [J]. Trans. Nonferrous Met. SOC. China 16(2006)763-771.
    [93]Song G L, Johannesson B,Hapugoda S, et al. Galvanic corrosion of magnesium alloy AZ91D in contact with an aluminium alloy, steel and zinc [J]. Corrosion Science,2004,46: 955-977.
    [94]Ishak M, Yamasaki K, Maekawa K. Microstructure and Corrosion Behavior of Laser Welded Magnesium Alloys with Silver Nanoparticles [J]. World Academy of Science, Engineering and Technology,2010,70:354-359.
    [95]郭洪飞,安茂忠,刘荣娟.镁及其合金表面化学转化处理技术[J].轻合金加工技术.2003,31(8):35-38.
    [96]Gray J E, Luan B. Protective coatings on magneisum and its alloy-a critica review[J]. Journalof Alloys and Compounds,2002,336:88-113.
    [97]胡文彬,向阳辉,刘新宽,等.镁合金化学镀镍预处理过程表面状况的研究[J].中国腐蚀与防护学报.2001,21(6):340-344.
    [98]谭昌瑶,王钧石.实用表面工程技术[M].新时代出版社,北京,1998:167-180.
    [99]赵文轸,王汉功.国外铝合金激光表面改性研究进展[J].表面工程.1996,1:43-47.
    [100]Vilarigues M, Alves L C, Nogueira I D, et al. Characterisation of corrosion products in Cr implanted Mg surfaces [J]. Surface and Coatings Technology,2002,158-59:328-333.
    [101]Reiners G, Griepentrog M. Hard coatings on magnesium alloys by sputter deposition using a pulsed d. c. bias voltage [J]. Surface and Coatings Technology.1995,76-77:809-814.
    [102]李金桂,主编.防腐蚀表面工程技术[M].北京:化学工业出版社,2003.
    [103]温瑾林.电弧喷涂技术的进步[J].表面工程,1994,16(1):16-18.
    [104]杜小红.电弧喷涂技术在中国的发展和应用[J],表面技术,2000,29(5):21-23.
    [105]Liu L M, Song G, Zhu M L. Low-power laser/arc hybrid welding behavior in AZ-based Mg alloys [J]. Miner. Metals Mater. Soc. ASM Int.2008,39A:1702-1712.
    [106]Chen Y X, Liang X B, Wei S C, et al. Heat treatment induced intermetallic phase transition of arc-sprayed coating prepared by the wires combination of aluminum-cathode and steel-anode[J].Applied Surface Science,2009,255:8299-8304.
    [107]温瑾林.电弧喷涂技术的进步[J].表面工程,1994,16(1):16-18.
    [108]杜小红.电弧喷涂技术在中国的发展和应用[J],表面技术,2000,29(5):21-23.
    [109]孔景江,等.电弧喷涂技术及其应用.表面技术[J],1997,26(1):43-44.
    [104]蒋建敏,耿丹丹,贺定勇.镁合金表面电弧喷涂用铝基粉芯丝材[J].中国表面工程.2006,19:51-54.
    [110]梁永政,郝远,杨贵荣,等.镁合金AZ91D表面电弧喷涂铝工艺的研究[J].机械工程材料,2005,29(3):29-31.
    [111]张津,孙智富,汪崧扬,等.镁合金表面热喷铝工艺及防腐性研究[J].表面技术,2003,32(3):8-9.
    [112]Pokhmurska H, Wielage B, Lampke T,et al. Post-treatment of thermal spray coatings on magnesium[J]. Surface and Coatings Technology,2008,202:4515-4524.
    [113]张汉茹.AZ91D在溶液中的腐蚀行为[D].兰州,兰州理工大学,2004.
    [114]Zeng R C. Zhang J, Huang W J, et al. Trans. Nonferrous Met. SOC. China [J].2006,16: 763-771.
    [115]Wei L Y,Westengen H. Aune T K, et al. Characterisation of. Manganese-Containing Intermetallic. in:H.I. Kaplan, J. N. Hryn, B. B. Clow (Eds.), Magnesium Technology 2000, TMS, Warrendale, PA,2000, pp.153-160.
    [116]Abbas G, Liu Z, Skeldon P. Corrosion behaviour of laser-melted magnesium alloys[J], Applied Surface Science.2005,247:347-353.
    [117]Song G L, Atrens A, Dargusch M. Influence of microstructure on the corrosion of die cast AZ91D[J],Corrosion Science.1999,41:249-273.
    [118]Song G, Atrens A. Corrosion Mechanisms of Magnesium Alloys[J]. Advanced Engineering Materials.1999,1:11-33.
    [119]Ghali E, Dietzel W, Kainer K U, et al. Mater. General and localized corrosion of magnesium alloys:a critical review [J], Journal of Materials Engineering and perforemance.2004,13:7-23
    [120]武建军,曹晓明,温鸣.现代金属热喷涂技术[M].北京:化学工业出版社,2007.
    [121]易春龙,电弧喷涂技术[M].北京:化学工业出版社,2006.
    [122]梁秀兵,田保红,刘世参.高速电弧喷涂铝涂层性能试验研究[J].中国表面工程,1998,4:21-24.
    [123]曾荣昌,韩恩厚,等.材料的腐蚀与防护[M].北京:化学工业出版社,2006.
    [124]谭成文,杨素媛,陈志永,等.镁合金表面电弧喷涂纯铝的界面特性研究[J].材料热处理学报.2007,28(2):102-105.
    [125]Bierwagen G, Battocchi D, Stamness A, et al. The use of multiple electrochemical techniques to characterize. Mg-rich primers for Al alloys[J]. Progress in Organic Coatings.2007,59:172-178.
    [126]Spencer K, Zhang M X. Heat treatment of cold spray coatings to form protective intermetallic layers[J]. Scripta Material.2009,61:44-47.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700