用户名: 密码: 验证码:
Ni-P-纳米SiO_2化学复合镀层制备及耐蚀和冷凝性能强化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在化学镀液中加入纳米颗粒,通过与金属共沉积可获得纳米颗粒复合化学镀层。纳米颗粒的引入,会给镀层带来意想不到的优异的功能特性。本文在研究化学镀Ni-P工艺的基础上,将采用溶胶法制备的纳米Si02添加到化学镀液中得到纳米Si02颗粒复合化学镀层,并对复合镀层的生长机理、微观结构、晶化动力学及强化耐蚀和冷凝传热性能进行了系统研究,主要研究内容及创新成果如下:
     (1).把Bockris方程用于化学镀Ni-P合金的沉积反应中,计算出热力学函数吸附自由能AGdepθ、熵变ΔSdepθ和焓变ΔHdepθ。ΔGdepθ<0,表明该反应是自发进行的;ΔHdepθ>0,说明反应是吸热的,这与化学镀要在一定温度条件下才能进行是吻合的。通过试验测定不同温度下的化学镀沉积速率,采用阿累尼乌斯方程作图,计算出Ni-P合金沉积反应的表观活化能Ea=35.36KJ/mol。通过实验和推算,得到了含复合络合剂在酸性条件下化学镀Ni-P合金的沉积速度的经验方程式:v=8.91·107·[Ni2+]0.81·[H2PO2-]0.20·[L1]0.70·[H+]-0.10·exp(-35360/RT)
     (2).研究了纳米Si02颗粒的加入对化学镀层生长机理的影响,结果发现复合镀层的生长机制与化学镀有所不同,复合镀层是以纳米颗粒为中心的外延式生长,但没有影响Ni-P晶核的择优形核和胞状物沿横向生长扩展以及纵向生长增厚的形核长大方式,纳米颗粒的加入为基体表面提供了更多的活性形核点,使得复合镀层变得更加致密,没有出现化学镀Ni-P的胞状结构。
     (3).根据非晶态合金晶化的动力学分析模型对Ni-P-SiO2复合镀层的晶化行为进行研究,推导出Ni-P镀层的晶化激活能是254.28kJ/mol, Ni-P-SiO2复合镀层的晶化激活能为222.30kJ/mol,这表明化学镀镍磷层中加入纳米Si02粒子会显著地降低镀层的晶化激活能。随着热处理温度升高,Ni-P镀层和Ni-P-SiO2复合镀层都会由非晶态转化为晶态,最终均转化为晶体Ni和Ni3P相。镀态的Ni-P-SiO2复合镀层的显微硬度值高于Ni-P镀层,晶化后镀层的显微硬度均会进一步提高,镀层在400℃热处理时显微硬度值达到最大值,Ni-P镀层的显微硬度最大值为Hv1001027,Ni-P-SiO2复合镀层的最大值为Hv1001118。
     (4).研究了Ni-P-SiO2复合镀层分别在5%稀硫酸和3.5%NaCl溶液中的腐蚀行为,实验结果表明,纳米Si02颗粒的加入提高了化学镀Ni-P在硫酸和含C1-腐蚀环境中的腐蚀电位,促进了阳极的钝化行为,增加了腐蚀电化学反应的阻抗,从而强化了Ni-P镀层耐蚀性能。首次开展了纳米Si02颗粒复合化学镀技术抗硫酸露点腐蚀的实验研究,发现碳钢表面复合镀后的抗露点腐蚀性能提高了25倍,将复合镀技术应用到加热炉对流段炉管进行工业化应用考核,取得了良好的效果,证明了本文开发的复合镀技术有很重要的工程应用价值。
     (5).首次研究了Ni-P-SiO2化学复合镀层的表面能,测得复合镀层的表面接触角达到110°,远高于化学镀层的74°和碳钢的40°,说明化学镀层降低了碳钢的表面能,而SiO2的引入则进一步降低了镀层的表面能。采用垂直平板冷凝实验装置研究了纳米Si02强化复合镀层表面水蒸汽冷凝传热特性。结果表明复合镀层由于表面能较低,实现了水蒸汽的滴状冷凝型态。与膜状冷凝传热相比,滴状冷凝传热系数比Nusselt计算值有大幅度提高,在相同过冷度下,复合镀层表面冷凝传热系数提高了3-5倍。
Electroless nickel-phosphorus(Ni-P) alloys reinforforced with nanoparticles are prepared by adding nanoparticles into plating bath. The incorporation of nanoparticles into Ni-P matrix can provide excellent functional properties. In this paper, Ni-P-SiO2 composite plating was developed by co-depositing nano-sized power SiO2 during electroless plating, and their growth mechanism, micro-structure, crystallization dynamics, enhanced corrosion resistance and condensation heat transfer characteristics were investigated systematically. The following are the main conclusions and innovation achievements:
     (1). The values of△GdepΘ、△SdepΘand△HdepΘwere calculated by application of Bockris equation into the deposition reaction of Ni-P. The results showed that the process was spontaneous and endothermic, which was consistent with the reaction condition of electroless plating. After the effects of different plating parameters on the electroless Ni-P deposition were given through experiments, the plot of coating temperatures versus deposition rates was made according to Arrhennius equation. The surface activation energy calculated using the slope of the plot was 35.36 KJ/mol. In addition, the kinetic equation was presented as: v=9.91·107·[Ni2+]0.81·[H2PO2-]0.20·[L]10.70·[H+]-0.10·exp(-35360/RT).
     (2). Nanoparticles codeposition played a major role in the growth of Ni-P matrix. Composite plating's growth model was epitaxial island with nanoparticles adsorbing on the substrate acted as nucleating centers, which didn't affect crystal's optimal nucleation and nodules's growth during electroless plating Ni-P alloys. During electroless composite plating, the deposition of nickel phosphor alloy would wrap the nano-particle. Numerous nucleating centers were helpful to decrease the dimension of nodules. This resulted in refinement in microstructure and disappearance of nodules in the deposit.
     (3). Crystallization behavior of nano-sized SiO2 particles reinforced composite coatings were investigated according to the dynamical model of amorphous alloys. The activation energy of composite coating was calculated as 222.3 kJ/mol, while it was 254.28 kJ/mol for the Ni-P coating. It indicated that the SiO2 particles had an influence on the crystallization behaviors of composite coatings. The crystallization temperature was lowered due to the existence of SiO2 particles. After heat treatment, Ni-P and Ni-P-SiO2 coatings transformed to be the mixture of crystal nickel and Ni3P. Because of the existence of second phase particles, microhardness of the electroless Ni-P alloy enhanced with SiO2 particles greatly increased. After annealing at 400℃, microhardness value of Ni-P-SiO2 composite coatings approached as high as HV1001118, while it approached HV1001027 for electroless plating.
     (4). The corrosion behavior of the composite coatings in 5%H2SO4 and 3.5%NaCl solutions had been investigated. The results showed that the incorporation of SiO2 nanoparticles into Ni-P matrixes increased the corrosion potential, surface resistance, greatly improved the corrosion resistance properties of the coatings. Dewpoint corrosion resistance property of the Ni-P-SiO2 composite plating was evaluated by the experiments. The results showed that the corrosion resistance of carbon steel is increased by 25 times after coated with composite platings. And composite plating was applied on the furnace tubes for industrial practice and the tubes succeeds in sustain dewpoint corrosion during two years'operation.
     (5). In this paper, surface free energy of carbon steel, electroless Ni-P and Ni-P-SiO2 were investigated by measuring contact angles of water on the three surfaces. The contact angle of water on the composite plating is 110°, greatly higher than that of carbon steel (40°) and electroless plating (74°). The incorporation of nanoparticles into Ni-P matrixes reduces the total surface energy of the coating. Condensation heat transfer characteristics of steam on vertical plates with Ni-P and Ni-P-SiO2 platings were investigated experimentally and theoretically. Stable dropwise condensation was achived on composite platings for its low surface energy. Compared with film condensation, the heat transfer coefficient for the composite platings was improved 3-5 times at the same subcooling temperature.
引文
[1]周荣延.化学镀镍的原理与工艺[M].北京:国防工业出版社,1975
    [2]翟金坤,黄子勋编译.化学镀镍[M].北京:北京航空学院出版社,1987
    [3]Dibari G. A. Some automotive application of electroless nickel coatings[J]. Metal Finishing.1983,81(12):31-32
    [4]姜晓霞,沈伟.化学镀理论与实践[M].北京:国防工业出版社,2000
    [5]李宁.化学镀实用技术[M].北京:化学工业出版社,2004
    [6]王柏春,朱永伟,许向阳,翟海军.Ni-P基化学复合镀的研究与应用.材料导报.2005,19(6):71-74
    [7]施利毅.纳米材料[M].上海:华东理工大学出版社,2007
    [8]张立德.纳米材料[M].北京:化学工业出版社,2000
    [9]王世敏,许祖勋,傅晶.纳米材料制备技术[M].北京:化学工业出版社,2002
    [10]俞世俊,宋力昕,黄银松.化学镀Ni-P-SiC复合镀层的研究[J].无机材料学报.2004,19(3):647-652
    [11]程秀,揭晓华,蔡莲淑Ni-P-SiC(纳米)化学复合镀层的组织与性能[J].材料工程.2006,(1):43-46
    [12]A. Grosjean, M. Rezrazi, J. Takadoum. Hardness, friction and wear characteristics of nickel-SiC electroless composite deposits[J]. Surface and coatings technology.2001,137: 92-96
    [13]A. Grosjean, M. Rezrazi, P. Bercot. Some morphological characteristics of the in-corporation of silicon carbide (SiC) particles into electroless nickel deposits[J]. Surface and Coatings Technology.2000,130:252-256
    [14]J. N. Balaraju, T. S. N. Sankara, S. K. Seshadri Narayanan. Structure and phase trans-formation behaviour of electroless Ni-P composite coatings[J]. Materials Research Bulletin.2006,41:847-860
    [15]Shusheng Zhang, Kejiang Han, Lin Cheng. The effect of SiC particles added in electroless Ni-P plating solution on the properties of composite coatings[J]. Surface & Coatings Technology.2008,202:2807-2812
    [16]M. Sarret, C. Muller, A. Amell. Electroless NiP micro-and nano-composite coatings[J]. Surface & Coatings Technology.2006,201:389-395
    [17]Hong-Kee Lee, Ho-Young Lee, Jun-Mi Jeon. Codeposition of micro-and nano-sized SiC particles in the nickel matrix composite coatings obtained by electroplating [J]. Surface & Coatings Technology.2007,201:4711-4717
    [18]Ewa Rudnik, Kinga Kokoszka, Joanna Lapsa. Comparative studies on the electroless de-position of Ni-P, Co-P and their composites with SiC particles[J]. Surface & Coatings Technology.2008,202:2584-2590
    [19]Gao Jiaqiang, Liu Lei, Wu Yating, et al. Electroless Ni-P-SiC composite coatings with superfine particles[J]. Surface & Coatings Technology.2006,200:5836-5842
    [20]LONG Shi-guo, MA Zeng-sheng, Hu Wen-bin, et al. Influence of vacuum heat treatment on structure and micro-hardness of electroless Ni-P-SiC composite coating[J]. Tran-sactions of Nonferrous Metals Society of China.2007,17:874-877
    [21]C. K. Chen, H. M. Feng, H. C. Lin, et al. The effect of heat treatment on the microstructure of electroless Ni-P coatings containing SiC particles[J]. Thin Solid Films. 2002,416:31-37
    [22]黄新民,吴玉程,郑玉春.纳米颗粒对复合镀层性能的影响[J].兵器材料科学与工程.1999,22(6):11-14
    [23]黄新民,谢跃勤,吴玉程等.Ni-P-纳米Ti02微粒化学复合镀层的摩擦特性[J].电镀与精饰.2001,23(5):1-4
    [24]黄新民,吴玉程,谢跃勤等.Ni-P-纳米Ti02化学复合镀层[J].中国表面工程.2001,14(3):30-32
    [25]Weiwei Chen, Wei Gao, Yedong He. A novel electroless plating of Ni-P-TiO2 nano-composite coatings[J]. Surface & Coatings Technology.2010,204:2493-2498
    [26]J. Novakovic, P. Vassiliou, Kl. Samara, et al. Electroless NiP-TiO2 composite coatings: Their production and properties [J]. Surface & Coatings Technology.2006,201:895-901
    [27]A. Abdel Aal, Hanaa B. Hassan, M. A. Abdel Rahim. Nanostructured Ni-P-TiO2 composite coatings for electrocatalytic oxidation of small organic molecules[J]. Journal of Electroanalytical Chemistry.2008,619-620:17-25
    [28]周广宏,丁红燕,章跃Ni-P-Nano-Al2O3化学复合镀层的磨损机理[J].金属热处理.2004,29(7):38-40
    [29]Yoram de Hazan, Dennis Werner, Markus graggenc, et al. Homogeneous Ni-P/Al2O3 nanocomposite coatings from stable dispersions in electroless nickel baths[J]. Journal of Colloid and Interface Science.2008,328:103-109
    [30]J. Michalski, T. Wejrzanowski, S. Gierlotka, et al. The preparation and structural characterization of Al2O3/Ni-P composites with an interpenetrating network[J]. Journal of the European Ceramic Society.2007,27:831-836
    [31]Gao Jiaqiang, Wu Yating, Liu Lei, et al. Crystallization behavior of nanometer-sized Al2O3 composite coatings prepared by electroless deposition[J]. Materials Letters.2005, 59:391-394
    [32]Nabeen K. Shrestha, Dambar B. Hamal, Tetsuo Saji. Composite plating of Ni-P-Al2O3 in two steps and its anti-wear performance [J]. Surface and Coatings Technology.2004,183: 247-253
    [33]J.T. Winowlin Jappes, B. Ramamoorthy, P. Kesavan Nair. Novel approaches on the study of wear performance of electroless Ni-P/diamond composite deposites[J]. Journal of Materials Processing Technology.2009,209(2):1004-1010
    [34]M. Ebrahimian-Hosseinabadi, K. Azari-Dorcheh, S. M. Moonir Vaghefi. Wear behavior of electroless Ni-P-B4C composite coatings[J]. Wear.2006,260(1-2):123-127
    [35]A. Araghi, M. H. Paydar. Electroless deposition of Ni-P-B4C composite coating on AZ91D magnesium alloy and investigation on its wear and corrosion resistance[J]. Materials & Design.2010,31(6):3095-3099
    [36]Z. Abdel Hamid, S.A. El Badry, A. Abdel Aal. Electroless deposition and characterization of Ni-P-WC composite alloys [J]. Surface & Coatings Technology.2007, 201:5948-5953
    [37]Y. Y. Liu, J. Yu, H. Huang, et al. Synthesis and tribological behavior of electroless Ni-P-WC nanocomposite coatings[J]. Surface & Coatings Technology.2007,201: 7246-7251
    [38]Yaxu JIN, Lin HUA. Preparation and Tribological Properties of Ni-P Electroless Composite Coating Containing Potassium Titanate Whisker[J]. J. Mater. Sci. Technol. 2007,23(3):387-391
    [39]王元化,郭亚军,张丽娟等Ni-P-PTFE学镀层的耐磨性化[J].润滑与密封.1999,(4):21-22
    [40]黎永钧,雷晓蓉.化学镀Ni-P-PTFE复合镀层的性能[J].功能材料.1998,29(2):208-211
    [41]仵亚婷,刘磊,高加强.自润滑Ni-P-PTFE化学复合镀工艺及镀层性能[J].上海交通大学学报.2005,39(2):206-209
    [42]Q. Zhao, Y. Liu, E.W. Abel. Surface free energies of electroless Ni-P based composite coatings[J]. Applied Surface Science.2005,240:441-451
    [43]Q. Zhao, Y. Liu. Modification of stainless steel surfaces by electroless Ni-P and small amount of PTFE to minimize bacterial adhesion[J]. Journal of Food Engineering.2006, 72:266-272
    [44]A. Ramalhoa, J.C. Miranda. Friction and wear of electroless NiP and NiP+PTFE coatings[J]. Wear.2005,259:828-834
    [45]Yating Wu, Hezhou Liu, Bin Shen. The friction and wear of electroless Ni-P matrix with PTFE and/or SiC particles composite[J]. Tribology International.2006,39(6):553-559
    [46]Y. T. Wu, L. Lei, B. Shen. Investigation in electroless Ni-P-Cg(graphite)-SiC composite coating[J]. Surface & Coatings Technology.2006,201:441-445
    [47]Yating Wu, Bin Shen, Lei Liu. The tribological behaviour of electroless Ni-P-Gr-SiC composite[J]. Wear.2006,261:201-207
    [48]韩贵,陈卫祥,夏军宝.化学镀耐磨自润滑Ni-P复合镀层的摩擦磨损性能[J].摩擦学学报.2004,24(3):216-219
    [49]W. X. Chen, J. P. Tub, L. Y. Wang et al. Tribological application of carbon nanotubes in a metal-based composite coating and composites [J]. Carbon.2003:41:215-222
    [50]W.X. Chen, J. P. Tu, H.Y. Gan. Electroless preparation and tribological properties of Ni-P-Carbon nanotube composite coatings under lubricated condition[J]. Surface and Coatings Technology.2002,160:68-73
    [51]L. Y. Wang, J. P. Tu, W. X. Chen, et al. Friction and wear behavior of electroless Ni-based CNT composite coatings[J]. Wear.2003,254:1289-1293
    [52]Xiaohua Chen, Jintong Xia, Jingcui Peng, et al. Carbon-nanotube metal-matrix composites prepared by electroless plating[J]. Composites Science and Technology. 2000,20:301-306
    [53]Tiefeng Li, Shaoxing Qu, Zhenhua Li, et al. Investigation of the mechanical properties of the Ni-PCNTs coated copper composite materials:Experiments and modeling[J]. Materials Science and Engineering A.2009,500:182-187
    [54]Z. H. Lia, X. Q. Wang, M. Wang, et al. Preparation and tribological properties of the carbon nanotubes-Ni-P composite coating[J]. Tribology International.2006,39:953-957
    [55]Y.W. Song, D.Y. Shan, E.H. Han. High corrosion resistance of electroless composite plating coatings on AZ91D magnesium alloys[J]. Electrochimica Acta.2008,53: 2135-2143
    [56]C. J. Lin, K. C. Chen, J. L. He. The cavitation erosion behavior of electroless Ni-P-SiC composite coating[J]. Wear.2006,1261:390-1396
    [57]Xue-tao Yuan, Dong-bai Sun, Hong-ying Yu, et al. Effect of nano-SiC particles on the corrosion resistance of NiP-SiC composite coatings[J]. International Journal of Minerals, Metallurgy and Materials.2009,16(4):444-451
    [58]Faryad Bigdeli, Saeed Reza Allahkaram. An investigation on corrosion resistance of as-applied and heat treated Ni-P/nanoSiC coatings[J]. Materials and Design.2009,30: 4450-4453
    [59]Q. Zhao, Y. Liu. Comparisons of corrosion rates of Ni-P based composite coatings in HCl and NaCl solutions[J]. Corrosion Science.2005,47:2807-2815
    [60]Q. Zhao, Y. Liu. Electroless Ni-Cu-P-PTFE composite coatings and their anticorrosion properties[J]. Surface & Coatings Technology.2005,200:2510-2514
    [61]J. N. Balaraju, K. S. Rajam. Preparation and characterization of autocatalytic low phosphorus nickel coatings containing submicron silicon nitride particles [J]. Journal of Alloys and Compounds.2008,459:311-319
    [62]J.N. Balaraju, V. Ezhil Selvi, K.S. Rajam. Electrochemical behavior of low phosphorus electroless Ni-P-Si3N4 composite coatings[J]. Materials Chemistry and Physics.2010, 120:546-551
    [63]J. N. Balaraju, S. K. Seshadri. Preparation and characterization of electroless Ni-P-Si3N4 composite coatings[J]. Trans. IMF.1999,77(2):84-86
    [64]L. Z. Song, S. Z. Song, J. Zhao. PREPARATION AND CORROSION RESISTANCE OF NiP/TiO2 COMPOSITE FILM ON CARBON STEEL IN SULFURIC ACID SOLUTION[J]. ACTA METALLURGICA SINICA.2006,19 (2):117-123
    [65]Laizhou Song, Yanan Wang, Wanzhou Lin, et al. Primary investigation of corrosion resistance of Ni-P/TiO2 composite film on sintered NdFeB permanent magnet[J]. Surface & Coatings Technology.2008,202:5146-5150
    [66]Abdel Salam Hamdy, M.A. Shoeib, H. Hady, et al.Corrosion behavior of electroless Ni-P alloy coatings containing tungsten or nano-scattered alumina composite in 3.5% NaCl solution[J]. Surface & Coatings Technology.2007,202:162-171
    [67]Hui Ming Jin, Shi Hang Jiang, Lin Nan Zhang. Microstructure and corrosion behavior of electroless deposited Ni-P/CeO2 coating[J]. Chinese Chemical Letters.2008,19: 1367-1370
    [68]Zhi Yang, Hui Xu, Meng-Ke Li, et al. Preparation and properties of Ni/P/single-walled carbon nanotubes composite coatings by means of electroless plating[J]. Thin Solid Films.2004,466:86-91
    [69]张刚,李绍禄,陈小华.碳纳米管/镍基复合镀层的腐蚀行为[J].中国有色金属学报.2003,13(4):17-21
    [70]王健雄,陈小华,彭景翠等.碳纳米管复合镀层材料耐腐蚀性能的初步研究[J].腐蚀与防护.2002,23(1):6-9
    [71]K. Krishnaveni, T.S.N. Sankara Narayanan, S.K. Seshadri. Corrosion resistance of electrodeposited Ni-B and Ni-B-Si3N4 composite coatings. Journal of Alloys and Compounds[J].2009,480:765-770
    [72]F. Bigdeli, S. R. Allahkaram. An investigation on corrosion resistance of as-applied and heat treated Ni-P/nano SiC coatings[J]. Materials & Design.2009,30(10):4450-3.
    [73]P.A. Gay, J. M. Limat, P.A. Steinmann et al. Characterisation and mechanical properties of electroless NiP-ZrO2 coatings[J]. Surface & Coatings Technology.2007,202: 1167-1171
    [74]B. Szczygiel, A. Turkiewicz. The effect of suspension bath composition on the com-position, topography and structure of electrolessly deposited composite four-component Ni-W-P-ZrO2 coatings[J]. Applied Surface Science.2008,254:7410-7416
    [75]B. Szczygiel, A. Turkiewicz. The rate of electroless deposition of a four-component Ni-W-P-ZrO2 composite coating from a glycine bath[J]. Applied Surface Science.2009, 255:8414-8418
    [76]B. Szczygiel, A. Turkiewicz, J. Serafinczuk. Surface morphology and structure of Ni-P, Ni-P-ZrO2, Ni-W-P, Ni-W-P-ZrO2 coatings deposited by electroless method[J]. Surface & Coatings Technology.2008,202:1904-1910
    [77]刘颖,陈家钊,涂铭旌.ZrO2对Ni-P化学镀层抗高温氧化性影响[J].表面技术.1996,25(5):7-8
    [78]施明恒,甘永平,马重芳.沸腾和凝结[M].北京:高等教育出版社,1995
    [79]Tanasawa I. Recent advances in condensation heat transfer [A]. Proceedings of the 10th international heat transfer conference. Brighton:England.1994,1:197-312
    [80]Jacob M. Heat transfer in evaporation and condensation. Mech. Eng[J].1936,58: 729-739
    [81]Tammann G, Boehme W. Die Zahl der wassertropfchen bei der kondensation auf verschiedenen festen stoffen[J]. Ann. Physik.1935,5:77-80
    [82]SONG Yongji, XU Dunqi, LIN Jifang. A study on the mechanism of dropwise condensation. International Journal of Heat and Mass Transfer [J].1991,34(11): 2827-2831
    [83]Yamauchi A, Kumagai S, Takeyama T. Condensation heat transfer on various dropwise-fiimwise coexisting surfaces[J]. Heat transfer Jap-Res.1986,15(5):50-64
    [84]MA Xue-hu, WANG Bu-xuan, XU Dun-qi. Filmwise condensation heat transfer enhancement with dropwise and filmwise coexisting condensation surfaces [J]. Chin. chem. eng.1998,6:95-102
    [85]马学虎,徐敦颀,林纪方.滴膜共存表面强化冷凝传热[J].化工学报.1999,50(4):535-540
    [86]Blackman L C F, Dewar M S J, Hampson H. Componds for promoting dropwise condensation of steam[J]. J. appl, chem.1957,7:160-171
    [87]O'Neill G A, Westwater J W. Dropwise condensation of steam on electroplated silver surface[J]. Int. j. heat mass transfer.1984,27:1539-1549
    [88]Woodruff D W, Westwater J W. Steam condensation on various gold surface[J]. ASME J. heat transfer.1981,103:685-692
    [89]张东昌.实现滴状冷凝新途径的研究[D].博士学位论文.大连理工大学,1985
    [90]Marto P. J, Looney D. J, Rose J. W, et al. Evaluation of organic coatings for the promotion of dropwise condensation of steam[J]. Int. J. Heat Mass Transfer.1986,29(8): 1109-1116
    [91]马学虎,王补宣,徐敦颀,林纪方.聚合物表面滴状冷凝传热寿命的实验研究[J1.工程热物理学报.1997,18(2):196-200
    [92]杜长海,马学虎,徐敦颀.聚四氟乙烯表面上实现水蒸汽滴状冷凝的研究[J].东北电力学院学报.2000,20(2):10-13
    [93]胡友森,黄渭堂,隋海明.槽管管外PTFE涂层滴状冷凝传热实验研究[J].2007,34(5):42-45
    [94]Das A K, Kilty H P, Marto P J. Dropwise condensation of steam on horizontal corrugated tubes using an organic self-assembled monolayer coating[J]. Enhanced heat transfer.2000,7:109-123
    [95]Yasuhiro F. Miura, Mitsura Takenaga, Thomas Koini. Wettabilities of self-assembled monolayers generated from CF3-terminated alkanethiols on gold[J]. Langmuir.1998,14: 5821-5825
    [96]Das A K, Kilty H P, Marto P J. The use of an organic self-assembled monolayer coating to promote dropwise condensation of steam on horizontal tubes[J]. ASME J. heat. transfer.2000,122:278-286
    [97]S. Vemuri, K. J. Kim. An experimental and theoretical study on the concept of dropwise condensation[J]. International Journal of Heat and Mass Transfer.2006,49:649-657
    [98]赵起,张东昌,林纪方.离子注入制备滴状冷凝表面材料的研究[J].化工学报.1990,(2):244-248
    [99]M. H. Rausch, A. P. Froba, A. Leipertz. Dropwise condensation heat transfer on ion implanted aluminum surfaces[J]. International Journal of Heat and Mass Transfer.2008, 51:1061-1070
    [100]马学虎,徐敦颀,林纪方.超薄聚合物表面与滴状冷凝的研究[J].化工学报.1993,44(2):165-170
    [101]马学虎,徐敦颀,林纪方.实现滴状冷凝的超薄聚合物表面冷凝传热的研究[J].化工学报.1993,44(3):277-281
    [102]Koch G, Zhang D C, Leipertz A. Study on plasma enhanced CVD coated material to promote dropwise condensation of steam[J].1998,41(13):1899-1906
    [103]Bockris J O'M, Swinkels D A. Adsorption of an Decylamine on Solid Metal Electrodes[J]. Electrochem. Soc.1964,111(6):736-743
    [104]Bockris J O'M, Green M. Naphthalene [J]. Electrochem. Soc.1964,111(6):743-748
    [105]张祖德.无机化学[M].合肥:中国科学技术大学出版社,2008
    [106]张濂,许志美,袁向前.化学反应工程原理.上海:华东理工大学出版社,2007
    [107]姬振豫.正交设计的方法与理论[M].香港:世界科技出版社,2001
    [108]C.J. Brinker. Hydrolysis and condensation of silicates:Effects on structure. Journal of Non-Crystalline Solids[J].1988,100(1-3):31-50
    [109]张志焜,崔作林.纳米技术与纳米材料[M].北京:国防工业出版社,2000
    [110]余锡宾,吴虹.正硅酸乙酯的水解,缩合过程研究[J].无机材料学报,1996,11(6):703-707
    [111]霍玉秋,翟玉春.醇盐水解沉淀法制备二氧化硅纳米粉[J].微纳电子技术.2003,(9):26-28
    [112]高加强.纳米粒子改性化学镀Ni-P合金的晶化行为研究[D].博士学位论文.上海交通大学,2005
    [113]高诚辉.非晶态合金镀及其镀层性能[M].北京:科学出版社,2004
    [114]Graham A H, Lindasy R W, Reand H J. The Structure and Mechanical Properties of Electroless Nickel[J]. Electrochem. Soc.,1965,112(4):401-403
    [115]Sadoc J F, Dixmier J. Structural Investigation of Amorphous CoP and NiP Alloys by Combined X-Ray and Neutron Scattering [J]. Material Science and Engineering.1976,23: 187-192
    [116]高诚辉.铁-镍-磷合金电沉积及其摩擦学行为[D].北京中国机械科学研究院,1990
    [117]周绍民.金属电沉积—原理与研究方法[M].上海:上海科学技术出版社,1987
    [118]迟毅,张磊.化学镀非晶态Ni-P层的初期沉积过程研究[J].电化学.1997,3(4):433-437
    [119]Tohru Watanabe. Nano-plating:microstructure control theory of plated film and data base of plated film microstructure[M]. Amsterdam; Boston:Elsevier,2004
    [120]惠希东,陈国良.块体非晶合金[M].北京:化学工业出版社,2007
    [121]Kissinger H. E. Reaction Kinetics in Differential Thermal Analysis[J]. Analytical Chemistry.1957,29(11):1702-1706
    [122]宋诗哲.腐蚀电化学研究方法[M].北京:化学工业出版社,1988
    [123]曹楚南.腐蚀电化学原理[M].北京:化学工业出版社,2004
    [124]王一禾,杨膺善.非晶态合金[M].北京:冶金工业出版社,1989
    [125]杨世铭,陶文铨.传热学[M].北京:高等教育出版社,1998
    [126]葛新石,王义方等译.传热的基本原理[M].合肥:安徽教育出版社,1985
    [127]Rose J W, Glicksman L R. Dropwise Condenstion- The Distribution of Drop Size[J]. J. heat mass transfer.1972,16(2):411-425
    [128]Tanasawa. Dropwise condensation- the way to practical applications [C]. Proceedings of the 6th International Heat Transfer Conference, vol.1978, (6):393
    [129]Q. Zhao, B.M. Burnsidea. Dropwise condensation of steam on ion implanted condenser surfaces[J]. Heat Recovery Systems and CHP.1994,14(5):525-534
    [130]Jopp J, Grull H, Yerushalmi-Rozen R. Wetting Behavior of Water Droplets on Hydrophobic Microtextures of Comparable Size [J]. Langmuir.2004, (20):10015-10019
    [131]王维宗.硫酸露点腐蚀机理与防护[J].石油化工腐蚀与防护.1992,9(4):16-22
    [132]Bordzilowski, J, Darowicki, K. Anti-corrosion protection of chimneys and flue gas ducts[J]. Anti-Corrosion Methods and Materials.1998,45(6):388-396.
    [133]小若正伦.金属的腐蚀破坏与防蚀技术[M].北京:化学工业出版,1988

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700