用户名: 密码: 验证码:
军用车辆涂层防护性能评价及冷却系统金属材料腐蚀行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
军用车辆长期在风沙、雨雪、潮湿、盐雾等恶劣的气候条件下使用,不同程度地受到环境的影响而引起腐蚀。本论文针对军用车辆涂层防护性能的检测与评价和冷却系统金属材料的腐蚀行为两方面开展研究,主要研究内容如下:
     分析了军用车辆涂层失效的影响因素,对车辆常用的军绿色涂层和黑色防锈涂层的防护性能进行了研究,研究表明即使表面观察完好的涂层,其涂层性能也存在很大差异。由此进行了车辆涂层不同破损程度的模拟研究,建立了各电化学特征参数Rf,Ζfmin和ΖAVG随涂层破损程度系数K的变化规律曲线,为涂层的现场检测与评价提供理论依据。
     对军用车辆涂层进行了现场实车测试,研究了车体涂层不同失效程度的EIS特征,通过提取低频段(10-2Hz-1Hz)的模值,建立了车体涂层实车测试与部件单独测试模值的平均值Z1和Z2之间的关系曲线,作为现场实车测试的校正曲线,提出评价指标,并尝试性的对多种军用车型涂层状态进行了现场评价。
     模拟车辆冷却系统腐蚀环境,对发动机冷却系统金属材料的腐蚀行为进行了研究。结果表明铸铁在三种冷却溶液中的腐蚀速度开始随着工作温度的升高而上升,50℃左右时腐蚀速度达到最大,然后稍有下降;铸铝在三种冷却溶液中的腐蚀速度开始随着温度的升高而上升,其变化速度为先快后慢;黄铜在“自来水”和“防冻液”中,其腐蚀速度开始随温度的升高而下降,65℃时腐蚀速度最小,温度继续升高,腐蚀速度变快。黄铜在“浓缩水”中,其腐蚀速度随温度的升高而加快,50℃左右时达到最大,温度继续上升,腐蚀速度基本不变。研究结果表明,长期不更换冷却溶液对军用车辆冷却系统的腐蚀影响很大。
     研究了Cu/Fe和Cu/Al电偶对组成不同的面积比,在不同的冷却溶液和不同工作温度时的电偶腐蚀行为,进行了Cu/Fe和Cu/Al电偶对的电偶腐蚀规律分析。结果表明,随着电偶对阴阳极面积比的不同,电偶腐蚀规律不同,面积比小于1时,电偶电流的电流密度与面积比之间遵从较好的半对数直线关系;面积比大于1时,则比较复杂。冷却系统金属发生电偶腐蚀时,偶合电位在工作条件下,大部分向阳极金属的腐蚀电位靠近。在冷却系统工作温度范围内,随着温度的升高,电偶电流增加,冷却系统不宜在过高的温度下工作。
Military vehicles(MV) were long-term used in the bad weather,such as sandstorm,rain-snow,wet and salting fog. These factors can cause serious corrosion. The behavior of corrosion concerns many factors. In addition to natural environment, vehicle’s usage and designing aspects also were involved. In this thesis,the vehicle corrosion problem were studied from two aspects. One is the evaluation of the performance of protective coating,the other is based on studying the corrosion of cooling system’s metal in different working temperature and liquid. The according measures were usually adopted after the question occurred,because of the two aspects are easy to be ignored,and the result is the increase of the cost of the use and maintain of military vehicle. This paper focus on the test and evaluation of the performance of protective coating and the corrosion of cooling system’s metal. The main research contents are as follows:
     The influence factors of the failure process of military vehicles coating were analyzed,and researching on the performance of green and black protective coating of the military vehicles.The results manifest that the coating’s performance is quite different from each other,even if it seems like perfect from the surface. The simulation of various degrees of the damages is presented,the coatings sample of various degrees of the damages were made and electrochemistry test was carried out,the data is processed by the software of Zsimpwin,and many electrochemistry parameter such as Rf,Zfmin and ZAVG are extracted,the change curve of these electrochemistry parameters with the coefficient K of the coating’s damage degree is built and analyzed,and provide a theory clue for field testing and evaluation.
     The field test of military vehicles coating is presented,the EIS of coatings of various damages were analyzed. The model value of the low frequency was extracted,and the relationship curve of average value Z1 and Z2 of the model value of real vehicle test with bodywork coatings and the single parts is built and considered as the adjustment curve for real vehicle test in the theater. Estimate index is brought forward,and the field evaluation of the performance of coating using EIS are carried out,and try to evaluate various coatings. The EIS analyze of the coatings with different damages manifest that coating’s performance is different from each other,even though the surface seems alike. The result show that efficient test and evaluation of military vehicle’s coatings and maintain accordingly is very important to improve the efficiency of vehicles.
     Simulating cooling system’s environment,the test selects customary metals cooling system usually adopted and three liquids to make the electrochemistry test according different temperature,and analyzes the corrosion of engine cooling system’s metal. The result shows that the corrosion rate of cast iron increased with the temperature increasing in the three liquid,and the rate obtains a maximum level at 50℃,then when temperature increased,the corrosion rate slightly decreased; the corrosion rate of aluminum increased with the temperature increasing in the three liquid; the corrosion rate of brass in the coolant decreased with the temperature increasing, and has a minimum at 65℃,then increased with the temperature increasing,but in the other liquid the corrosion rate of brass reached a maximum at 50℃,then the corrosion rate kept stable. The result manifests that if the replacement of cooling fluid not in time for long time,it will badly corrode the cooling system of military vehicles.
     According to different cooling fluid and temperature with the various area ratio composed by Cu/Fe and Cu/Al,the galvanic corrosion has been studied and the galvanic current is tested,and the rule of galvanic corrosion is analyzed. The results show that the rules vary with the area ratio of galvanic corrosion’s different poles. When the area ratio below or above 1,the rule will change accordingly. If the ratio is below 1,the relationship between galvanic density and area ratio is half logarithm linearity; if the ratio above 1,the relationship is very complex.Couple electric potential usually close to corrosion potential of anode metal as the galvanic corrosion of cooling system metal happen. Due to the electric current increase,with the raise of temperature in the temperature range,so the cooling system should not work for a long time under the condition of higher temperature.
引文
[1]黄建中,汽车腐蚀与防护技术,北京:化学工业出版社,2004:3~14
    [2]钟积礼,中国卡车腐蚀调查报告,中国?瑞典冶金科技合作第三阶段共同研究论文集,北京:冶金工业出版社,1992:521~529
    [3] HKenneth L.Crabtree,The Most Immediate And Cost-Effective Way To Address Vehicle Corrosion In Hawaii,ADA~343359,1997H:18~19
    [4]徐滨士,马世宁等,我军装备腐蚀现状及对策,陆军武器装备防腐蚀工程应用与发展研讨会论文集,2003:1~7
    [5]柯伟,军事装备腐蚀调查,中国腐蚀调查报告,北京:化学工业出版社,2003:227~234
    [6] Hilton,Multiple Wins Lead the Way to a Less Corroded Army,Amptiac,2003,7(4)
    [7] HDavid H.Rose,New DOD Policy Will Reduce the Cost of Corrosion,Amptiac,2005,7(4)H:61
    [8] James L.Koloshey,Corrosion Prevention For Wheeled Vehicle Systems,ADA93?156,1993
    [9] HBrain E.Placzankis,Accelerated Corrosion Analysis of E-Coated Steel Box Panels to Determine Reapplication Intervals for Carwell Inhibitor,ADA?395457,2001H[10] HC.Thomas Savell,Vehicle Corrosion Expert System(CES),ADA?380629,2000H[11]徐滨士,马世宁等,军事装备腐蚀现状及对策,涂料工程,2004,34(9):9~12
    [12] H徐安桃,彭丽伟等,东南沿海地区车辆装备的腐蚀与防护研究,军事交通学院学报,2006,8(1):44H~48
    [13]刘宝新,汽车的腐蚀与防护,天津汽车,1997,(2):42~45
    [14]黄蕊忠,论表面分析及其在材料研究中的应用,北京:科学技术出版社,1996
    [15]高家武,高分子材料近代测试技术,北京:北京北京航空航天大学出版社,1994
    [16]黎完模,宋玉苏等,涂装金属的腐蚀,长沙:国防科技大学出版社,2003
    [17] HMansfeld F,Lin S,HKim SH,Electrochemical impedance spectroscopy as a monitoring tool for passivation and localized corrosion of aluminum alloys,Werkstoffe und Korrosion,1988,39(11):487H~492
    [18] HG.Grundmeier,W.Schmidt and M.Stratmann,Corrosion protection by organic coatings:electrochemical mechanism and novel methods of investigation,Electrochemica Acta,2000,45:2515H~2533
    [19]张鉴清,曹楚南,电化学阻抗谱方法研究评价有机涂层,腐蚀与防护,1998,19(3):99~104
    [20] Lillard R S,Moran P J,Isaacs H S,A Novel Method for Generating Quantitative Local Electrochemical Impedance Spectroscopy,Journal of the Electrochemical Society,1992,(1007):139
    [21]章妮,孙志华,张琦等,局部阻抗测试技术(LEIS)在评定有机涂层环境失效中的应用,装备环境工程,2007,4 (1):75~78
    [22]周立新,程江,有机涂层防腐性能的研究与评价方法,腐蚀科学与防护技术,2004,16:6
    [23] Zhang Ji tao,Hu Ji ming,Zhang Jian qing,Studies of Water Transport Behavior and Impedance Models of Epoxy-coated Metals in NaCl solution by EIS,Progress in Organic coating,2004,51:145~151
    [24] Hu J M,Zhang J Q,Cao C N,Determination of Water Uptake and diffusion of Cl- Ion in Epoxy Primer on Aluminum Alloys in NaCl solution by electrochemical Impedance Spectroscopy,Progress in Organic coating,2003,46:273~279
    [25] F.Zou,D.Thierry,Localized electrochemical impedance spectroscopy for studying the degradation of organic coatings,Electrochemica Acta,1997,41(20?22):3293~3301
    [26] H张鉴清,张昭,王建明等,电化学噪声的分析与应用?电化学噪声的分析原理,中国腐蚀与防护学报,2001,21(5)H:310~320
    [27]孙志华等,Kelvin探头振动电容法技术在大气腐蚀中的应用,腐蚀科学与防护技术,2001,13(11):451
    [28] Grundmeier G,Schm idtw,Stratmann M, Corrosion Protection by Organic Coatings:Electrochemical Mechanism and Novel Methods of Investigation,Electrochimica Acta,2000,45:2515~2533
    [29] HHoffmann K,Stratmaorun M,The delamination of organic coatings from rusty steel substrates,Corrosion Science,1993,34(10):1625H[30] HKoehler E L,INFLUENCE OF CONTAMINANTS ON THE FAILURE OF PROTECTIVE ORGANIC COATINGS ON STEEL,Corrosion,1977,33(6):209~217H[31] HR.D.Armstrong and B.W.Johnson,An investigation into the cathodic delamination of unpigmented chlorinated rubber films,Corrosion Science,1991,32(3):303
    [32] HR.D.Armstrong,B.W.Johnson and J.D.Wright,An investigation into the cathodic delamination of epoxy-polyamine protective coatings,Electrochimica Acta,1991,36(13):1915H[33] H张金涛,有机涂层的现代研究方法,材料科学与工程学报,2003,21(5):763H~768
    [34] Yan HDianran,He Jining,Wu Jianjun,The corrosion behaviour of a plasma spraying A2O3 ceramic coating in dilute HCl solution,Surface and Coatings Technology,l997,89(1?2):191H~195
    [35] HB.Matthes,E.Borszeit,J.Aromas,etc,Corrosion performance of some titanium-based hard coatings,Surface and Coatings Technology,1991,49(21?3):489H[36] HKosek J.R,DuPont J.N,Marder A.R,Effect of porosity on resistance of epoxy coatings to cold-wall blistering,Corrosion,1995,51(11):861H~871
    [37] D.A.HWornley,D.Williams,J.S.G.Ling,Mechanistic changes in cut-edge corrosion induced by variation of organic coating porosity,Corrosion Science,2001,43(12):2335H~2348
    [38] H.HUchida,M.Yamashita,Pinhole defect evaluation of TiN films prepared by dry coating process,Vacuum,2000,59(1):321H~329
    [39] HKweon Y.G,Coddet C,Blistering mechanisms of thermally sprayed zinc and zinc-based coatings in seawater,Corrosion,1992,48(8):660H~665
    [40] H潘肇基,有机涂层湿附着力的研究,材料保护,1994,27(2):9H~12
    [41] H王周成,苏方腾,辜志俊,Fe在双极有机涂层下的腐蚀和电化学行为研究,腐蚀科学与防护技术,1994,6(1):1H~6
    [42] H陈行琦,刘曙光,赵常新等,异氰酸酯改性环氧树脂漆膜的耐蚀性能与结构,中国腐蚀与防护学报,1994,14(2):129H~137
    [43]徐永祥,严川伟,高延敏等,大气环境中涂层下金属的腐蚀和涂层失效,中国腐蚀与防护学报,2002,22(4):249~256
    [44] A.Meroufel,S.Touzain,EIS characterisation of new zinc-rich powder coatings,Progress in Organic Coatings,2006,56:31~39
    [45] John M.McIntyre,Ha Q.Pham,Electrochemical impedance spectroscopy; a tool for organic coatings optimizations,Progress in Organic Coatings,1996,27:201~207
    [46] O.A.Stafford,B.R.Hinderliter,S.G.Croll,Electrochemical impedance spectroscopy response of water uptake in organic coatings by finite element methods,Electrochemica Acta,2006,51:396~315
    [47] D A Diakow,G J Van Bove,M J Wilmott,Polarization Under Disbonded Coatings:Conventional and Pulged Cathodic Protection Compared,Material Performance,Houston,1998,37(5):17~23
    [48] HXiao H,mansfeld F,Evaluation of coating degradation with electrochemical impedance spectroscopy and electrochemical noise analysis,Journal of the Electrochemical Society,1994,141(9):2332H~2337
    [49] Downey HS.J,Deverux O.F,Use of impedance spectroscopy in evaluating moisture-caused failure of adhesives and paints,Corrosion,1989,45(8):675H~684
    [50] HJ.L.He,C.H.Yu,A.Leyland,etc,A comparative study of the cyclic thermal oxidation of PVD nickel aluminide coatings,Surface Coating Technology,2002,155:67H~79
    [51] HR.A.Dickie,Paint adhesion,corrosion protection,and interfacial chemistry,Progress in Organic Coatings,1994(25):3H[52] HBellucci F,Nicodemo L,Water transport in organic coatings,Corrosion,1993,49(3):235H~247
    [53] HTsai C.H,Mansfeld F,Determination of coating deterioration with EIS:Part II.Development of a method for field testing of protective coatings,Corrosion,1993,49(9):726H~737
    [54] H徐云海,万小山,宋诗哲,碳钢表面有机涂层破损程度的模拟研究,腐蚀科学与防护技术,2002,14(4):215H~217
    [55] H杨海钢,朱雪梅,雷明凯,腐蚀电化学方法评价硬质涂层孔隙率,腐蚀科学与防护技术,2005,17(6):413H~417
    [56] H宋义全,杜翠薇,李晓刚等,有机涂层厚度对低碳钢腐蚀规律的影响,腐蚀与防护, 2003,24(10):432H~434
    [57] HMoshier W.C,Davis G.D,Cote,G.O,Surface chemistry of sputter-deposited Al-Mo and Al-Cr alloys polarized in 0.1N KCl,Journal of the Electrochemical Society,1989,136(2):356H~362
    [58] HAmirudin A,Thierry D,Electrochemical sensor for monitoring atmospheric corrosion of polymer coated metal,British Corrosion Journal,1995,30(3):214H~220
    [59] H程字群,尉丹,杨丽霞等,评价有机涂层耐蚀性能的两种方法初探,腐蚀与防护,2004,25(1):9H~12
    [60] H涂运骅,高瑾,李久青等,镁合金涂装体系盐雾条件下失效过程的电化学阻抗谱特征,北京科技大学学报,2004,26(6):621H~626
    [61]孙秋霞,张鉴清,林昌健,阻抗谱定量分析金属/有机涂层界面粘结力,物理化学学报,2004,20(11):1297~1302
    [62] L.B.HReynolds,R.Twite,M.Khobaib,etc,Preliminary evaluation of the anticorrosive properties of aircraft coatings by electrochemical methods,Progress in Organic Coatings,1997,32:31H~34
    [63] L.Fedrizzi,A.Bergo,M.Fanicchia,Evaluation of accelerated aging procedures of painted galvanised steels by EIS,Electrochemica Acta,2006,51:1864~1872
    [64] K.-M.Yin,H.Z.Wu,Electrochemical impedance study of the degradation of organic-coated copper,Surface and Coatings Technology,1998,106:167~173
    [65] Wei Gang Ji,Ji Ming Hu,Liang Liu,Improving the corrosion performance of epoxy coatings by chemical modification with silane monomers,Surface and Coatings Technology,2006,106:167~173
    [66] H陈群尧,涂层及其腐蚀失效机理的研究方法和方向,中国腐蚀与防护学报,1997,17(4):307H~313
    [67] H宋诗哲,靳世久,宋小平等,土壤中钢铁表面防护层缺陷的电化学检测,电化学,1999,5(2):162H~165
    [68]宋诗哲等,阴极保护下钢铁表面防护层缺陷的阻抗谱特征,腐蚀科学与防护工程技术新进展,化学工业出版社,1999
    [69]宋诗哲等,阴极保护下防护层破损和剥离的阻抗谱特征,98全国腐蚀电化学及测试方法学术年会,1998
    [70] H宋诗哲等,土壤中钢铁表面防护层缺陷的电化学检测,海峡两岸材料腐蚀与防护研讨会论文集,1998H
    [71] HHaruyama Shiro,HAsari MitsuyoriH,HTsuru TooruH,IMPEDANCE CHARACTERISTICS DURING DEGRADATION OF COATED STEEL,Proceedings-The Electrochemical Society,1987,87(2):197H~207
    [72] Sekine Isao,Sakaguchi Kazuhiko,Yuasa Makoto,Estimation and prediction of degradation of coating films by frequency at maximum phase angle,Journal of Coatings Technology,1992,64(810):45~49
    [73] HKouloumbi N,Tsangaris G.M,Kyvelidis S.T,Evaluation of corrosion behavior of metal-filled polymeric coatings,Journal of Coatings Technology,1994,66(839):83H~88
    [74] HTsai C.H,Mansfeld F,Determination of coating deterioration with EIS:Part II.Development of a method for field testing of protective coatings,Corrosion,1993,49(9):726H~737
    [75] HDeflorian F,Fedrizzi L,Bonora P.L,Determination of the reactive area of organic coated metals using the breakpoint method,Corrosion,1994,50(2):113H~119
    [76] Kending HM,Scully J,Basic aspects of electrochemical impedance application for the life prediction of organic coatings on metals,Corrosion,1990,46(1):22H~29
    [77] H高志明,宋诗哲,徐云海,涂层失效过程电化学阻抗谱的神经网络分析,中国腐蚀与防护学报,2005,25(2):106H~109
    [78]张时才,汽车维修工精通,北京,电子工业出版社,2003:103~114
    [79]张时才,汽车维修漆工精通,北京,电子工业出版社,2003:42~68
    [80] H黄建中,朱峰,钟积礼等,汽车及其用材的腐蚀与对策,腐蚀科学与防护技术,1999,11(1)H:1~12
    [81]张远声,腐蚀破坏100例,北京:化学工业出版社,2000
    [82]长春汽车材料研究所,一汽集团公司工艺研究所编,汽车金属材料及其试验研究论文集,1996,4
    [83]曹楚南,腐蚀电化学原理,北京:化学工业出版社,2004
    [84] L.Bousselmi,C.Fiaud,B.Tribollet,E.Triki,Impedance spectroscopic study of a steel electrode incondition of scaling and corrosionInterphase model,Electrochemica Acta,1999,44:4357~4363
    [85]张正,LY12CZ铝合金在模拟大气及海水环境中腐蚀行为研究:[硕士学位论文],天津,天津大学,2003
    [86]李劲风,张昭,曹发和等,Al-Li合金在EXCO溶液中腐蚀的电化学阻抗研究,金属学报,2003,39(4):426~430
    [87]张金涛,胡吉明,张鉴清等,LY12铝合金/钝化膜/环氧涂层复合电极的腐蚀电化学行为,金属学报,2006,42(5):528~532
    [88]陈长风,路民旭,赵国仙等,N80油套管钢CO2腐蚀阴极过程电化学阻抗谱分析,金属学报,2003,39(1):94~98
    [89]雍兴跃,刘景军,林玉珍,流动腐蚀介质中双相不锈钢的电化学阻抗谱,化工学报,2003,54(12):1713~1718
    [90]郝小军,铝锌系合金电化学性能的研究:[博士学位论文],天津,天津大学,2004
    [91] Florian Mansfeld,Tafel slopes and corrosion rates obtained in the pre-Tafel region of polarization curves,Corrosion Science,2005,47:3178~3186
    [92]罗永赞,6种不锈钢的化学和电化学腐蚀行为,腐蚀与防护,1999,20(7):310~313
    [93]王洪仁,吴建华,王均涛等,5083铝合金在海水中的腐蚀电化学行为及活性氯影响研究,电化学,2003,9(1):60~65
    [94]朱世文,王燕,徐永春,储油罐沉积液中A3钢的电化学腐蚀研究,材料保护,2001,34(2):8~9
    [95] H李淑英,陈玮,碳钢/紫铜在NaCl介质中的电偶行为,腐蚀科学与防护技术,2000,12(5):300H~302
    [96] H魏建军,李治,许超,铸铝?碳钢电偶腐蚀及PBTCA的缓蚀研究,上海大学学报,1999,5(3):227H~231
    [97]郭庆锟,杜敏,钛/碳钢在海水中电偶腐蚀的研究,海洋湖沼通报,2005(4):23~26
    [98]李君,董超芳,李晓刚,pH值对Q235碳钢与304L不锈钢在典型含硫环境中电偶腐蚀行为的影响,北京科技大学学报,2006,28(1):52~58
    [99]郝小军,宋诗哲,电偶电流评价牺牲阳极性能,中国腐蚀与防护学报,2005,25(3):176~178
    [100]于经元,王芷芳,铝?铁极性逆转的研究,化工腐蚀与防护,1997(3):4~8
    [101]郭泽亮,李文军,王洪仁,新型镍铝青铜的电偶腐蚀行为研究,材料保护,2005,38(1):5~8
    [102] Guangling Song,Birgir Johannesson,Sarath Hapugoda,David StJohn,Galvanic corrosion of magnesium alloy AZ91D in contact with an aluminium alloy,steel and zinc,Corrosion Science,2004,46:955~977
    [103]魏宝明,金属腐蚀理论及应用,北京:化学工业出版社,2002:5~8
    [104]聂立军,谭澄宇,A3钢在硫酸溶液中的电化学腐蚀行为特征,腐蚀与防护,2005,26(10):439~442
    [105]薛荣,曹中秋,郑志国,Cu-60Fe-12Cr合金在含Cl﹣介质中的电化学腐蚀行为,沈阳师范大学学报(自然科学版),2005,23(1):64~67
    [106]李劲风,张昭,程英亮等,NaCl溶液中Al-Li合金腐蚀过程的电化学特征,金属学报,2002,38(7):760~764
    [107]郭红,何晓英,X70钢在含H2S的弱酸性溶液中的腐蚀行为的电化学研究,腐蚀与防护,2006,27(5):232~236
    [108]赵春梅,模拟苦咸水中铜腐蚀行为的研究:[硕士学位论文],北京:北京化工大学,2000
    [109]古可成,赵淑琴,孙雅茹等,铝合金船体与不锈钢阀件的腐蚀及电化学特性,腐蚀科学与防护技术,2006,18(1):63~65
    [110]金鹰,董超芳等,神经网络技术在腐蚀研究与工程中的应用,石油化工防护,2001,18(1):13~17
    [111]孔德英,宋诗哲,人工神经网络技术探讨碳钢,低合金钢的实海腐蚀规律中国腐蚀与防护学报,1998,18(4):289~296
    [112]杨晓明,陈明文,海水对金属腐蚀因素的分析及预测,北京科技大学学报,1999,21(2):185~187
    [113]郭稚弧,朱超,楚喜丽等,Q235钢在油田注水系统中的腐蚀及其影响因素的研究,1999,20(4):151~153
    [114] S.Nesic,M.Nordseen,N.Maxwell,Probabilistic modeling of CO2 corrosion laboratory data using neural network,Corrosion Science,2001,43(7):1373~1392
    [115] S.Nesic,M.Nordsveen,N.Maxwell,A neural network model for CO2 corrosion of carbon steel,Corrosion Science,1999,1:151~153
    [116] F.Barmann,T.Gervens,M.Renner,Prediction of the corrosion behavior of materials in highly concentrated sulfuric acid by means of neural networks,Werkstoffe and Korrosion,1993,44(1l?12):467~472
    [117] J.Leffer,J.I.Mickalonis,Prediction of pitting corrosion in aqueous environments via artificial neural network analysis,Intelligent Engineering Systems Through Artificial Neural Networks,1998,8(1?4):431~439
    [118] J.Leifer,P.E.Zapp,J.I.Mickalonis,Predictive models for determination of pitting corrosion versus inhibitor concentrations and temperature for radio active sludge in carbon steel waste tanks,Corrosion(Houston),1999,55(1):3l~37
    [119] J.Leifer,J.I.Mickalonis,Prediction of aluminum pitting in natural waters via artificial neural network analysis,Corrosion(Houston),2000,56(6):563~571
    [120] R.A.Bailey,R.M.Pidaparti,M.J.Palakal,Corrosion prediction in aging aircraft materials, Struct.Mater,2000,6(Damage and Fracture MechanicsVI):587~599
    [121] S.P.Trasatti,F.Mazza,crevice corrosion,a neural network approach,British Corrosion Joural,1996,31(2):105~112
    [122] Y.Cheng,W.L.Huang,C.Y.Zhou,Artificial neural network technology for the data processing of on-line corrosion fatigue crack growth monitoring,International Joural of Pressure Vessels and Piping,1999,76(2):113~116
    [123]业成,黄文龙,腐蚀疲劳裂纹扩展的在线监测及频率影响,压力容器,1998,(3):11~24
    [124] T.Pleune,O.K.T Chopra,Artificial neural networks and effects of loading conditions on fatigue life of carbon and low-ally steels,Ameriean Society of Mechanical Engineers,Pressurc Vessels and Piping Division (Publication) PVP,1997,350(Jul 27?31):413~423
    [125] M.E.Haque,K.V.Sudhakar,Prediction of corrssion-fatigue behavior of DP steel through Artificial neural network.Int.J.Fatigue,2001,23(1):1~4
    [126]刘延利,钟群鹏等,基于人工神经网络的预腐蚀铝合金疲劳性能预测,航空学报,2001,22(2):135~139
    [127] E.M.Rosen,D.L.Silverman,Corrosion prediction from polarization scans using an artificial neural network integrated with an expert system,Corrosion,1992,48(9):734~744
    [128] T.F.Barton,D.l.Tuck,D.B.Wells,Identification of pitting and crevice corrosion spectra in electrochemical moise using an artificial neural network,Material & Design,1992,13(3):149~153
    [129] R.S.Barga,M.A.Friesel,T.B.Melton,Classification of acoustic emission waveforms for nondestructive evaluation using neural networks,Proceedings of SPIE-The International Society for Optical Engineering,1990,1294:18~20
    [130] C.C.Lee,F.Mansfeld,Automatic classification of polymer coating quality using artificial neural networks,Corrosion Science,1999,41(3):439~461
    [131] A.Talaie,H.Eisazadeh,Advanced conductive paints using smart colloidal polymeric composite:fabrication and computer classification,Iran.Polym.J,8(4):241~246
    [132] S.Vallerand,X.Maldague,Defect characterization in pulsed thermography:a statistical method compared with Kohonen and Perceptron neural networks,NDT & E International 2000,33(5):307~315
    [133] W.P.Winfree,K.E.Cramer,Reduction of thermal data using neural networks , Proceedings of SPIE-The International society for Optical engineering 2000,4020,Apr 24?Apr27:128~136
    [134] V.Giurgiutiu,J.Redmond,D.Roach,K.Rackow,Active sensors for health monitoring of ageing aerospace structures,Proceedings of SPIE-The International Society for Optical Engineering,2000,3985,Mar 6?Mar9:294~305
    [135] J.S.Bowers,A.F.Sammells,Electrochemical impedance pattern recognition for aircraft hidden chemical corrosion detection American Society os Mechanical Engineers , Aerospace Division(Publication)AD , 1995 ,47(12?17):227~235
    [136]李晓刚,付冬梅等,神经网络分析在高温硫腐蚀中的应用,中国腐蚀与防护学报,2001,21(2): 76~8l
    [137]付冬梅,李晓刚等,炼油设备腐蚀与防护管理规范化专家系统,北京科技大学学报,200l,23(2):189~192
    [138]李晓刚,付冬梅等,用神经网络算法分析环烷酸的腐蚀行为,腐蚀科学与防护技术,2001,13(1):56~59
    [139]付亚荣,马永忠,利用BP神经网络预测高含硫油井的硫化物应力腐蚀,断块油气田,2000,7(1):60~61
    [140]付亚荣,马永忠等,基于BP神经网络的高含硫油井硫化物应力腐蚀预测,石油钻采工艺,1999,21(6):98~101
    [141] H.Furuta,T.Deguchi,M.Kushida,Neural network analysis of structural damage due to Corrosion,Proceedings of the 3rd International Symposium on Uncertainty Modeling and Analysis and Annual Conference of the North American Fuzzy Information Processing Society,1995,Sep 17?20:109~114
    [142]关伯陶,沈成武,人工神经网络用于识别受内压强塑性圆管内壁腐蚀的反问题,固体力学学报,1996,17(2):167~171
    [143]李小红,华寅初,用人工神经网络预测评判油气田设备的腐蚀,油气储运,1998,17(8):30~33
    [144]中国人民解放军总装备部陆军装备科研订购部编,中国人民解放军车辆性能手册,2003
    [145]中国人民解放军总装备部通用装备保障部,汽车维修漆工,北京:解放军出版社,2003:159~196
    [146]军事交通学院,东风军用汽车使用维修技术手册,北京:国防大学出版社,2001:128~135
    [147]中国人民解放军总装备部通用装备保障部,斯太尔军用汽车使用维修技术手册,北京:国防大学出版社,2001:204~215
    [148]曹楚南,张鉴清,电化学阻抗谱导论,北京:科学出版社,2002
    [149]周继成,周青山,韩飘扬,人工神经网络?第六计算机的实现,科学普及出版社,1993
    [150]李学桥,马莉,神经网络工程应用,重庆大学出版社,1996
    [151]陈家瑞,汽车构造,北京:人民交通出版社,2003:240~250

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700