用户名: 密码: 验证码:
真菌利用纤维素和木质素形成腐殖物质及其结构特征研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
针对真菌利用纤维素和木质素在不同培养条件下对腐殖物质(HS)组分动态变化及结构特征的影响问题,本研究采用土壤模拟和液体纯培养方法,研究了木霉、黑曲霉和青霉利用两类基质对黑土HS组分数量及形成顺序的影响和纯培养条件下不同培养时期所形成菌体残留物的性质及其所提取类HS组分数量变化的规律,所得结论如下:
     (1)土培条件下,不同种群微生物培养对混有麦秸黑土的腐殖质组分均产生数量和性质的双重影响。培养过程中,微生物对黑土总有机碳(TOC)不断消耗,尤以对水溶性物质(WSS)的利用为主,其在细胞内先合成胡敏酸(HA),而后通过胞外微生物将其降解为富里酸(FA)。真菌在合成HA和降解FA方面的作用最为显著。微生物有利于惰性组分的瓦解,促使麦秸类腐殖质向成熟腐殖质转化。
     (2)以纤维素和木质素为基质碳源进行土培,真菌和混合菌对黑土TOC及WSS组分均有消耗。纤维素含有较多性质相似于FA组分的有机分子,而该组分在木质素中含量甚微。青霉利用纤维素有利于黑土FA组分数量的提高,而其利用木质素所表现的规律相反。黑曲霉利用两基质均有利于黑土FA组分的消耗。木霉和混合菌利用纤维素有利于黑土FA碳含量的提高,而以木质素为基质时该组分数量有所降低。利用纤维素,各处理对FA与HA间形成顺序的影响符合木质素理论;而利用木质素,木霉和黑曲霉对黑土两组分间的转化规律符合多酚理论。青霉对木质素的降解、氧化并行,促使黑土两组分间不断转化。而混合菌对木质素的作用规律亦符合木质素理论。添加纤维素可增大原土胡敏素(Hu)的碳含量,而木质素中极少存在相似于铁结合胡敏素(HMi)和不溶性胡敏素(HMr)的有机分子。各处理利用纤维素对黑土HMi组分数量提升效果明显,而基质改为木质素后,该组分数量有所降低。无论是何种基质,木霉均可有效提升黑土可提取腐殖酸的比例,黑土HMr组分数量受微生物影响均呈降低趋势。
     (3)液培条件下,以玉米秸秆为基质,比照CK结果,代谢产物和残留物碳含量均有损失;而以锯木屑为基质时,规律则表现为提高代谢产物和降低残留物碳含量两方面,青霉作用最为显著;玉米秸秆残留物脂族化程度可被黑曲霉、青霉和混合菌有效提高,青霉优势显著,而前两者亦有利于木屑残留物的降解。同条件下,利用玉米秸秆所形成的残留物,其WSS组分在培养结束后均有净损失,而锯木屑为基质时规律相反;各处理利用两基质对其残留物FLA与HLA间形成顺序的影响均符合多酚理论,即先形成类富里酸(FLA)而后向类胡敏酸(HLA)转化。前者木霉作用较强,而后者混合菌作用显著。玉米秸秆残留物类Hu可被有效转化,木霉作用明显,而同条件下锯木屑则有利于该惰性组分的积累。
     (4)分别以两基质为碳源,真菌和混合菌液培条件下均有促使代谢产物碳含量降低、残留物产率增加的作用。在转化纤维素和木质素效率方面,混合菌和木霉各具优势。与纯样品相比,各处理所得菌体残留物含氮化合物均有所增加,纤维素为基质时有利于残留物分子芳构化程度提高、含氧官能团数量降低,而木质素规律相反,表现为氧化降解过程。培养中,木霉和黑曲霉利用纤维素均有利于残留物HLA分子间的聚合,而同条件下青霉和混合菌可使该组分发生氧化、脱氢及分解作用。酚类物质在纤维素残留物混合样品FLA组分中的出现,表明其为FA组分形成进程中不可或缺的中间产物;在残留物类Hu组分方面,青霉亦利于其氧化脱氢降解,木霉作用相反。而在利用其含氮化合物方面,混合菌优势大于单一真菌,黑曲霉作用最弱,致使其在类Hu组分中积聚一定数量的氨基化合物;青霉利用木质素所形成残留物的脂族化程度最高、氧化程度最强,尽管其残留物中稳定性物质略有提高,但仍与腐殖质间存在差距,而其余三者均有利于木质素直接氧化降解为类腐殖质,其中木霉残留物与类腐殖质结构最为相似;以黑曲霉为例,纤维素为基质所形成的残留物,其有机质成熟度较差,而以木质素为基质,残留物有机碳结构的疏水程度和稳定性较高且抗分解有机碳的比例较多。青霉利用纤维素可促使残留物FLA组分数量降低,而其利用木质素则有利于该组分的累积,其余三者利用两基质均有利于残留物FLA组分数量的提升;残留物HLA方面,木霉和青霉利用纤维素可促使其数量增加,而同条件下,基质改为木质素后,两者对该组分有消耗作用。无论是何种基质,黑曲霉和混合菌均有消耗残留物HLA组分的作用。
     尽管木霉、黑曲霉和青霉因其本身特性相异,但其均可利用两类基质在土培或液培条件下对黑土腐殖质或菌体残留物所提取的类腐殖质形成起推动作用,解决了不同真菌在不同培养环境下利用两类基质对腐殖质形成特征的影响问题,对腐殖质形成途径、组分特征及其形成过程中真菌的主导作用等问题的阐明均具有重要意义。
In view of the predominant effect of fungi on the dynamic change and structural characteristics of humic substance based on the microbial utilization of cellulose and lignin, in this research, the methods of imitated soil and shake-flask liquid culture were adopted to study the effects of cellulose and lignin utilized by different types of fungi(Trichoderma viride, Aspergillus niger and Penicillium) on the quantity and formed sequence of HS fraction in Black soil and the characteristic of microbial residue itself formed from the different microbial growth periods and the changing law in numbers of their extracted humic-like substance in the pure liquid culture.
     The relevant conclusions were as below:
     (1) Cultured in Black soil, the different microbial communities exerted both impacts from quantity and quality upon humic fractions isolated from the Black soil mixed with wheat straw. In the culture process, the total organic carbon (TOC) of Black soil was consumed continuously, in which most of WSS component (water soluble substances) was primarily utilized. First, the tested microbial communities synthesized HA inside their cells, and then which was decomposed and transformed into FA outside the microbial cells. The advantageous role of fungi in promoting the synthesis of HA and decomposition of FA was the most. The microbial culture was conducive to disintegrate the inert component (humin, Hu), which could also prompt the transition of humic-like substances from wheat straw into true humic substances.
     (2) As two exogenous carbon sources, the cellulose and lignin were added in the Black soil separately, of which TOC and WSS could be consumed gradually by fungi and mixed strains. The cellulose itself contained a large amount of organic molecules whose properties were similar to FA component, but which was little found in the lignin sample. The cellulose utilized by Penicillium was helpful to enhance the amount of FA in the Black soil, but the opposite rule was shown if the lignin was selected. The soil mixed with cellulose or lignin transformed by Aspergillus niger was all in favour of the consumption of soil FA. The C content of FA in soil mixed with cellulose was increased by Trichoderma viride and mixed strains, however, whose amount was decreased if the lignin was served as substrate. Cellulose utilized by fungi and mixed strains, the transformed rule between HA and FA was consistent with the Lignin Theory. However, the Black soil mixed with lignin affected by Trichoderma viride and Aspergillus niger, whose rule conformed to the Polyphenol Theory. The degradation and oxidation process occurred simultaneously in Black soil mixed with lignin cultured by Penicillium, which was beneficial to the mutual transformation between FA and HA continually. The influence rule of mixed strains on Black soil mixed with lignin was also in line with the Lignin Theory. Cellulose added could increase the C contents of different components of Hu in soil, but there were little organic molecules resembled to HMi (Iron combined with humin) and HMr (Non-soluble humin) existed in lignin sample. Cellulose used by different treatments could enhance the amount of HMi in soil dramaticlly, but when lignin served as substrate instead of cellulose, whose quantity could be decreased a little. Whether the cellulose or lignin was chosen, Trichoderma viride could effectively enhance the proportion of humic-extracted acid in soil. Furthermore the amount of HMr component in soil was all decreased regardless of substrate type.
     (3) Cultured in nutrient solution, when the corn straw served as C source, the C contents in both cell metabolites and microbial residues had a loss compared with CK. If the C source was replaced with sawdust, the C content in cell metabolites was inceased but its content in microbial residues was decreased, among which the role of Penicillium was the most. The aliphatic degree of residue derived from corn straw was enhanced by Aspergillus niger, Penicillium and mixed strains, of which the effect of Penicillium was the most, and the first two treatments were also helpful to the degradation of microbial residue derived from sawdust. Under the same condition, the residue formed from corn stalk, whose WSS component had a net loss at the end of culture, whereas the opposite law was shown if the sawdust served as C source. Whether the corn stalk or sawdust served as available substrate, the changing rule of different treatments on the forming sequence between HLA and FLA in their residues conformed to the Polyphenol Theory that showed that FLA was formed first and then tansformed into HLA. In this process, when the corn stalk served as C source, the role of Trichoderma viride was the most, but as the C source provided by sawdust, the mixed strains had the most significant effect. The Hu component in the residue derived from corn stalk could be transformed effectively, of which the Trichoderma viride had the most advantage, while the accumulation of inert component (Hu) was larged if the sawdust was applied under the same condition.
     (4) When the cellulose and lignin samples served as C sources in culture fluid respectively, all the inoculated treatments could promote the loss of C content in cell metabolites, but enhance the accumulation of microbial residue. The mixed strains and Trichoderma viride shown their advantage over others in conversion efficiency of cellulose and lignin, respectively. Compared with the pure cellulose and lignin samples, all the N-containing compounds in the microbial residues cultured by different treatments could be increased. As C source, the cellulose was helpful to enhance the aromatization degree and reduce the amount of O-containing functional groups in their residues, but the transformed rule of lignin was contrary, which experienced the process of oxidation and degratation. In the culure process, the cellulose utilized by Trichoderma viride and Aspergillus niger were helpful to the formation of humic-like structure in their microbial residues, both of them could also promote the polymerization of HLA molecules. However, the oxidation, dehydrogenation and decomposition happened in the HLA extracted from the residues formed by Penicillium and mixed strains in the cellulose fluid. The existence of phenol in the FLA indicated it was an indispensable, intermediate product of the formation process of FA fraction. In the matter of Hu-like fraction extracted from residue, its oxidation, dehydrogenation and degradation was also prompted by Penicillium, whereas the effect of Trichoderma viride was opposite. In utilizing N-containing compounds, the advantage of mixed strains was more than the other mono-fungi treatments, among which the effect of Aspergillus niger was the least and it could accumulate lots of amino compounds in its Hu-like fraction. The highest oxidation and strongest aliphatic degree were shown in the residue formed by Penicillium in the lignin fluid, but there was still a gap compared with humic substance, while the remaining three treatments could contribute to the oxidative degradation of lignin directly and transformed their residues into the humic-like substances. The residue formed by Trichoderma viride in the lignin culture fluid was the most similar to humic-like substances. Taken the Aspergillus niger for example, the residue formed from cellulose, whose maturity degree of organic matter was worse. However, when the lignin was adopt as C source, the hydrophobicity, stability of organic C and resistance to decomposition of residue had more advantage over cellulose. The cellulose utilized by Penicillium could reduce the amount of FLA in residue, while the accumulation of this component was took place if the C source was provided by lignin, and the remaining three treatments were all helpful to enhance the amounts of FLA in their residues regardless of substrate type. In the matter of HLA extracted from the residue, the cellulose utilized by Trichoderma viride and Penicillium could enhance the amount of HLA, but when the lignin applied, the HLA components were consumed effectively by them. Regardless of cellulose or lignin served as substrate, Aspergillus niger and mixed strains could remarkably consume the HLA components isolated from their residues.
     Whether they were cultured in soil or culture fluid, there were some differences existed in their own cells of Trichoderma viride, Aspergillus niger and Penicillium, after the utilization of two substrates (cellulose or lignin), they had a driving effect on the formation of HS in Black soil or humic-like substance extracted from the microbial residue. The research could reveal the significant role of fungi in promoting the formation of humic substance and provide a theoretical basis for seeking a more suitable substrate as C source. The research could not only work out the problem about the effects of two substrates utilized by different types of fungi in the soil or liquid culture conditions on the characteristics of HS (or humic-like substance), but also be of great significance in illuminating the puzzles about the formed pathway or characteristic of different HS fractions and the dominant role of fungi in the formation of HS.
引文
[1]王一明,林先贵,徐江兵.腐殖化进程中的微生物[A].第六届全国绿色环保肥料新技术、新产品交流会论文集[C].南京:中国腐植酸工业协会.2006.
    [2]Stevenson F J. Humus chemistry[M]. USA:John Willey & Sons.1982,195-220.
    [3]李学垣.土壤化学[M].高等教育出版社,2001:406.
    [4]贺婧,颜丽,杨凯,等.不同来源腐殖酸的组成和性质的研究[J].土壤通报,2003,34(4):343-345.
    [5]窦森,李凯,崔俊涛,等.土壤腐殖物质形成转化与结构特征研究进展[J].土壤学报,2008,45(6):1148~1158.
    [6]Stevenson F J. Humus Chemistry. Genesis, Composition, Reactions[M]. New York:Wiley,1994.
    [7]刘宁,何红波,解宏图,等.土壤中木质素的研究进展[J].土壤通报,2011,42(4):991~996.
    [8]Kiem R, Kogel-Knabner I. Contribution of lignin and polysaccharides to therefractory carbon pool in C-depleted arable soils[J]. Soil Biology and Biochemistry,2003,35(1):101-118.
    [9]黄红丽.堆肥中木质素的生物降解及其与腐殖质形成关系的研究[D].长沙:湖南大学硕士学位论文,2006.
    [10]文少白,李勤奋,侯宪文,等.微生物降解纤维素的研究概况[J].中国农学通报,2010,26(1):231-236.
    [11]焦蕊,贺丽敏,许长新,等.纤维素生物降解的研究进展[J].河北农业科学,2009,13(9):46-48.
    [12]陈立祥,章怀云.木质素生物降解及其应用研究进展[J].中南林学院学报,2003,23(1):79-85.
    [13]黄慧,申源源,陈宏.黄孢原毛平革菌对玉米秸秆木质素的降解研究[J].西南大学学报(自然科学版),2011,33(7):93-97.
    [14]窦森,王帅.不同微生物对形成不同腐殖质组分的差异性研究进展[J].吉林农业大学学报,2011,33(2):119~125.
    [15]PeIa-Mendez E M, Havel J, Patocka J. Humic substances-compounds of still unknown structure: applications in agriculture, industry, environment and biomedicine[J]. Journal of Applied Biomedicine,2005, (3):13-24.
    [16]Koivula N, Hanninen K. Biodeterioration of cardboard-based liquid containers collected for fibre reuse[J]. Chemosphere.1999,38(8):1873-1887.
    [17]席北斗,刘鸿亮,白庆中,等.堆肥中纤维素和木质素的生物降解研究现状[J].环境污染治 理技术与设备,2002,3(3):19~23.
    [18]周辉宇,陆文静,王洪涛,等.高效纤维素分解菌生物强化技术在工厂化好氧堆肥中的应用初探[J].农业环境科学学报,2005,24(1):182-186.
    [19]刘淑霞,王鸿斌,赵兰坡,等.几种纤维素分解菌在有机质转化中的作用[J].农业环境科学学报,2008,27(3):991-996.
    [20]Godden B, Ball A S, Helvenstein P, et al. Towards elucidation of the lignin degradation pathway in actinomycetes[J]. Journal of General Microbiology,1992,138:2441-2448.
    [21]Bibollet X, Bosc N, Matulova M, et al.13C and 1H NMR study of cellulose metabolism by Fibrobacter succinogenes S85[J]. Journal of Biotechnology,2000,77(1):37-47.
    [22]Zhu Y T, Li H H, Zhou H, et al. Cellulose and cellodextrin utilization by the cellulolytic bacterium Cytophaga hutchisonii[J]. Bioresource Technology,2010,101(16):6432-6437.
    [23]崔宗均,李美丹,黄志勇,等.一组高效稳定纤维素分解菌复合菌系MC1的筛选及功能[J].环境科学,2002,23(3):36~39.
    [24]陈耀宁.堆肥化中协同降解木质纤维素的混合菌筛选及其培养[D].长沙:湖南大学博士学位论文,2007.
    [25]Fustec E, Chauvet E, Gas G. Lignin degradation and humus formation in alluvial soils and sediments[J]. Applied and Environmental Microbiology,1989,55 (4):922-926.
    [26]Sugiura M, Hirai H, Nishida T. Purification and characterization of a novel lignin peroxidase from white-rot fungus Phanerochaete sordida YK-624[J]. FEMS Microbiology Letters,2003,224:285-290.
    [27]Dumig A, Rumpel C, Dignac M, et al. The role of lignin for the δ13 C signature in C4 grassland and C3 forest soils[J]. Soil Biology and Biochemistry,2013,57:1-13.
    [28]Hammel K E. Fungal degradation of lignin[C]. In:Cadisch, G, Giller, K E. ed. Driven by Nature: Plant Litter Quality and Decomposition, CAB International, Wallingford,1997,33-45.
    [29]Zacchi L, Burla G, Zuolong D, et al. Metabolism of cellulose by Phanerochaete chrysosporium in continuously agitated culture is associated with enhanced production of lignin peroxidase[J]. Journal of Biotechnology,2000,78(2):185-192.
    [30]陈芙蓉,曾光明,郁红艳,等.堆肥化中木质素的生物降解[J].微生物学杂志,2008,28(1):88~93.
    [31]Bugg T D, Ahmad M, Hardiman E M, et al. The emerging role for bacteria in lignin degradation and bio-product formation[J]. Current Opinion in Biotechnology,2011,22(3):394-400.
    [32]Crawford D L, Pometto A L,Crawford R L. Lignin degradation by Streptomyces viridosporus: Isolation and characterization of a new polymeric lignin degradation intermediate[J]. Applied and Environmental Microbiology,1983,45 (3):898-904.
    [33]Hatakka A. Lignin-Modifying enzymes from selected white-rot fungi-production and role in lignin degradation[J]. FEMS Microbiology Reviews,1994,13(2-3):125-135.
    [34]Gonzdlez J M, Moran M A. Numerical dominance of a group of marine bacteria in the a-subclass of Proteobacteria in coastal seawater[J]. Applied and Environmental Microbiology,1997,63:4237-4242.
    [35]Yavmetdinov I S, Stepanova E V, Gavrilova V P, et al. Isolation and characterization of humin-like substances produced by wood-degrading white rot fungi[J]. Applied Biochemistry and Microbiology,2003, 39(3):257-264.
    [36]Herman J, Moorhead D, Berg B. The relationship between rates of lignin and cellulose decay in aboveground forest litter[J]. Soil Biology & Biochemistry,2008,40(10):2620-2626.
    [37]Huang D L, Zeng G M, Feng C L. Changes of microbial population structure related to lignin degradation during lignocellulosic waste composting[J]. Bioresource Technology,2010,101(11):4062-4067.
    [38]余惠生,付时雨.白腐菌Panus conchatus降解稻草木素机理研究[J].纤维素科学与技术,1998,6(4):41-49.
    [39]Bahri H, Rasse D P, Rumpel C. Lignin degradation during a laboratory incubation followed by 13C isotope analysis[J]. Soil Biology and Biochemistry,2008,40(7):1916-1922.
    [40]Dignac M F, Bahri H, Rumpel C, et al. Carbon-13 natural abundance as a tool to study the dynamics of lignin monomers in soil:an appraisal at the Closeaux experimental field (France)[J]. Geoderma,2005,128 (1-2):3-17.
    [41]卢松.微生物处理玉米秸秆的腐解特征研究[D].重庆:西南大学硕士学位论文,2010.
    [42]刘保平.作物秸秆的微生物降解研究[D].哈尔滨:东北农业大学博士学位论文,2009.
    [43]闵晓梅,孟庆翔.白腐真菌处理秸秆的研究[J].饲料研究,2000(9):7-9.
    [44]杭怡琼,薛惠琴,陈谊,等.利用白腐真菌对稻草秸秆的降解研究[J].上海交通大学学报(农业科学版),2002(12):11~14.
    [45]王海磊,李平,张文钰,等.白腐菌F8的分离及降解木质素能力研究[J].河南师范大学学报:自然科学版,2006,34(2):110-112.
    [46]陈合,张强.菌酶共降解玉米秸秆的工艺研究[J].农业工程学报,2008,24(3):270-273.
    [47]殷中伟,范丙全,任萍.纤维素降解真菌Y5的筛选及其对小麦秸秆降解效果[J].环境科学,2011,32(1):247-252.
    [48]来航线,程丽娟,王中科.几种微生物对土壤腐殖质形成的作用[J].西北农业大学学报,1997,25(6):79~82.
    [49]王旭东,关文玲,殷宪强.玉米秸秆腐解过程物质组成以及胡敏酸的动态变化Ⅱ胡敏酸性质及组成变异[J].干旱地区农业研究,2001,19(4):11~15.
    [50]王菊花.微生物对土壤腐殖质形成及结构的影响研究[D].长春:吉林农业大学硕士学位论文,2007.
    [51]黄红丽.木质素降解微生物特性及其对农业废物堆肥腐殖化的影响研究[D].长沙:湖南大学博士学位论文,2009.
    [52]陈鲜妮,来航线,田霄鸿.接种微生物条件下牛粪+麦秸堆腐过程有机组分的动态变化[J].农业环境科学学报,2009,28(11):2417~2421.
    [53]Tuomela M, Oivanen P, Hatakka A. Degradation of synthetic 14C-lignin by various white-rot fungi in soil[J]. Soil Biology and Biochemistry,2002,34(11):1613-1620.
    [54]Snajdr J, Steffen K T, Hofrichter M. Transformation of 14C-labelled lignin and humic substances in forest soil by the saprobic basidiomycetes Gymnopus erythropus and Hypholoma fasciculare[J].Soil Biology and Biochemistry,2010,42(9):1541 - 1548.
    [55]Kalbitz K, Schwesig D, Schmerwitz J, et al. Changes in properties of soil-derived dissolved organic matter induced by biodegradation[J]. Soil Biology and Biochemistry,2003,35(8):1129-1142.
    [56]Filip Z, Tesarova M. Microbial degradation and transformation of humic acids from permanent meadow and forest soils[J]. International Biodeterioration & Biodegradation,2004,54(2-3):225-231.
    [57]Albertsen A, Ravnskov S, Green H. Interactions between the external mycelium of the mycorrhizal fungus Glomus intraradices and other soil microorganisms as affected by organic matter[J]. Soil Biology and Biochemistry,2006,38(5):1008-1014.
    [58]Badis A, Ferradji F Z, Boucherit A. Characterization and biodegradation of soil humic acids and preliminary identification of decolorizing actinomycetes at Mitidja plain soils (Algeria) [J]. African Journal of Microbiology Research,2009,3(13):997-1007.
    [59]林云琴,周少奇.白腐菌降解纤维素和木质素的研究进展[J].环境技术,2003,21(4):29-33.
    [60]黄丹莲,曾光明,胡天觉,等.白腐菌应用于堆肥处理含木质素废物的研究[J].环境污染治理技术与设备,2005b,6(2):29~32.
    [61]Kakezawa M, Mimura A, Takahara Y. Application of two-step composting process to rice straw compost[J]. Soil Science and Plant Nutrition,1992,38(2):43-50.
    [62]Yanez R, Bueno P, Rivera A. Selective organic compounds degradation under controlling composting conditions[J]. Waste Management,2010,30(5):755-763.
    [63]Lopez M J, Elorrieta M A, Vargas-Garcia M C, et al. The effect of aeration on the biotransformation of lignocellulosic wastes by white-rot fungi[J]. Bioresource Technology,2002,81(2):123-129.
    [64]Huang D L, Zeng G M, Hu T J, et al. Preliminary study on the application of Phanerochaete Chrysosporium in composting of lignin waste[A]. In:Zeng Guang-ming. Proceedings of Energy Enviroment 2003 Conference[C], Changsha, China,2003:907-912.
    [65]Requena N, Azcon R, Baca M T. Chemical changes in humic substances from compost due to incubation with ligno-cellulolytic microorganisms and effects on lettuce growth[J]. Applied microbiology and biotechnology,1996,45(6):857-863.
    [66]Vargas-Garcia M C, Suarez-Estrella F, Lopez M J, et al. Effect of inoculation in composting processes:modifications in lignocellulosic fraction[J].Waste Management,2007,27(9):1099-1107.
    [67]Qi B C, Aldrich C, Lorenzen L, et al. Degradation of humic acids in a microbial film consortium from landfill compost[J]. Industrial and Engineering Chemistry Research,2004,43(20):6309-6316.
    [68]Achi O K. Growth and coal-solubilizing activity of Penicillium simplicissimum on coal-related aromatic-compounds[J]. Bioresource Technology,1994,48(1):53-57.
    [69]Yuan H L, Yang J S, Wang F Q, et al. Degradation and solubilization of Chinese lignite by Penicillium sp P6[J]. Applied biochemistry and microbiology,2006,42(1):52-55.
    [70]Laborda F, Monistrol I F, Luna N, et al. Processes of liquefaction/solubilization of Spanish coals by microorganisms[J]. Applied Microbiology and Biotechnology,1999,52(1):49-56.
    [71]Haider K M, Martin J P, Rietz E. Decomposition in soil of 14C-labelled coumaryl alcohols free and linked to dehydropolymer and plant lignins and model humic acids[J]. Soil Science Society of America,1977, 41:556-562.
    [72]Haider K M, Martin J P. Mineralization of 14C-labelled humic acids and of humic-acid bound 14C-xenobiotics by Phanerochaete chrysosorium[J]. Soil biology and Biochemistry,1988 (20):425-429.
    [73]Noda S, Aiba Y, Takagi A, et al. Bacteroides ovatus as the predominant commensal intestinal microbe causing a systemic antibody response in inflammatory bowel disease[J]. Clin Diagn Lab Immunol, 2002,9(1):54-59.
    [74]边文骅.腐植酸形成的生物学机理研究概况[J].河北师范大学学报(自然科学版),2000,24(4):526~530.
    [75]Kupryszewski G D, Pempkowlak J, Kedzia A. The effect of humic substances isolated from a variety of marine and lacustrine environments on different microorganisms[J]. Oceanologla,2001,43(2): 257-261.
    [76]Cervantes F J, Duong-Dac T, Akkermans A D L. Richment and immobilization of quinone-respiring bacteria in anaerobic granular sludge[J]. Water Science and Technology,2003,48 (6):9-16.
    [77]Crawford D L, Antai S P. Degradation of soft wood, hardwood and grass lignocelluloses by two Streptomyces strains[J]. Appl Environ Microbiology,1981,42(2):378-380.
    [78]Huntjens J L M. Polymer of humic acid generated by actinomyces and amino acid constitutes of humic acid modulated by grassland and plowland [J]. Soil Biology and Biochemistry,1972,4:339-345.
    [79]Coelho R R R, Linhares L F. Melanogenic actinomycetes (Streptomyces spp.) from Brazilian soils[J]. Biology and Fertility of Soils,1993,15(3):220-241.
    [80]Yanagi Y, Tamaki H, Otsuka H, et al. Comparison of decolorization by microorganisms of humic acids with different 13C NMR properties[J]. Soil Biology and Biochemistry,2002,34(5):729-731.
    [81]Ding X L, He H B, Zhang B, et al. Plant-N incorporation into microbial amino sugars as affected by inorganic N addition:A microcosm study of 15N-labeled maize residue decomposition. Soil Biology& Biochemistry,2011,43(9),1968-1974.
    [82]黄昌勇.土壤学[M].北京:中国农业出版社,2000:34.
    [83]Grinhut T, Hadar Y, Chen Y. Degradation and transformation of humic substances by saprotrophic fungi:processes and mechanisms[J]. Fungal biology reviews,2007,21(4):179-189.
    [84]Zavarzina A G, Leontievsky A A, Golovleva L A, et al. Biotransformation of soil humic acids by blue laccase of Panus tigrinus 8/18:an in vitro study[J]. Soil Biology and Biochemistry,2004,36:359-369.
    [85]Dong L H, Yuan Q, Yuan H L. Changes of chemical properties of humic acids from crude and fungal transformed lignite[J]. Fuel,2006,85 (17-18):2402-2407.
    [86]Li X W, Xing M Y, Yang J A, et al. Compositional and functional features of humic acid-like fractions from vermicomposting of sewage sludge and cow dung[J]. Journal of Hazardous Materials,2011, 185(2-3):740-748.
    [87]Gregorich E G, Beare M H, Stoklas U, et al. Biodegradability of soluble organic matter in maize-cropped soils[J]. Geoderma,2003,113(3-4):237-252.
    [88]Kalbitz K, Schmerwitz J, Schwesig D, et al. Biodegradation of soil-derived dissolved organic matter as related to its properties[J]. Geoderma,2003,113 (3-4):273-291.
    [89]Hertkorn N, Claus H, Schmitt-Kopplin P H, et al. Utilization and transformation of aquatic humic substances by autochtonous microorganisms[J]. Environment Science and Technology,2002,36(20):4334-4345.
    [90]Roig A, Cayuela M L, Sanchez-Monedero M A. Anoverviewon olive millwastes and their valorisation methods[J]. Waste Manage,2006,26(9):960-969.
    [91]Droussi Z, D'Orazio V, Hafidi M, et al. Elemental and spectroscopic characterization of humic-acid-like compounds during composting of olive mill by-products[J]. Journal of Hazardous Materials, 2009,163(2-3):1289-1297.
    [92]Lima D L D, Santos S M, Scherer H W, et al. Effects of organic and inorganic amendments on soil organic matter properties[J]. Geoderma,2009,150(1-2),38-45.
    [93]周江敏,代静玉,潘根兴.应用光谱分析技术研究土壤水溶性有机质的分组及其结构特征[J].光谱学与光谱分析,2004,24(9):1060~1065.
    [94]Zhang J J, Hu F, Li H X, et al. Effects of earthworm activity on humus composition and humic acid characteristics of soil in a maize residue amended rice-wheat rotation agroecosystem[J]. Applied Soil Ecology, 2011,51:1-8.
    [95]He X S, Xi B D, Wei Z M, et al. Spectroscopic characterization of water extractable organic matter during composting of municipal solid waste[J]. Chemosphere,2011,82(4):541-548.
    [96]Chai X L, Shimaoka T, Cao X Y, et al. Spectroscopic studies of the progress of humification processes in humic substances extracted from refuse in a landfill[J]. Chemosphere.2007,69(9):1446-1453.
    [97]Amir S, Jouraiphy A, Meddich A, et al. Structural study of humic acids during composting of activated sludge-green waste:Elemental analysis, FTIR and 13C NMR[J]. Journal of Hazardous Materials, 2010,177(1-3):524-529.
    [98]Abouelwafa R, Amir S, Souabi S, et al. The fulvic acid fraction as it changes in the mature phase of vegetable oil-mill sludge and domestic waste composting[J]. In:Bioresource Technology,2008,99(14): 6112-6118.
    [99]Gondar D, Lopez R, Fiol S, et al. Characterization and acid-base properties of fulvic and humic acids isolated from two horizons of an ombrotrophic peat bog[J]. Geoderma,2005,126(3-4):367-374.
    [100]Benites V M, Mendonca E S, Schaefer C E G R, et al. Properties of black soil humic acids from high altitude rocky complexes in Brazil[J]. Geoderma,2005,127(1-2):104-113.
    [101]肖彦春,窦森.土壤腐殖质各组分红外光谱研究[J].分析化学,2007,11(35):1596-1600.
    [102]Gonzalez-Perez M, Torrado P V, A. Colnago L, et al.13C NMR and FTIR spectroscopy characterization of humic acids in spodosols under tropical rain forest in southeastern Brazil[J]. Geoderma, 2008,146(3-4):425-433.
    [103]唐晓红,罗友进,赵光,等.长期垄作对水稻土腐殖质特性的影响[J].中国农学通报,2010,26(20):106~112.
    [104]周少奇.环境生物技术[M].科学出版社,2003.
    [105]Conde E, Cardenas M, Ponce-Mendoza A, et al. The impacts of inorganic nitrogen application on mineralization of 14C-labelled maize and glucose, and on priming effect in saline alkaline soil[J]. Soil Biology and Biochemistry,2005,37(4):681-691.
    [106]杨声莲,李登煜,郑林用,等.混合菌在纤维素降解中的作用研究[A].四川省环境科学学会2003年学术年会论文集[C].2003.
    [107]于跃跃,赵炳梓.无机氮和葡萄糖添加对土壤微生物生物量和活性的影响[J].土壤学报,2012,49(1):139-146.
    [108]Marschner P, Umar S, Baumann K. The microbial community composition changes rapidly in the early stages of decomposition of wheat residue[J]. Soil Biology and Biochemistry,2011,43(2):445-451.
    [109]黄红丽,曾光明,黄国和,等.堆肥中木质素降解微生物对腐殖质形成的作用[J].中国生物工程杂志,2004,24(8):29-31.
    [110]Ahamed A, Vermette P. Enhanced enzyme production from mixed cultures of Trichoderma reesei RUT-C30 and Aspergillus niger LMA grown as fed batch in a stirred tank bioreactor[J]. Biochemical Engineering Journal,2008,42(1):41-46.
    [111]张翔,朱洪勋,孙春河,等.长期施肥对土壤微生物和腐殖质组分的影响[J].华北农学报, 1998,13(2):87-92.
    [112]万晓晓,石元亮,依艳丽.长期秸秆还田对白浆土有机碳含量及腐殖质组成的影响[J].中国土壤与肥料,2012(3):7-11.
    [113]Tuomela M, Vikman M, Hatakka A, et al. Biodegradation of lignin in a compost environment:a review [J]. Bioresource Technology,2000,72(2):169-183.
    [114]张晋京,窦森.土壤胡敏素研究进展[J].生态学报,2008,28(3):1229-1239.
    [115]李建明,吴景贵.不同有机物料对黑土腐殖质元素组成及结构的影响[J].中国环境科学,2011,31(z1):78-83.
    [116]邵月红,潘剑君,孙波,等.农田土壤有机碳库大小及周转[J].生态学杂志,2006,25(1):19-23.
    [117]于淑芳,杨力,张玉兰,等.长期施肥对土壤腐殖质组成的影响[J].土壤通报,2002,33(3):165-167.
    [118]Kumada K, Sato O, Obsumi Y, et al. Humus composition of mountain soils in central Japan with special reference to the distribution of P type humic acid[J]. Soil Science Plant Nutrition,1967,13(5):151-158.
    [119]吕贻忠,丛巍巍,廉晓娟.不同耕作措施对黑土腐殖酸组成与红外光谱特性的影响[J].光谱学与光谱分析,2009,29(10):2642~2645.
    [120]韩志卿,张电学,王介元,等.不同培肥措施对冀东褐土腐殖质组成及性质的影响[J].河北职业技术师范学院学报,2000,14(2):1-3.
    [121]魏自民,席北斗,李鸣晓,等.微生物接种堆肥胡敏酸三维荧光特性研究[J].光谱学与光谱分析,2008,28(12):2895~2899.
    [122]窦森,肖彦春,张晋京.土壤胡敏素各组分数量及结构特征初步研究[J].土壤学报,2006,43(6):935-940.
    [123]张晋京,窦森.灼烧土中玉米秸秆分解期间胡敏酸、富里酸动态变化的研究[J].吉林农业大学学报,2002,24(3):60-64.
    [124]徐金忠,孟凯,崔晓阳,等.不同施肥处理对黑土腐殖质组成的影响[J].东北林业大学学报,2009,37(11):84-85.
    [125]张雪英,黄焕忠,周立祥.堆肥处理对污泥腐殖物质组成和光谱学特征的影响[J].环境化学,2004,23(1):96-101.
    [126]Sampedro I, Cajthaml T, Marinari S, et al. Organic matter transformation and detoxification in dry olive mill residue by the saprophytic fungus Paecilomyces farinosus[J]. Process Biochemistry,2009,44(2): 216-225.
    [127]王旭东,胡田田,关文玲.有机物料腐解过程胡敏酸的分级研究[J].土壤,2001(6):321~325.
    [128]Reid I D. Fate of residual lignin during delignification of kraft pulp by Trametes versicolor[J]. Appl Environ Microbiol,1998,64(6):2117-25.
    [129]于孝东,唐晓红,吕家恪,等.稻草腐解过程中形成胡敏酸的组成和结构研究[J].水土保持学报,2011,25(1):224-228.
    [130]陈兰,唐晓红,魏朝富.土壤腐殖质结构的光谱学研究进展[J].中国农学通报,2007,23(8):223-239.
    [131]比买热木·阿不都艾海提,艾克拜尔·伊拉洪,热依汗古丽·阿布里孜,等.新疆典型草原土壤腐殖酸组分的变化规律[J].核农学报,2012,26(1):123-128.
    [132]Di Nardo C, Cinquegrana A, Papa S, et al. Laccase and peroxidase isoenzymes during leaf litter decomposition of Quercus ilex in a Mediterranean ecosystem[J]. Soil Biology and Biochemistry,2004,36 (10):1539-1544.
    [133]高明军.不同菌种对玉米秸秆处理利用的研究[D].北京:中国农业大学,2004.
    [134]McCarthy J. Lignocellulose-degrading actinomycetes[J]. FEMS Microbiology Letters,1987,46(2): 145-163.
    [135]李丹,段舜山,侯红漫,等.白腐菌对木质素降解能力的测定[J].生态科学,2002,21(4):346-347.
    [136]付杰奇.有机物料及微生物对土壤腐殖质转化的研究[D].长春:吉林农业大学,2004.
    [137]窦森,于水强,张晋京.不同CO2浓度对玉米秸秆分解期间土壤腐殖质形成的影响[J].土壤学报,2007,44(3):458-466.
    [138]Gramss G, Ziegenhagen D, Sorge S. Degradation of soil humic extract by wood- and soil-associated fungi, bacteria, and commercial enzymes[J]. Microbial Ecology,1999,37(2):140-151.
    [139]张晋京,窦森.玉米秸秆分解期间胡敏酸、富里酸动态变化的研究[J].土攘通报,2005,36(1):134-136.
    [140]王旭东,胡田田,张一平.不同腐解期玉米秸秆对塿土胡敏酸基本性质及级分变异的影响[J].生态学报,2001,21(6):988-992.
    [141]Paul S. Humus:Still a Mystery[M]. New York:Northeast Organic Farming Association,2002.
    [142]仇建飞,窦森,邵晨,等.添加玉米秸秆培养对土壤团聚体胡敏酸数量和结构特征的影响[J].土壤学报,2011,48(4):781-787.
    [143]窦森.土壤有机质[M].北京:科学出版社,2010.
    [144]陈思根,张一平,白锦鳞,等.西藏几种土壤有机无机复合状况及其热性质的研究[J].土壤学报,1994,31(2):204-213.
    [145]张晋京,窦森,谢修鸿,等.长期石油污染土壤中胡敏酸结构特征的研究[J].光谱学与光谱分析,2009,29(6):1531~1535.
    [146]赵楠,吕贻忠.不同施肥处理对潮土胡敏酸结构特性的影响[J].光谱学与光谱分析,2012, 32(7):1856-1859.
    [147]黄丹莲,曾光明,黄国和,等.白腐菌固态发酵条件最优化及其降解植物生物质的研究[J].环境科学学报,2005,25(2):232-237.
    [148]杭怡琼,薛惠琴,郁怀丹,等.白腐真菌对稻草秸秆的降解及其有关酶活性的变化[J].菌物系统,2001,20(3):403-407.
    [149]Lopez M J, Vargas-Garcia M D C, Suarez-Estrella F, et al. Biodelignification and humification of horticultural plant residues by fungi[J]. International Biodeterioration & Biodegradation,2006,57(1):24-30.
    [150]Kogel-Knabner I. The macromolecular organic composition of plant and microbial residues as inputs to soil organic matter[J]. Soil Biology and Biochemistry,2002,34(2):139-162.
    [151]张辉,桑青.生物降解纤维素研究新进展[J].安徽农业科学,2007,35(27):8651~8653,8655.
    [152]Niranjane A P, Madhou P, Stevenson T W. The effect of carbohydrate carbon sources on the production of cellulase by Phlebia gigantean[J]. Enzyme and Microbial Technology,2007,40(6):1464-1468.
    [153]Vinten A J A, Whitmore A P, Bloem J, et al. Factors affecting immobilization/mineralisation kinetics for cellulose-, glucose-, straw-amended sandy soils[J]. Biology and Fertility of Soils,2002,36(3), 190-199.
    [154]Engelking B, Flessa H, Joergensen R G. Microbial use of maize cellulose and sugarcane sucrose monitored by changes in the 13C/12C ratio. Soil Biology and Biochemistry,2007,39(8):1888-1896.
    [155]平立凤,窦森,张晋京,等.草原及开垦后土壤有机质性质研究[J].应用生态学报,2004,15(5):824-826.
    [156]尤纪雪,叶汉林,童国林,等.白腐菌预处理对杨木化学制浆性能的影响[J].生物制浆,2002,23(3):12-15.
    [157]窦森.土壤有机培肥后胡敏酸结构性质变化规律的系统研究[D].沈阳农业大学博士学位论文,1988.
    [158]龚报森,张一平,张春惠,等.植物物料不同腐解期土壤胡敏酸及腐解物红外光谱特征的研究[J].西北农业学报,1994,3(4):74-80.
    [159]肖彦春,张晋京.土壤胡敏素分组及结构特征的初步研究[J].土壤学报,2006,43(6):934-940.
    [160]赵红,郑殷恬,吕贻忠,等.免耕与常规耕作下黑土腐殖酸含量与结构的差异[J].生态环境学报,2010,19(5):1238-1241.
    [161]Iyer P V, Wu Z W, Kim S B, et al. Ammonia Recycled percolation Process for Pretreatment of Herbaceous Biomass[J]. Applied Biochemistry and Biotechnology,1996,57-58:121-132.
    [162]Laureano-Perez L. Spectroscopic and chemical characterization of biomass[J]. Michigan State University,2005,21-35.
    [163]Bayer E A, Lamed R. The cellulose paradox:pollutant par excellence and/or a reclaimable natural resource[J]. Biodegradation,1992,3(2-3):171-188.
    [164]王玉军,窦森,张晋京,等.农业废弃物堆肥过程中腐殖质组成变化[J].东北林业大学学报,2009,37(8):79-81.
    [165]史吉平,张夫道,林葆.长期定位施肥对土壤腐殖质理化性质的影响[J].中国农业科学,2002,35(2):174-180.
    [166]Amir S, Hafidi M, Lemee L, et al. Structural characterization of humic acids, extracted from sewage sludge during composting, by thermochemolysis-gas chromatography-mass spectrometry[J]. Process Biochemistry,2006,41(2):410-422.
    [167]Goudriaan J, Ruiter H E. Plant growth in response to CO2 enrichment, at two levels of nitrogen and phosphorus supply.1. Dry matter, leaf area and development[J]. Netherlands Journal of Agricultural Science, 1983,31:157-169.
    [168]Baddi G A, Hafidi M, Gilard V, et al. Characterization of humic acids produced during composting of olive mill wastes:elemental and spectroscopic analyses[J]. Agronomie,2003,23 (7):661-666.
    [169]梁重山,党志,刘丛强.胡敏酸的结构特征及其吸附行为[J].分析化学,2006,34(3):288-292.
    [170]郭成达.赤红壤旱耕熟化过程腐殖质性质的变化[J].福建师范大学学报(自然科学版),1997,13(2):97-101.
    [171]张玉兰,孙彩霞,陈振华,等.红外光谱法测定肥料施用26年土壤的腐殖质组分特征[J].光谱学与光谱分析,2010,30(5):1210-1213.
    [172]朱燕,李爱民,李超,等.土壤有机质级份的红外和热重特性[J].环境化学,2005,24(3):288-292.
    [173]Oliveira H, Barros A S, Delgadillo I, et al. Effects of fungus inoculation and salt stress on physiology and biochemistry of in vitro grapevines:Emphasis on sugar composition changes by FT-IR analyses[J]. Environmental and Experimental Botany,2009,65(1):1-10.
    [174]郑殷恬,赵红,赵楠,等.黑土、栗钙土和潮土胡敏酸分子结构的差异性分析[J].土壤,2011,43(5):804~808.
    [175]Castano R, Borrero C, Aviles M, et al. Organic matter fractions by SP-MAS 13C NMR and microbial communities involved in the suppression of Fusarium wilt in organic growth media[J]. Biological Control,2011,58(3):286-293.
    [176]Vikman M, Karjomaa S, Kapanen A, et al. The influence of lignin content and temperature on the temperature on the biodegradation of lignocellulose in composting conditions[J]. Applied Microbiology and Biotechnology,2002,59(4-5):591-598.
    [177]Dimitris P, Komilis, Robert K H. The effect of lignin and sugars to the aerobic decomposition of solid wastes [J]. Waste Management,2003,23(5):419-423.
    [178]崔俊涛.微生物在土壤腐殖质形成与转化中的作用研究[D].长春:吉林农业大学博士学位论文,2005.
    [179]Allard B. A comparative study on the chemical composition of humic acids from forest soil, agricultural soil and lignite deposit Bound lipid, carbohydrate and amino acid distributions[J]. Geoderma, 2006,130(1-2):77-96.
    [180]梁尧.土壤有机碳提取和测定方法的比较研究[D].吉林农业大学硕士学位论文,2009.
    [181]Campitelli P, Ceppi S. Effects of composting technologies on the chemical and physicochemical properties of humic acids[J]. Geoderma,2008,144(1-2):325-333.
    [182]Romero E, Plaza C, Senesi N, et al. Humic acid-like fractions in raw and vermicomposted winery and distillery wastes[J]. Geoderma,2007,139 (3-4):397-406.
    [183]Tanaka T. Functional groups and reactivity of size-fractionated Aldrich humic acid[J]. Thermochimica Acta,2012,532:60-64.
    [184]Francioso O, Ferrari E, Saladini M, et al. TG-DTA, DRIFT and NMR characterisation of humic-like fractions from olive wastes and amended soil[J]. Journal of Hazardous Materials,2007,149(2): 408-417.
    [185]Fernandez J M, Hockaday W C, Plaza C, et al. Effects of long-term soil amendment with sewage sludges on soil humic acid thermal and molecular properties[J]. Chemosphere,2008,73(11):1838-1844.
    [186]Francioso O, Montecchio D, Gioacchini P, et al. Thermal analysis (TG-DTA) and isotopic characterization (13C-15N) of humic acids from different origins[J]. Applied Geochemistry,2005,20(3),537-544.
    [187]Francioso O, Ciavatta C, Montecchio D, et al. Quantitative estimation of peat, brown coal and lignite humic acids using chemical parameters,1H-NMR and DTA analyses[J]. Bioresource Technology,2003, 88(3):189-195.
    [188]HE M C, SHI Y H, LIN C Y. Characterization of humic acids extracted from the sediments of the various rivers and lakes in China [J]. Journal of Environmental Sciences,2008,20(11):1294-1299.
    [189]张晋京,窦森,朱平,等.长期施用有机肥对黑土胡敏素结构特征的影响—固态13C核磁共振研究[J].中国农业科学,2009,42(6):2223~2228.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700