用户名: 密码: 验证码:
应用脱细胞气管材料建构组织工程气管的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:由于缺乏有效的重建手段,广泛的气管病变仍是临床工作中遇到的棘手问题。组织工程技术为长段环形的气管缺损提供了一种新的修复途径。细胞外基质生物材料具有与正常组织相似的组成和结构,是组织工程理想的支架材料。本实验的目的是用脱细胞的方法来获取气管的细胞外基质材料,并观察脱细胞方法的脱细胞效率以及对基质完整性和材料细胞化的影响;并在体内鉴定气管材料的组织相容性和重塑的情况;最后评估体外细胞化建构的气管替代物的软骨和上皮再生的情况。
     方法:我们将300g的Brown Norway (BN)大鼠和Lewis大鼠作为气管组织的供体,并用清洁剂联合酶消化的方法对取材的气管进行了脱细胞处理。在体外实验部分,我们用DAPI染色,DNA定量分析和Ⅰ、Ⅱ型主要组织相容性(抗原)复合物(MHCⅠ和Ⅱ)的免疫组织化学染色来鉴定细胞及抗原成份的脱除效率。应用组织学和生物化学定量分析法来检测气管基质成分葡萄糖胺聚糖(GAG)和胶原的保留效率,并通过组织学和扫描电子显微镜检查来观察材料的组织结构和表面显微结构的变化,同时对材料进行压缩和拉伸实验用来评估脱细胞处理之后的生物力学特性的变化。我们用接触和提取液细胞毒性实验来检测材料的生物相容性,并将软骨诱导的大鼠骨髓间充质干细胞和气管上皮细胞分别接种在材料上观察细胞与材料的相互作用。在体内实验部分,我们将软骨诱导的大鼠骨髓间充质干细胞和气管上皮细胞接种在脱细胞气管材料的管腔外内壁上来建构细胞材料复合体,之后将复合体(n=6)以及BN大鼠(n=6)和Lewis大鼠(n=6)的脱细胞气管材料植入Lewis大鼠的皮下。此外将新鲜摘取的BN(n=6)和Lewis大鼠(n=6)的气管异位移植作为对照组。经1个月的观察期后取材,对各组样本进行组织学分析来研究宿主对脱细胞材料的组织反应以及细胞材料复合体在体内的成活情况。
     结果:在经过5次脱细胞循环的处理后,材料中的抗原成份被完全去除,但仍残留少量的核成份以及细胞残片。脱细胞材料的细胞外基质的胶原成分被基本保留,但GAG成份有显著的丢失。脱细胞材料的组织结构和表面显微结构未遭到明显的破坏,但脱细胞处理后气管材料的压缩和拉伸强度有所下降。材料以及其提取液对细胞没有毒性,而且材料支持骨髓间充质干细胞和气管上皮细胞的黏附和增值。在体内移植1个月后,脱细胞的BN大鼠气管材料没有引起明显的免疫排斥反应和慢性炎症反应,气管材料也未出现明显的压缩变形,但材料的管腔堵塞且软骨出现钙化。扫描电子显微镜显示复合体的细胞接种效率较低。复合体在体内的软骨基质没有细胞化的迹象,但脱细胞气管材料能够被完全上皮化及支持上皮细胞分化为纤毛细胞,有效的抑制了管腔的堵塞。
     结论:清洁剂联合酶消化法可以有效的脱除抗原成份,但不能同时有效的去除细胞成份。它对基质内的GAG成份的影响较大,但保留了胶原成份和气管的组织结构。虽然材料的力学强度有所降低,但材料能够经受体内短时间的生物学压力。脱细胞处理没有对材料的再细胞化产生负面的影响,材料具有良好的生物相容性以及支持特殊组织细胞黏附和增殖的特性,是气管组织工程良好的支架材料。在体内,材料显示了良好的组织相容性,但材料无法直接用于气管的重建,需要体外细胞化的辅助。脱细胞气管材料支持接种上皮细胞的成活和分化,但是干细胞却无法进入材料的软骨基质内以产生新的软骨组织。静态的细胞种植和培养的方法影响了软骨再生和上皮内衬的效率,气管材料需要合适的生物反应器来进行体外的细胞化。
Objective:Reconstruction of long circumferential tracheal defects remains a major clinical problem owing to the lack of effective and reliable reconstructive techniques. Tissue engineering has prompted exploration into tracheal substitutes that may provide replacement options. The aims of this study were to first produce a rat tracheal matrix by decellularization, and evaluate the decellularization efficacy and the impacts of decellularization on extracellular matrix (ECM) integrity and scaffold recellularization in vitro; then to assess the host response to the decellularized tracheal matrix and matrix remodeling in vivo; finally to recellularize the matrix with syngenic cells to generate a tissue-engineered trachea in vitro and examine the cartilage and epithelial tissue regeneration of the constructs in vivo.
     Methods:Tracheae were harvested from Brown Norway (BN) and Lewis rats weighing approximately 300g and were decellularized by exposing the tracheae to detergent-enzymatic treatment cycles. In vitro, the efficacies of cell and alloantigen removal were assessed by 4',6-diamidino-2-phenylindole (DAPI) staining, DNA quantification and immunohistochemical analysis of class I and II major histocompatibility complex (MHC I and II) antigens. Histological and biochemical analyses were used to evaluate desirable extracellular matrix components (glycosaminoglycans and collagen type II) retention. Matrix histoarchitecture and surface microstructure were characterized by histology and scanning electron microscope (SEM) examination. Biomechanical properties of the matrices were determined by compressive and tensile test. Contact and extract cytotoxicity tests were used to evaluate biocompatibility of the decellualrizaed tracheal matrices. Bone marrow stem cell derived chondrocytes and tracheal epithelial cells were seeded onto the matrix and SEM examination was performed to evaluate cell-matrix interaction. For the in vivo study, the bone marrow stem cell derived chondrocytes were seeded on the outer surface and freshly isolated tracheal epithelial cells were seeded to luminal surface of the acellular tracheal matrices to engineer a cell-seeded construct. The engineered tracheae (n=6) and the acellular tracheal matrices of both BN (n=6) and Lewis rats (n=6) were implanted in subcutaneous pockets in Lewis rat. In addition, fresh tracheae harvested from BN (allograft) and Lewis (isograft) rats were implanted in Lewis recipients to serve as positive (n=6) and negative (n=6) control. Host response to those different grafts and tissue remodeling were evaluated by histological analysis at 4 weeks.
     Results:The major alloantigens were completely removed after 5-cycle detergent-enzymatic treatment but small amount of nuclear components and cell debris remained in the decellularized matrices. The decellularized tissue preserved the collagen type II components, but there was a significant loss of glycosaminoglycans (GAG) content. Histology and SEM showed an intact histoarchitecture with various degrees of local surface topography disturbance. Both compressive and tensile strength decreased following decellularization. Decellularized tissue and extracts were not toxic to cells. In addition, the matrices were able to support adhesion and proliferation of both stem cell derived chondrocytes and epithelial cells. Following one month in vivo implantation, acellular tracheal matrices grafts resulted in no obvious allorejection or chronic inflammation. The tubular structure of tracheal matices was well maintained. Cartilage calcification and granulation tissue growth in the lumen causing obstruction obviously due to the lack of epithelial lining were observed. The SEM examination of cell seeded matrix showed relatively low cell seeding efficacy in some engineered constructs. There was no obvious repopulation in cartilaginous portion. However, the development of ciliated cells and efficient epithelial lining were observed in tissue-engineered grafts, thus preserving luminal patency.
     Conclusions:The detergent-enzymatic treatment was efficient in antigen removal but was not as efficient to eliminate cell components. The decellularization process reduced GAG components but retained collagen and major histoarchitecture of the native trachea. The biomechanical properties changed after decellularization, but the resulted matrices maintained sufficient mechanical integrity withstanding physiologic pressures in the short-term. Combined with good cell and tissue compatibility and cell adhesion properties, these decellualrized matices can be excellent scaffolds for tissue engineering of trachea. However, decellualrized matrix scaffold alone is not appropriate for tracheal reconstruction due to the lack of epithelial cells and chondrocytes. Therefore, cell seeding is required to further engineer a tracheal construct. Implantation of such cell-seeded tracheal constructs in vivo showed good epithelial cell survival and differentiation into ciliated cells, although stem cell failed to repopulate the cartilaginous matrices most likely due to static cell seeding and culture technique. A bioreactor may be needed to facilitate cell seeding and recellularization.
引文
[1]Macchiarini, P., Trachea-guided generation:deja vu all over again? [J]. J Thorac Cardiovasc Surg,2004.128(1):14-6.
    [2]Kojima, K. and C.A. Vacanti, Generation of a tissue-engineered tracheal equivalent [J]. Biotechnol Appl Biochem,2004.39(Pt 3):257-62.
    [3]Macchiarini, P., P. Jungebluth, et al, Clinical transplantation of a tissue-engineered airway [J]. Lancet,2008.372(9655):2023-30.
    [4]Conconi, M.T., P. De Coppi, et al., Tracheal matrices, obtained by a detergent-enzymatic method, support in vitro the adhesion of chondrocytes and tracheal epithelial cells [J]. Transpl Int,2005.18(6):727-34.
    [5]Rieder, E., M.T. Kasimir, et al., Decellularization protocols of porcine heart valves differ importantly in efficiency of cell removal and susceptibility of the matrix to recellularization with human vascular cells [J]. J Thorac Cardiovasc Surg,2004.127(2):399-405.
    [6]Badylak, S.F., Xenogeneic extracellular matrix as a scaffold for tissue reconstruction [J]. Transpl Immunol,2004.12(3-4):367-77.
    [7]Xu, H., H. Wan, et al., Host response to human acellular dermal matrix transplantation in a primate model of abdominal wall repair [J]. Tissue Eng Part A, 2008.14(12):2009-19.
    [8]Walles, T., T. Herden, et al., Influence of scaffold thickness and scaffold composition on bioartificial graft survival [J]. Biomaterials,2003.24(7):1233-9.
    [9]Walles, T., Bioartificial tracheal grafts:can tissue engineering keep its promise? [J]. Expert Rev Med Devices,2004.1(2):241-50.
    [10]Baiguera, S., M.A. Birchall, et al., Tissue-Engineered Tracheal Transplantation [J]. Transplantation,2010.89(5):485-91.
    [11]Grillo, H.C., Tracheal replacement:a critical review [J]. Ann Thorac Surg,2002. 73(6):1995-2004.
    [12]Grillo, H.C., C.D. Wright, et al., Management of congenital tracheal stenosis by means of slide tracheoplasty or resection and reconstruction, with long-term follow-up of growth after slide tracheoplasty [J]. J Thorac Cardiovasc Surg,2002. 123(1):145-52.
    [13]Steger, V., M. Hampel, et al., Clinical tracheal replacement:transplantation, bioprostheses and artificial grafts [J]. Expert Rev Med Devices,2008.5(5): 605-12.
    [14]Birchall, M. and P. Macchiarini, Airway transplantation:a debate worth having? [J]. Transplantation,2008.85(8):1075-80.
    [15]Langer, R. and J.P. Vacanti, Tissue engineering [J]. Science,1993.260(5110): 920-6.
    [16]Atala, A., S.B. Bauer, et al., Tissue-engineered autologous bladders for patients needing cystoplasty [J]. Lancet,2006.367(9518):1241-6.
    [17]Pham, C. Greenwood, et al., Bioengineered skin substitutes for the management of burns:a systematic review [J]. Burns,2007.33(8):946-57.
    [18]Tan, Q., R. Steiner, et al., Tissue-engineered trachea:History, problems and the future [J]. Eur J Cardiothorac Surg,2006.30(5):782-6.
    [19]Vacanti, C.A., K.T. Paige, et al., Experimental tracheal replacement using tissue-engineered cartilage [J]. J Pediatr Surg,1994.29(2):201-4; discussion 204-5.
    [20]Henderson, J, J.F. Welter, et al., Cartilage tissue engineering for laryngotracheal reconstruction:comparison of chondrocytes from three anatomic locations in the rabbit [J]. Tissue Eng,2007.13(4):843-53.
    [21]Walles, T., B. Giere, et al., Expansion of chondrocytes in a three-dimensional matrix for tracheal tissue engineering [J]. Ann Thorac Surg,2004.78(2):444-8; discussion 448-9.
    [22]Kojima, K., L.J. Bonassar, et al., Comparison of tracheal and nasal chondrocytes for tissue engineering of the trachea [J]. Ann Thorac Surg,2003.76(6):1884-8.
    [23]Kojima, K., L.J. Bonassar, et al., Autologous tissue-engineered trachea with sheep nasal chondrocytes [J]. J Thorac Cardiovasc Surg,2002.123(6):1177-84.
    [24]Vinatier, C., D. Mrugala, et al., Cartilage engineering:a crucial combination of cells, biomaterials and biofactors [J]. Trends Biotechnol,2009.27(5):307-14.
    [25]Wescoe, K.E., R.C. Schugar, et al., The role of the biochemical and biophysical environment in chondrogenic stem cell differentiation assays and cartilage tissue engineering [J]. Cell Biochem Biophys,2008.52(2):85-102.
    [26]Wu, W., X. Cheng, et al., Tissue engineering of trachea-like cartilage grafts by using chondrocyte macroaggregate:experimental study in rabbits [J]. Artif Organs,2007.31(11):826-34.
    [27]Gilpin, D.A., M.S. Weidenbecher, et al., Scaffold-free tissue-engineered cartilage implants for laryngotracheal reconstruction [J]. Laryngoscope,2010.120(3): 612-7.
    [28]Weidenbecher, M., H.M. Tucker, et al., Fabrication of a neotrachea using engineered cartilage [J]. Laryngoscope,2008.118(4):593-8.
    [29]Weidenbecher, M., H.M. Tucker, et al., Tissue-engineered trachea for airway reconstruction [J]. Laryngoscope,2009.119(11):2118-23.
    [30]Kojima, K., Tissue engineered trachea using sheep nasal septum [J]. Med J Malaysia,2004.59 Suppl B:32-3.
    [31]Wu, W., X. Feng, et al., Engineering of human tracheal tissue with collagen-enforced poly-lactic-glycolic acid non-woven mesh:a preliminary study in nude mice [J]. Br J Oral Maxillofac Surg,2007.45(4):272-8.
    [32]Yang, L., S. Korom, et al., Tissue engineered cartilage generated from human trachea using DegraPol scaffold [J]. Eur J Cardiothorac Surg,2003.24(2):201-7.
    [33]Stoddart, M.J., S. Grad, et al., Cells and biomaterials in cartilage tissue engineering [J]. Regen Med,2009.4(1):81-98.
    [34]Bernardo, M.E., J.A. Emons, et al., Human mesenchymal stem cells derived from bone marrow display a better chondrogenic differentiation compared with other sources [J]. Connect Tissue Res,2007.48(3):132-40.
    [35]Kojima, K., R.A. Ignotz, et al., Tissue-engineered trachea from sheep marrow stromal cells with transforming growth factor beta2 released from biodegradable microspheres in a nude rat recipient [J]. J Thorac Cardiovasc Surg,2004.128(1): 147-53.
    [36]Pelttari, K, E. Steck, et al., The use of mesenchymal stem cells for chondrogenesis [J]. Injury,2008.39 Suppl 1:S58-65.
    [37]Tsukada, H. and H. Osada, Experimental study of a new tracheal prosthesis: pored Dacron tube [J]. J Thorac Cardiovasc Surg,2004.127(3):877-84.
    [38]Go, T., P. Jungebluth, et al., Both epithelial cells and mesenchymal stem cell-derived chondrocytes contribute to the survival of tissue-engineered airway transplants in pigs [J]. J Thorac Cardiovasc Surg,2010.139(2):437-43.
    [39]Yu, P., G.L. Clayman, et al., Human tracheal reconstruction with a composite radial forearm free flap and prosthesis [J]. Ann Thorac Surg,2006.81(2):714-6.
    [40]Okumus, A., O. Cizmeci, et al., Circumferential trachea reconstruction with a prefabricated axial bio-synthetic flap:experimental study [J]. Int J Pediatr Otorhinolaryngol,2005.69(3):335-44.
    [41]Matloub, H.S. and P. Yu, Engineering a composite neotrachea in a rat model [J]. Plast Reconstr Surg,2006.117(1):123-8.
    [42]Noguchi, Y, Y. Uchida, et al., The induction of cell differentiation and polarity of tracheal epithelium cultured on the amniotic membrane [J]. Biochem Biophys Res Commun,1995.210(2):302-9.
    [43]Ziegelaar, B.W., J. Aigner, et al., The characterisation of human respiratory epithelial cells cultured on resorbable scaffolds:first steps towards a tissue engineered tracheal replacement [J]. Biomaterials,2002.23(6):1425-38.
    [44]Kobayashi, K., Y Nomoto, et al., Effect of fibroblasts on tracheal epithelial regeneration in vitro [J]. Tissue Eng,2006.12(9):2619-28.
    [45]Pfenninger, C., I. Leinhase, et al., Tracheal remodeling:comparison of different composite cultures consisting of human respiratory epithelial cells and human chondrocytes [J]. In Vitro Cell Dev Biol Anim,2007.43(1):28-36.
    [46]Hosokawa, T., T. Betsuyaku, et al., Differentiation of tracheal basal cells to ciliated cells and tissue reconstruction on the synthesized basement membrane substratum in vitro [J]. Connect Tissue Res,2007.48(1):9-18.
    [47]Goto, Y, Y Noguchi, et al., In vitro reconstitution of the tracheal epithelium [J]. Am J Respir Cell Mol Biol,1999.20(2):312-8.
    [48]Le Visage, C., B. Dunham, et al., Coculture of mesenchymal stem cells and respiratory epithelial cells to engineer a human composite respiratory mucosa [J]. Tissue Eng,2004.10(9-10):1426-35.
    [49]Kobayashi, K., T. Suzuki, et al., Potential of heterotopic fibroblasts as autologous transplanted cells for tracheal epithelial regeneration [J]. Tissue Eng,2007.13(9): 2175-84.
    [50]Nomoto, Y, K. Kobayashi, et al., Effect of fibroblasts on epithelial regeneration on the surface of a bioengineered trachea [J]. Ann Otol Rhinol Laryngol,2008. 117(1):59-64.
    [51]Zani, B.G., K. Kojima, et al., Tissue-engineered endothelial and epithelial implants differentially and synergistically regulate airway repair [J]. Proc Natl Acad Sci U S A,2008.105(19):7046-51.
    [52]Suzuki, T., K. Kobayashi, et al., Regeneration of the trachea using a bioengineered scaffold with adipose-derived stem cells [J]. Ann Otol Rhinol Laryngol,2008.117(6):453-63.
    [53]Rainer, C., G. Wechselberger, et al., Transplantation of tracheal epithelial cells onto a prefabricated capsule pouch with fibrin glue as a delivery vehicle [J]. J Thorac Cardiovasc Surg,2001.121(6):1187-93.
    [54]Kanzaki, M., M. Yamato, et al., Tissue engineered epithelial cell sheets for the creation of a bioartificial trachea [J]. Tissue Eng,2006.12(5):1275-83.
    [55]Doolin, E.J., L.F. Strande, et al., Engineering a composite neotrachea with surgical adhesives [J]. J Pediatr Surg,2002.37(7):1034-7.
    [56]Kojima, K., L.J. Bonassar, et al., A composite tissue-engineered trachea using sheep nasal chondrocyte and epithelial cells [J]. Faseb J,2003.17(8):823-8.
    [57]Portner, R., S. Nagel-Heyer, et al., Bioreactor design for tissue engineering [J]. J Biosci Bioeng,2005.100(3):235-45.
    [58]Lin, C.H., S.H. Hsu, et al., A scaffold-bioreactor system for a tissue-engineered trachea [J]. Biomaterials,2009.30(25):4117-26.
    [59]Tan, Q., R. Steiner, et al., Accelerated angiogenesis by continuous medium flow with vascular endothelial growth factor inside tissue-engineered trachea [J]. Eur J Cardiothorac Surg,2007.31(5):806-11.
    [60]Asnaghi, M.A., P. Jungebluth, et al., A double-chamber rotating bioreactor for the development of tissue-engineered hollow organs:from concept to clinical trial [J]. Biomaterials,2009.30(29):5260-9.
    [61]Raghunath, J., J. Rollo, et al., Biomaterials and scaffold design:key to tissue-engineering cartilage [J]. Biotechnol Appl Biochem,2007.46(Pt 2):73-84.
    [62]Grimmer, J.F., C.B. Gunnlaugsson, et al., Tracheal reconstruction using tissue-engineered cartilage [J]. Arch Otolaryngol Head Neck Surg,2004.130(10): 1191-6.
    [63]Lee, C.J., K.D. Moon, et al., Tissue engineered tracheal prosthesis with acceleratedly cultured homologous chondrocytes as an alternative of tracheal reconstruction [J]. J Cardiovasc Surg (Torino),2002.43(2):275-9.
    [64]Saim, A.B., Y. Cao, et al., Engineering autogenous cartilage in the shape of a helix using an injectable hydrogel scaffold [J]. Laryngoscope,2000.110(10 Pt 1): 1694-7.
    [65]Ruszymah, B.H., K. Chua, et al., Formation of in vivo tissue engineered human hyaline cartilage in the shape of a trachea with internal support [J]. Int J Pediatr Otorhinolaryngol,2005.69(11):1489-95.
    [66]Weidenbecher, M., J.H. Henderson, et al., Hyaluronan-based scaffolds to tissue-engineer cartilage implants for laryngotracheal reconstruction [J]. Laryngoscope,2007.117(10):1745-9.
    [67]Brizzola, S., M. de Eguileor, et al., Morphologic features of biocompatibility and neoangiogenesis onto a biodegradable tracheal prosthesis in an animal model [J]. Interact Cardiovasc Thorac Surg,2009.8(6):610-4.
    [68]Tan, Q., A.M. El-Badry, et al., The effect of perfluorocarbon-based artificial oxygen carriers on tissue-engineered trachea [J]. Tissue Eng Part A,2009.15(9): 2471-80.
    [69]Lin, C.H., J.M. Su, et al., Evaluation of type Ⅱ collagen scaffolds reinforced by poly(epsilon-caprolactone) as tissue-engineered trachea [J]. Tissue Eng Part C Methods,2008.14(1):69-77.
    [70]Yamamoto, Y., T. Okamoto, et al., Experimental study of bone morphogenetic proteins-2 slow release from an artificial trachea made of biodegradable materials: evaluation of stenting time [J]. Asaio J,2003.49(5):533-6.
    [71]Luo, X., G. Zhou, et al., In vitro precultivation alleviates post-implantation inflammation and enhances development of tissue-engineered tubular cartilage [J]. Biomed Mater,2009.4(2):25006.
    [72]Badylak, S.F., D.O. Freytes, et al., Extracellular matrix as a biological scaffold material:Structure and function [J]. Acta Biomater,2009.5(1):1-13.
    [73]Rosso, F., A. Giordano, et al., From cell-ECM interactions to tissue engineering [J]. J Cell Physiol,2004.199(2):174-80.
    [74]Badylak, S.F., The extracellular matrix as a biologic scaffold material [J]. Biomaterials,2007.28(25):3587-93.
    [75]Hodde, J.P., D.M. Ernst, et al., An investigation of the long-term bioactivity of endogenous growth factor in OASIS Wound Matrix [J]. J Wound Care,2005. 14(1):23-5.
    [76]Voytik-Harbin, S.L., A.O. Brightman, et al., Identification of extractable growth factors from small intestinal submucosa [J]. J Cell Biochem,1997.67(4):478-91.
    [77]Hodde, J.P., R.D. Record, et al., Vascular endothelial growth factor in porcine-derived extracellular matrix [J]. Endothelium,2001.8(1):11-24.
    [78]McDevitt, C.A., G.M. Wildey, et al., Transforming growth factor-betal in a sterilized tissue derived from the pig small intestine submucosa [J]. J Biomed Mater Res A,2003.67(2):637-40.
    [79]Badylak, S.F., K. Park, et al., Marrow-derived cells populate scaffolds composed of xenogeneic extracellular matrix [J]. Exp Hematol,2001.29(11):1310-8.
    [80]Zantop, T., T.W. Gilbert, et al., Extracellular matrix scaffolds are repopulated by bone marrow-derived cells in a mouse model of achilles tendon reconstruction [J]. J Orthop Res,2006.24(6):1299-309.
    [81]Beattie, A.J., T.W. Gilbert, et al., Chemoattraction of progenitor cells by remodeling extracellular matrix scaffolds [J]. Tissue Eng Part A,2009.15(5): 1119-25.
    [82]Li, F., W. Li, et al., Low-molecular-weight peptides derived from extracellular matrix as chemoattractants for primary endothelial cells [J]. Endothelium,2004. 11(3-4):199-206.
    [83]Meezan, E., J.T. Hjelle, et al., A simple, versatile, nondisruptive method for the isolation of morphologically and chemicaly pure basement membranes from several tissues [J]. Life Sci,1975.17(11):1721-32.
    [84]Walles, T., B. Giere, et al., Experimental generation of a tissue-engineered functional and vascularized trachea [J]. J Thorac Cardiovasc Surg,2004.128(6): 900-6.
    [85]Macchiarini, P., T. Walles, et al., First human transplantation of a bioengineered airway tissue [J]. J Thorac Cardiovasc Surg,2004.128(4):638-41.
    [86]Ikonen, T.S., T.R. Brazelton, et al., Epithelial re-growth is associated with inhibition of obliterative airway disease in orthotopic tracheal allografts in non-immunosuppressed rats [J]. Transplantation,2000.70(6):857-63.
    [87]Tarnowski, B, F.G Spinale, et al., DAPI as a useful stain for nuclear quantitation [J]. Biotech Histochem,1991.66(6):297-302.
    [88]Dominici, M., K. Le Blanc, et al., Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement [J]. Cytotherapy,2006.8(4):31-5-7.
    [89]Chang, L.Y., R. Wu, et al., Morphological changes in rat tracheal cells during the adaptive and early growth phase in primary cell culture [J]. J Cell Sci,1985.74: 283-301.
    [90]Schlage, W.K., H. Bulles, et al., Cytokeratin expression patterns in the rat respiratory tract as markers of epithelial differentiation in inhalation toxicology. I. Determination of normal cytokeratin expression patterns in nose, larynx, trachea, and lung [J]. Toxicol Pathol,1998.26(3):324-43.
    [91]Howat, W.J., J.A. Holmes, et al., Basement membrane pores in human bronchial epithelium:a conduit for infiltrating cells? [J]. Am J Pathol,2001.158(2): 673-80.
    [92]Harting, M., F. Jimenez, et al., Immunophenotype characterization of rat mesenchymal stromal cells [J]. Cytotherapy,2008.10(3):243-53.
    [93]Javazon, E.H., D.C. Colter, et al., Rat marrow stromal cells are more sensitive to plating density and expand more rapidly from single-cell-derived colonies than human marrow stromal cells [J]. Stem Cells,2001.19(3):219-25.
    [94]Jungebluth, P., T. Go, et al., Structural and morphologic evaluation of a novel detergent-enzymatic tissue-engineered tracheal tubular matrix [J]. J Thorac Cardiovasc Surg,2009.138(3):586-93; discussion 592-3.
    [95]Remlinger, N.T., C.A. Czajka, et al., Hydrated xenogeneic decellularized tracheal matrix as a scaffold for tracheal reconstruction [J]. Biomaterials,2010.31(13): 3520-3526.
    [96]Bader, A., T. Schilling, et al., Tissue engineering of heart valves--human endothelial cell seeding of detergent acellularized porcine valves [J]. Eur J Cardiothorac Surg,1998.14(3):279-84.
    [97]Conklin, B.S., E.R. Richter, et al., Development and evaluation of a novel decellularized vascular xenograft [J]. Med Eng Phys,2002.24(3):173-83.
    [98]Chen, R.N., H.O. Ho, et al., Process development of an acellular dermal matrix (ADM) for biomedical applications[J].Biomaterials,2004.25(13):2679-86.
    [99]Badylak, S.F., G.C. Lantz, et al., Small intestinal submucosa as a large diameter vascular graft in the dog [J]. J Surg Res,1989.47(1):74-80.
    [100]Elder, B, S.V. Eleswarapu, et al., Extraction techniques for the decellularization of tissue engineered articular cartilage constructs [J]. Biomaterials,2009.30(22): 3749-56.
    [101]Stapleton, T.W., J. Ingram, et al., Development and characterization of an acellular porcine medial meniscus for use in tissue engineering [J]. Tissue Eng Part A,2008.14(4):505-18.
    [102]Gilbert, T.W., T.L. Sellaro, et al., Decellularization of tissues and organs [J]. Biomaterials,2006.27(19):3675-83.
    [103]Seddon, A.M., P. Curnow, et al., Membrane proteins, lipids and detergents:not just a soap opera [J]. Biochim Biophys Acta,2004.1666(1-2):105-17.
    [104]Gilbert, T.W., J.M. Freund, et al., Quantification of DNA in biologic scaffold materials [J]. J Surg Res,2009.152(1):135-9.
    [105]Holt, P.G. and M.A. Schon-Hegrad, Localization of T cells, macrophages and dendritic cells in rat respiratory tract tissue:implications for immune function studies [J]. Immunology,1987.62(3):349-56.
    [106]Holt, P.G., M.A. Schon-Hegrad, et al., MHC class Ⅱ antigen-bearing dendritic cells in pulmonary tissues of the rat. Regulation of antigen presentation activity by endogenous macrophage populations [J]. J Exp Med,1988.167(2):262-74.
    [107]Nelson, D.J., C. McMenamin, et al., Development of the airway intraepithelial dendritic cell network in the rat from class Ⅱ major histocompatibility (Ia)-negative precursors:differential regulation of la expression at different levels of the respiratory tract [J]. J Exp Med,1994.179(1):203-12.
    [108]Tojo, T., S. Kitamura, et al., Epithelial regeneration and preservation of tracheal cartilage after tracheal replacement with cryopreserved allograft in the rat [J]. J Thorac Cardiovasc Surg,1998.116(4):624-7.
    [109]Schulz, R.M. and A. Bader, Cartilage tissue engineering and bioreactor systems for the cultivation and stimulation of chondrocytes [J]. Eur Biophys J,2007. 36(4-5):539-68.
    [110]Lovekamp, J.J., D.T. Simionescu, et al., Stability and function of glycosaminoglycans in porcine bioprosthetic heart valves [J]. Biomaterials,2006. 27(8):1507-18.
    [111]Roberts, C.R., J.K. Rains, et al., Ultrastructure and tensile properties of human tracheal cartilage [J]. J Biomech,1998.31(1):81-6.
    [112]Rains, J.K., J.L. Bert, et al., Mechanical properties of human tracheal cartilage [J]. J Appl Physiol,1992.72(1):219-25.
    [113]Behrend, M., E. Kluge, et al., The mechanical influence of tissue engineering techniques on tracheal strength:an experimental study on sheep trachea [J]. J Invest Surg,2002.15(4):227-36.
    [114]Liao, J., E.M. Joyce, et al., Effects of decellularization on the mechanical and structural properties of the porcine aortic valve leaflet [J]. Biomaterials,2008. 29(8):1065-74.
    [115]Hodde, J., R. Record, et al., Fibronectin peptides mediate HMEC adhesion to porcine-derived extracellular matrix [J]. Biomaterials,2002.23(8):1841-8.
    [116]Reichenspurner, H., V. Soni, et al., Obliterative airway disease after heterotopic tracheal xenotransplantation:pathogenesis and prevention using new immunosuppressive agents [J]. Transplantation,1997.64(3):373-83.
    [117]Arai, S. and E.C. Orton, Immunoblot detection of soluble protein antigens from sodium dodecyl sulfate-and sodium deoxycholate-treated candidate bioscaffold tissues [J]. J Heart Valve Dis,2009.18(4):439-43.
    [118]Walles, T., C. Puschmann, et al., Acellular scaffold implantation--no alternative to tissue engineering [J]. Int J Artif Organs,2003.26(3):225-34.
    [119]Hele, D.J., M.H. Yacoub, et al., The heterotopic tracheal allograft as an animal model of obliterative bronchiolitis [J]. Respir Res,2001.2(3):169-83.
    [120]McDyer, J.F., Human and murine obliterative bronchiolitis in transplant [J]. Proc Am Thorac Soc,2007.4(1):37-43.
    [121]Boehler, A., D. Chamberlain, et al., Lymphocytic airway infiltration as a precursor to fibrous obliteration in a rat model of bronchiolitis obliterans [J]. Transplantation,1997.64(2):311-7.
    [122]Richards, D.M., S.L. Dalheimer, et al., Trachea allograft class I molecules directly activate and retain CD8+T cells that cause obliterative airways disease [J]. J Immunol,2003.171(12):6919-28.
    [123]Adams, B.F., T. Brazelton, et al., The role of respiratory epithelium in a rat model of obliterative airway disease [J]. Transplantation,2000.69(4):661-4.
    [124]Stoelben, E., H. Harpering, et al., Heterotopic transplantation of cryopreserved tracheae in a rat model [J]. Eur J Cardiothorac Surg,2003.23(1):15-20.
    [125]Liu, Y., T. Nakamura, et al., New type of tracheal bioartificial organ treated with detergent:maintaining cartilage viability is necessary for successful immunosuppressant free allotransplantation [J]. Asaio J,2002.48(1):21-5.
    [126]Pittenger, M.F., Mesenchymal stem cells from adult bone marrow [J]. Methods Mol Biol,2008.449:27-44.
    [127]Meirelles Lda, S. and N.B. Nardi, Murine marrow-derived mesenchymal stem cell:isolation, in vitro expansion, and characterization [J]. Br J Haematol,2003. 123(4):702-11.
    [128]Soleimani, M. and S. Nadri, A protocol for isolation and culture of mesenchymal stem cells from mouse bone marrow [J]. Nat Protoc,2009.4(1):102-6.
    [129]You, Y, E.J. Richer, et al., Growth and differentiation of mouse tracheal epithelial cells:selection of a proliferative population [J]. Am J Physiol Lung Cell Mol Physiol,2002.283(6):L1315-21.
    [130]Johnson, N.F. and A.F. Hubbs, Epithelial progenitor cells in the rat trachea [J]. Am J Respir Cell Mol Biol,1990.3(6):579-85.
    [131]Kaartinen, L., P. Nettesheim, et al., Rat tracheal epithelial cell differentiation in vitro [J]. In Vitro Cell Dev Biol Anim,1993.29A(6):481-92.
    [132]Caniggia, I., I. Tseu, et al., Inhibition of fibroblast growth by epithelial cells in fetal rat lung [J]. Am J Respir Cell Mol Biol,1995.13(1):91-8.
    [133]Shi,H.C., W.J. Deng, et al., Biomechanical properties of adult-excised porcine trachea for tracheal xenotransplantation [J]. Xenotransplantation,2009.16(3): 181-6.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700