用户名: 密码: 验证码:
锅炉烟气湿法脱硫理论与工业技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着经济的快速发展,二氧化硫的排放总量呈现快速增长趋势,消减和控制工业锅炉烟气二氧化硫的排放已成为我国可持续发展的严峻挑战。WX型脱硫装置是天津大学开发的适用于中小型锅炉的高效脱硫除尘一体化装置,本文对其核心元件文丘里洗涤器的脱硫性能进行了试验研究与理论分析,在此基础上设计了适用于中大型锅炉的WX/U型脱硫装置,并通过模拟试验和示范工程考察了该装置的脱硫效果。另外本文还在WX/U型脱硫试验平台上就添加剂对石灰脱硫的强化作用进行了试验研究。
     首先,就不同参数对文丘里脱硫效率和压力损失的影响进行了试验研究,得到了二氧化硫初始浓度为2000 mg·m-3时,文丘里洗涤器优化操作条件为:氢氧化钠溶液浓度为0.075 mol·l-1,液气比为1.0 l·m-3,喉口气速为40 m·s-1。
     其次,采用有限反应速率的二阶不可逆反应描述氢氧化钠与二氧化硫的反应过程,在考虑轴向涡流扩散与烟气与液滴相对速度的基础上,得到了描述文丘里内气-液传质的宏观模型。脱硫效率的预测值与实验值吻合良好,三种尺寸的文丘里洗涤器相对误差的算术平均值均小于5%,最大相对误差为-8.07%。
     再次,根据文丘里洗涤器与旋流分离器的结构特点,设计了结构合理、经济性好的WX/U型脱硫装置。模拟试验表明,优化操作条件下WX/U脱硫效率比单一文丘里洗涤器增加9.6%。20 t·h-1锅炉的WX/U型脱硫装置的运行效果表明,烟气出口的二氧化硫与烟尘浓度均达到了国家标准。在此基础上,还完成了WX/4U脱硫装置应用于2×130 t·h-1锅炉烟气脱硫的工程设计与推广工作。
     最后,在WX/U模拟试验平台上对脱硫剂进行筛选,研究添加剂对石灰脱硫的强化作用,结果表明增强作用的次序为:硫酸钠>造纸黑液>甲酸>柠檬酸>己二酸>氧化镁>硫酸镁。其中硫酸钠的增强作用最显著,成本也较低,是一个非常有发展前景的添加剂。同时还对硫酸钠强化石灰脱硫时操作条件对脱硫效率的影响进行了研究,并得到了优化的操作条件,氧化钙吸收液浓度为0.8%,液气比为1.0 l·m-3,喉口气速为40 m·s-1,硫酸钠的适宜浓度为0.004~0.006 mol·l-1。
With the rapid development of economy in China, the total emission of sulfur dioxide is increasing rapidly in recent years. To control and reduce the emission of sulfur dioxide, therefore, has been became a severe issue for the sustainable development of economy and society in China. WX desulfurization equipments developed independently by Tianjin University is an efficient integrated wet desulfurization and dust removal device suits small-scale and medium-sized boiler. In this paper, experimental and theoretical investigations are conducted on the desulfurization performance of venture scrubber, a key component of WX desulfurization equipments. On this basis, WX/U desulfurization system for large-scale boiler is designed and its performance is verified by experimental and industrial test. In addition, the effect of various additives on the removal efficiency of WX/U desulfurization equipments using lime as absorbent is investigated.
     Firstly, the effect of operational parameters on the removal efficiency and pressure loss of venturi scrubber is investigated experimentally. And the optimum operational parameters under the condition that the concentration of sulfur dioxide is 2000 mg·m-3 are obtained as follows. Concentration of sodium hydroxide solution is 0.075 mol·l-1, liquid-to-gas ratio is 1.0 l·m-3 and gas velocity in throat is 40 m·s-1.
     Secondly, a one-dimensional mathematical model is proposed to predict the removal efficiency with second-order chemical reaction in venturi scrubber. In order to describe accurately the mass transfer mechanism occurring in venturi scrubber, the relative velocity of gas and droplets and axial eddy diffusivity are considered. Comparison results between experimental data and those of predicted by present model show that the present model has a good agreement with experiments. Average values of relative error are all less than 5% and the maximum relative error is–8.07%.
     Thirdly, according to the unique structures of venturi scrubber and cyclone-separator, the WX/U desulfurizaton equipments are developed. And the experimental results show that the removal efficiency of WX/U, under the optimum operational parameters, is higher than that of venturi scrubber by 9.6%. Furthermore, the engineering test of 20 t·h-1 industrial boiler shows that the WX/U desulfuration equipments could meet the requirement of emission standard of air pollutants forthermal power plants in china. On the basis of experimental and engineering test, the promotion and application of WX/4U desulfurization equipments on 2×130 t·h-1 boiler is accomplished.
     Lastly, the selection of appropriate absorbent is conducted in the experimental set-up of WX/U desulfurization equipments. In addition, to reduce operational cost, the enhancement of various additives on the removal efficiency of WX/4U desulfurization equipments using lime as absorbent is investigated experimentally. The results show that the sequence of enhancement is sodium sulfate>black liquor>formic acid>critic acid>adipic acid>magnesium>magnesium sulfate. Among these additives, sodium sulfate is the most promoting additive for WX/4U desulfurization equipments for its highest enhancement on removal efficiency and the low operation cost. In addition, the optimum operational parameters under the condition that sodium sulfate as additive are obtained as follows. The mass concentration of lime is 0.8%, liquid-to-gas ratio is 1.0 l·m-3, gas velocity in throat is 40 m·s-1 and the effective concentration of sodium sulfate is from 0.004 mol·l-1 to 0.006 mol·l-1.
引文
[1] Wang W X, and Wang T. Short communication on acid rain formation in China.Atmospheric Environment, 1996, 30(23): 4091~4093
    [2] 曾庭华,杨华,马斌等.湿法烟气脱硫系统的安全性及优化.北京:中国电力出版社,2003
    [3] 郝吉明,王书肖,陆永琪.燃煤二氧化硫污染控制手册.北京:化学工业出版社,2001
    [4] 国家环保局.2003 年中国城市环境状况公报.2004
    [5] 袁凤宇,张志宇,袁文献.火电厂脱硫用石灰粉制备工艺和设备选择.中国环境科学学会,第九届全国燃煤二氧化硫、氮氧化物污染治理技术与脱硫脱氮技术应用工程实例交流会,安徽:2005,11~15
    [6] 孔华,施正伦,高翔等.喷淋式湿法脱硫装置的试验研究.动力工程,2001,21(5):1459~1463
    [7] Izumi T, Yusuke T, Koichi A.Absorption of carbon dioxide with a freely falling aqueous sodium hydroxide solution drop.Chemical Engineering communication, 1997,159:119~135
    [8] 晏乃强,施耀,吴忠标等.双碱法旋流板烟气脱硫工艺.环境科学,1998,19(5):72~74
    [9] Ukawa N, Takashina T, Okino S, et al.Development of double-contact-flow scrubber for flue gas desulfurization.Mitsbishi Heavy Industries Ltd Tech Review, 1996,33(2):61~65
    [10]何苏浩,项光明,姚强等.石灰石/石灰-石膏湿法脱硫反应塔模型比较.煤炭转化,2001,24(3):41~44
    [11]黄斌,姚强,项光明等.新型液柱喷射脱硫工艺的性能试验及技术分析.热力发电,2004,33(1):68~71
    [12]淳于菱.几种先进烟气脱硫技术综合性能评价及在我国应用前景分析.电力环境保护,2000,(1):18~22
    [13]Shah I S.Removing SO2 and acid mist with ventrui scrubbers.Chemical Engineering Progress.1971,67(5):51~56
    [14]Jason M.Wet venturi doubles as an SO2 scrubber.Power,1981,125(12):71~72
    [15]许灵群,吴顺志,陆文忠等.文丘里旋流湿式脱硫除尘器的开发及应用.煤矿环境保护,1998,12(3):20~22
    [16]米铁,刘德昌,余新明等.文氏栅洗涤器除尘脱硫试验研究.化学工程,2002,30(1):33~37
    [17]宗润宽,李振方,胡金榜等.WX 型撬块式除尘脱硫双功能装置工程实践探讨.二氧化硫污染治理技术汇编.中国环境科学学会,2001(10)成都:106~108
    [18]Volgin B P, Efimova T F, and Gofman M S.Absorption of sulfur dioxide by ammonium sulfit-bisulfite solution in a venturi scrubber . International Chemical Engineering, 1968,8(2):113~115
    [19]Elenkov D, Boyadzhiev Khr.Hydrodynamics and mass transfer in a nozzleless venuri absorber. Absorption of sulfur dioxide in water and aqueous solutions of surfactants.International Chemical Engineering, 1967,7(2): 191~193
    [20]Gleason R J.Venturi-type contactor for removal of SO2 by the limestone wet-scrubbing system process.Cottrell Environmetal Systems Inc EPA Project No CES-116, 1971: 36
    [21]Koehler G R, Dober E J.New england SO2 control project final results. EPA FGD Symposium, Atlanta, 1974: 64
    [22]Chowdhury R, Chakravarty M.Prediction of venturi scrubber efficiency used in an updraft gasifier cleaning train.International Journal of Energy Research, 1992,16 (5): 731~741
    [23]Xavier Gamisans, Montserrrat Sarra, Javier Lafuente F.Gas pollutants removal in a single and two stages ejector venturi scrubber.Journal of Hazardous Materials, 2002,20(3): 251~266
    [24]Johnstone H F, Roberts M H.Deposition of aerosol particle from moving gas streams.Industry and Engineering Chemistry, 1949,41(11): 2417~2426
    [25]Johnstone H F, Feild R B.Gas absorption and aerosol collection in a venturi atomizer.Industry and Engineering Chemistry, 1954,46(8):1601~1610
    [26]Kuznetsov M D, Oratovskii V I.Rate of chemisorption in a venturi-type apparatus.Internal Chemical Engomeering, 1962, 2(2): 185~188
    [27]Kh.Boyadzhiev. On the Optimal Flow Rate of Liquids During Chemisorption in a Venturi Tube. International Chemical Engineering. 1964, 4(1): 22~26
    [28]Uchida S, Wen C Y.Gas absorption by alkaline solutions in a venturiscrubber. Ind Eng Chem Process Des Develop,1973, 12(4): 437~443
    [29]David O Cooney, Daniel P Olsen.Absorption of SO2 and H2S in small-scale venturi scrubbers.Chem Eng Comm, 1987,51(2): 291~306
    [30]David O Cooney.Modeling venturi scrubber performance for H2S removal from oel-shale retort gases.Chem Eng Commun, 1985,35: 315~338
    [31]Ravindram M, Pyla N.Modeling of a venturi scrubber for the control of gaseous pollutants.Ind Eng Chem Process Des, 1986, 25(12): 35~40
    [32]Crank J.The mathematics of diffusion.2nd ed Oxford: Clarendon Press, 1977, 23:538
    [33]John H Hills. Behavior of venturi scrubbers as chemical reactors.Ind Eng Chem Res, 1995, 34(3): 4254~4259
    [34]Gamisans X, Sarra M, Lafuente F J.The role of the liquid film on the mass transfer in Venturi-based scrubbers.Chemical Engineering Research and Design, 2004, 82(3):372~380
    [35]Azzopardi B J.Gas-liquid flows in cylindrical venturi scrubbers: boundary layer separation in the diffuser section.Chemical Engineering Journal and the Biochemical Engineering Journal, 1992,49(1):55~64
    [36]Iclal Atay, Gordon Lewandowski, Richard Trattner.Fluid flow and gas absorption in an ejector venturi scrubber.Environmental Progress, 1987, 6(3): 198~203
    [37]Fathikalajahi J, Talaie M R, Taheri M.Theoretical study of liquid droplets dispersion in a venturi scrubber.Journal of Air and Waste Management Association, 1995,45(3): 181~185
    [38]Talaie M R, and Fathikalajahi J.Mathematical modeling of SO2 absorption in a venturi scrubber.Journal of Air and Waste Management Association, 1997,47(11): 1211~1215
    [39]解建光.文丘里洗涤器脱硫的理论与实验研究:[硕士学位论文],天津:天津大学,1999
    [40]陈志强.文丘里洗涤器内石灰石法烟气脱硫技术及其添加剂的理论与实验研究:[硕士学位论文],天津:天津大学,2000
    [41]David P, Jayne J T, Duan S X, et al.Uptake of gas molecules by liquid.Journal of Physical Chemistry, 1991, 95(16): 6337~6340
    [42]Ruhland F, Kind R, Weiss S.Kinetics of the absorption of sulfur dioxide in calcium hydroxide suspensions.Chemical Engineering Science, 1991,46(4): 939~944
    [43]Amedeo Lancia, Dino Musmarra, Francesco Pepe . Modeling of SO2 absorption into limestone suspensions.Ind Eng Chem Res, 1997,36(2): 197~203
    [44]Uchida S, Ariga O.Absorption of sulfur dioxide into limestone slurry in a stirred tank.The Canadian Journal of Chemical Engineering, 1985,63(4): 778~783
    [45]Olausson S, Wallin M, Falten I.A model for the absorption of sulfur dioxide into limestone slurry.The Chemical Engineering Journal, 1993,51(1):99-108
    [46]Kill S, Johnsson J E, Dam-Johansen.Modeling of limestone dissolution in wet FGD systems: The importance of an accurate particle size distribution.Power Plant Chemistry, 1999,1(5):26~30
    [47]Frandsen J B W, Kill S, Johnsson J E.Optimization of a wet FGD pilot plant using fine limestone and organic acids.Chemical Engineering Science, 2001,(56):3275~3287
    [48]Rochelle G T, King C J.The effect of additives on mass transfer in CaCO3 or CaO slurry scrubbing of SO2 from waste gases.Ind Eng Chem Fundam, 1977,16(1): 67~75
    [49]Daniel X Josephs.Magnesium enrichment improves flue gas scrubbing.Power Engineering, 1980,84(9): 71~72
    [50]Cronkright W A, Leddy W J.Improving mass transfer characteristics of limestone slurries by use of magnesium sulfate.Environmental Science and Technology, 1976, 10(6): 569~572
    [51]Philip C Tseng, and Gary T Rochelle.Dissolution rate of calcium sulfite hemihydrate in flue gas desulfurization process.Environmental Progress, 1986,5(1): 34~40
    [52]Chang J S, Theodore G B.Pilot testing of sodium thiosulfate.Environmental Progress, 1986,5(4): 225~233
    [53]Nahiko U, Toru T, Michio O, et al.Effects of salts on limestone dissolution rate in wet limestone flue gas desulfurization.Environmental Progress, 1993,12(4): 294~299
    [54]李玉平,谭天恩,景国红.无机盐对SO2-H2O-CaCO3气液固三相反应系统pH值的影响.环境污染与防治,1997,19(5):1~5
    [55]孙文寿.添加剂强化石灰石/石灰湿式烟气脱硫研究:[博士学位论文],浙江:浙江大学,2001
    [56]孙文寿, 谭天恩.以石灰石和石灰为脱硫剂的镁强化 FGD 过程对比研究.上海环境科学,2003,22(12):1001~1003
    [57]崔丽琴,吴顺志,范祥子等.氧化镁添加剂对旋流板塔石灰湿法脱硫效果的影响分析.煤矿环境保护,1996,10(5):21~23
    [58]董芃,曹宏伟,别如山等.无机添加剂对湿法脱硫效果影响的实验研究.哈尔滨工业大学学报,2004,36(5):620~623
    [59]奚胜兰.石灰石湿法烟气脱硫添加剂的试验研究.能源环境保护,2003,17(1):31~35
    [60]孙文寿, 吴忠标,李悦等.旋流板塔钠强化石灰石湿式烟气脱硫研究.环境科学,2002,23(5):105~108
    [61]Karlsson H T, Bjerle I L, Marita, et al.Activated wet-dry scrubbing of SO2.Journal of the Air Pollution Control Association, 1983,33(1):23~28
    [62]Kill S, Nygaard H, Johnsson J E.Simulation studies of the influence of HCl absorption on the performance of a wet flue gas desulphurisation pilot plant. Chemical Engineering Science, 2002, 57(3): 347~354
    [63]Peterson J R, Rochelle G T.Aqueous reaction of fly ash and Ca(OH)2 to produce calcium silicate absorbent for flue gas desulfurization.Environmental Science and Technology, 1988,22(11):1299~1304
    [64]Rochelle G T, King C J.The effect of additives on mass transfer in CaCO3 or CaO slurry scrubbing of SO2 from waste gases.Ind Eng Chem Fundam, 1977,16(1): 67~75
    [65]Chang C S, Rochelle G T.Effect of organic acid additive on SO2 absorption into CaO/CaCO3 slurries.AIChE Journal, 1982,28(2):261~266
    [66]Mobley J D, Cassidy M A.Organic acids can enhance wet limestone flue gas scrubbing.Power Engineering, 1986,90(5):32~35
    [67]Colley J D, Hargrove O W, Mobley J D.Results of Industrial and utility boiler full-scale demonstration of adipic acid addition to limestone scrubbers proceedings: Symposium on flue gas desulfurization . EPA Industrial Environmental Research Lab, 1983(Hollywood):400~424
    [68]Lasio Dennis, Bakke Even.Limestone /adipic acid FGD and stack opacity reduction pilot plant tests at big rivers electric corporation.Proceedings - 77th APCA Annual Meeting, APCA, Pittsburgh, PA, USA, 1984(San Francisco): 34~35
    [69]Lee Catalano.FGD improves with adipic acid.Power, 1982, 126(7):84~85
    [70]Chang J C S, Mobley J D.Testing and commercialization of byproduct dibasic acids as buffer additives for limestone flue gas desulfurization systems. Journal of Air Pollution Control Association, 1983,33(10):955~962
    [71]Chi C T, Lester J H.Utilization of adipic acid byproducts for energy recovery and enhancement of flue gas desulfurization . Environmental progress, 1989,8(4):223~226
    [72]Stewart D A, Andrews D A, Hazen P K, et al.Full scale demonstration of FGD reagents at the Gibbons Creek Steam electric station.Proceedings of the 1996 Air & Waste Management Association's 89th Annual Meeting & Exhibition, Air & Waste Management Assoc, 1996(Nashville):18~24
    [73]Michael A R.Innovative wet FGD design features at kentucky utilites’ ghent generating station, Unit 1. EPRI, 1995 SO2 Control Symposium, Book 2, Session 4A
    [74]曹宏伟,董芃.烟气脱硫添加剂的研究现状.节能技术, 2003,21(2):10~12
    [75]吴忠标,谭天恩.石灰/石灰石湿法脱硫中添加剂的研究.中国环境科学,1995,28(2):261~266
    [76]吴忠标,余世清,莫建松.己二酸强化石灰石浆液脱硫工艺过程研究.高校化学工程学报,2003,17(5):540~544
    [77]孙 华, 施正伦, 高 翔等.喷淋式湿法脱硫装置的试验研究.动力工程,2001,21(5):1459~1463
    [78]仲兆平,兰计香,金保升.石灰石浆液和石灰浆液三相流态化烟气脱硫比较研究.热能动力工程,2002,17(97):34~36
    [79]董芃,曹宏伟,别如山等.有机酸添加剂对湿法脱硫影响的实验研究.哈尔滨工业大学学报,2004,36(3):334~337
    [80]石发恩, 李振坦.石灰湿式烟气脱硫中复合添加剂的研究.四川有色金属, 2003,18(3):27~29
    [81]Hendry D W, Weis J G. . Scrubber upgrade achieves 95% removalefficiency.Power Engineering, 1991,95(3):25~28
    [82]Behrens G P.Evaluation of adipic acid addition to a bench-scale chiyoda thoroughbred 121 FGD system.Electric Power Research Institute, Coal Combustion Systems Division, (Report) EPRI CS, 1991
    [83]Saboni A and Alexandrova S.Sulfur dioxide absorption and desorption by water drops.Chemical Engineering Journal, 2001, 84: 577~580
    [84]Onda K, Sada E, and Kobayashi T.Gas absorption accompanied by complex chemical reactions.Chemical Engineering Science,1972, 27(2): 247~255
    [85]Hikita H S, Asai T, and Takasuka.Absorption of sulfur dioxide into aqueous sodium hydroxide and sodium sulfite solution.AICHE Journal, 1977, 23( 4): 538~544
    [86]Hollands K G T, and Goel K C.A general method for predicting pressure Loss in venturi scrubbers.Ind Chem Eng, 1975, 14(1): 16~21
    [87]Boll R H.Particle collection and pressure drop in venturi scrubbers.Ind Eng Chem Fundam, 1973,12(1):40~50
    [88]Boll R, Flais L R, and Maurer P W.Mean drop size in a full-scale venturi scrubber via transmissometer . Journal of Air and Waste Management Association, 1974,24(10): 934~938
    [89]Viswamathan S.Modeling of venturi scrubber performance.Ind Eng Chem Res, 1997,36(10): 4308~4314
    [90]Ananthanarayanan N V, and Viswamathan S.Predicting the liquid flux distribution and collection efficiency in cylindrical venturi scrubbers.Ind Eng Chem Res, 1999,38(1): 223~232
    [91]贾绍义,柴成敬.化工传质与气体分离.北京:化学工业出版社,2001,36~37
    [92]朱炳辰.化学反应工程.北京:化学工业出版社,2001,238~244
    [93]Azzopardi S C F, Teixera A H Govan,Bott T R.An improved model for pressure drop in venturi scrubbers.Trans Inst Chem Eng, Part B, 1991, 69(2):237~245
    [94]Shekar Viswanathan.Examination of liquid film characteristics in the prediction of pressure drop in a venturi scrubber.Chemical Engineering Science, 1998,53(13): 3161~3175
    [95]Howard E Hesketh . Air Pollution Control: Tradition and Hazardous Pollutants.Michgian: Ann Arbor Science Publishers,1991, 217
    [96]Yoshida T, Morshima N, Hayashi M.Pressure loss in flow through venturi tubes.Kagaku Kogaku, 1964, 27:974~977
    [97]Azzopardi B J, Govan A H.The modeling of venturi scrubbers. Filtr Sep 1984, 21(3):196~200
    [98]Leith D, Cooper D W, Rudnick S N.Venturi scrubbers: pressure loss and regain.Aeroslo Sci Technol, 1985, 18(4): 239~243
    [99]Hollands K G T, Goel K C.A genaral method for predicting pressure loss in venturi scrubbers. Ind Eng Chem Fundam, 1975, 14(1):16~22
    [100] Yung C S, Barkarika H F, and Calvert S.Pressure loss in venturi scrubber.Journal of air pollution control association, 1977,27(4): 349~351
    [101] 王书肖.文丘里洗涤器除尘脱硫操作性能研究-压力损失的实验研究:[硕士学位论文],天津:天津大学,1998
    [102] Haller H, Muschelknautz E, Schultz T.Venturi scrubber calculation and optimization.Chem Eng Technol, 1989,12(2):188~195
    [103] Viswamathan S.Annular flow pressure drop model for pease-anthony-type venturi scrubbers.AICHE Journal, 1985,31(12): 1947~1958
    [104] 金国淼.化工设备设计全书-除尘设备.北京:化学工业出版社,2002,145
    [105] 张殿印,王纯.除尘工程设计手册.北京:化学工业出版社,2003,245
    [106] 王晋刚,胡金榜,段振亚.文丘里洗涤器压力损失的设计计算.化工机械,2004,31(5):281~284
    [107] 贾力,鲁国丽,陈欣.雾化NaOH溶液吸收SO2的试验研究.热科学与技术,2004,3(3):267~270
    [108] Fathikalajahi J, and Talaie M R.The effect of droplet size distribution on liquid dispersion in a venturi scrubber. J Aerosol Sci, 1997,28(2):291~292
    [109] 中华人民共和国国家标准.火电厂污染物排放标准.GB 13223-2003
    [110] Schultes M. Absorption of sulphur dioxide with sodium hydroxide solution in packed columns.Chem Eng Technol, 1998,21(2): 201~209
    [111] 沙勇.柠檬酸钠—柠檬酸缓冲溶液在烟道气脱硫中的工艺和相平衡研究:[硕士学位论文],天津:天津大学,1998
    [112] 洪涛,李林波,王成刚等.填料塔中柠檬酸盐脱除低质量浓度SO2的特性.化学工程,2004,32(4):49~52
    [113] 胡金榜,宗润宽,苏艳霞等.文丘里式陶瓷多管除尘脱硫一体化装置.中国专利,ZL97218503.8,1998-08-22
    [114] 蔡文彬.直筒型导叶直流式三相旋流器实验研究:[硕士学位论文],天津:天津大学,1998
    [115] 卢泽.直筒导叶直流式三相旋流器气相流场实验研究与数值模拟:[硕士学位论文],天津:天津大学,2004
    [116] 姜正良.直筒导叶直流式三相旋流器流场研究与结构分析:[硕士学位论文],天津:天津大学,2005
    [117] 胡金榜,宗润宽,苏艳霞等.直流式三相旋流陶瓷多管除尘脱硫一体化装置.中国专利,ZL97218505.4,1998-09-19
    [118] 杨帆.燃煤电站锅炉脱硫装置监控系统的开发研究:[硕士学位论文],天津:天津大学,2003
    [119] 白马鹏.燃煤电站锅炉烟气脱硫装置监控系统研究与设计:[硕士学位论文],天津:天津大学,2005

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700