用户名: 密码: 验证码:
氧活性粒子注入烟气资源化脱硫脱硝研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文结合国家高技术发展计划项目(863项目)“羟基自由基氧化烟气脱硫脱硝技术”(编号2008AA062317)和中华环保基金会项目“羟基自由基氧化脱除燃煤烟气二氧化硫、氮氧化物并生成酸的绿色方法”(编号CEPF200812313),针对烟气脱硫脱硝过程中存在的二氧化硫和氮氧化物气相氧化难题,围绕大气压强电离放电规模高效制取羟基自由基以及羟基自由基氧化脱硫脱硝两大关键问题进行了研究,提出了一种大气压强电离放电制取氧活性粒子注入烟气资源化脱硫脱硝方法。
     利用大气压强电离放电物理手段,将水蒸气和氧气电离、离解生成O_3、O_2~+、H_2O~+、H_2O_2等氧活性粒子,注入烟气后经过一系列等离子体化学反应生成以羟基自由基为主体的强氧化活性物质,实现高效氧化脱除烟气中二氧化硫和氮氧化物,最终副产物为硫酸和硝酸。
     应用气体放电物理、等离子体化学、宏观动力学等理论和方法,阐明了氧活性粒子的形成及其注入烟气中转化为羟基自由基的等离子体化学反应机制,探讨了羟基自由基等活性粒子氧化脱除二氧化硫和氮氧化物的反应过程。根据氧活性粒子脱硫脱硝原理,设计并构建了实验系统,通过实验分析了影响二氧化硫和氮氧化物脱除的主要影响因素,初步建立了副产物回收途径,确立了羟基自由基等活性粒子氧化脱硫脱硝适宜的工艺条件。
     研究结果表明:大气压强电离放电制取的氧活性粒子中臭氧和正负离子浓度可达243 g/m~3、2.5×10~(16)/m~3及1.7×10~(16)/m~3。注入烟气中的臭氧和离子能高效转化为羟基自由基,实现了烟气中二氧化硫和氮氧化物的单独脱除和同时脱除。单独脱除时,脱硫率和脱硝率分别可达90%和100%;同时脱除时,脱硫率和脱硝率分别达68%和100%;硫酸和硝酸回收率分别可以达68.7%和77.1%。
     本论文利用大气压强电离放电解决了高浓度氧活性粒子的制取难题,采用羟基自由基氧化解决了二氧化硫和氮氧化物气相氧化的难题。提出的氧活性粒子注入烟气脱硫脱硝方法具有脱除率高、不涉及湿法引入、无催化剂、无吸收剂等特点,为资源化脱硫脱硝提供了一个新方法。
The work is supported by National High Technology Research and Development Program of China (No.2008AA06Z317) "SO2 and NOx Removal from Flue Gas Using Hydroxyl Radical Oxidation" and Project of China Environmental Protection Foundation (No.CEPF200812313) "A New Green Method of SO2 and NOx Removal from Flue Gas to Acid Droplets Using Hydroxyl Radicals Oxidation".
     With the aim of solving the problems of SO2 and NOx gas-phase oxidation in the process of desulfurization and denitrification from flue gas, this research is carried out around two key things. One is how to produce hydroxyl (·OH) radicals with high concentration and high efficiency, and the other is how to remove SO2 and NOx by radicals oxidation. In the end, these two problems will be solved, and a new gas-phase oxidation method for the removal of SO2 and NOx using strong ionization discharge at atmospheric pressure is found.
     Using strong electric-field ionization discharge method, water vapor and O2 are ionized, decomposed, and excited extremely into radicals, such as O3、O2-、H2O+、H2O2 and so on. The radicals can transform into·OH, once they are injected into the flue gas. The·OH radicals are generated accompanying a complicated process, which includes lots of plasma chemistry reactions. Being one of the most active radicals,·OH can oxidize SO2 and NOx into H2SO4 and HNO3 on high speed in gas-phase.
     Basing on the gas discharge physics, plasma chemistry, macrodynamics, the processes of radicals formation and·OH conversation are represented, and reaction mechanics of SO2 and NOx oxidizing by radicals are discussed with mathematics model helping. Experimental system of SO2 and NOx removal using radicals injection has been set up, and effects of operating conditions are discussed in detail, such as mole concentration ratio of oxygen radical to SO2/NOx, gas temperature, gas-flow rate, water vapor concentration, and so on. Moreover, the method of by-produce recycling has been investigated. At last, the optimally conditions of SO2 and NOx removal and recovery have been established.
     The research results show that in oxygen radicals the concentrations of ozone, positive ion and negative ion are 243 g/m3,2.5×1016/m3,1.7×1016/m3, respectively. This method not only can be applied to single desulfurization or denitrification from flue gas, with the removal rate 90% and 100%, but also the simultaneous desulfurization and denitrification, with the removal rate 68% and 100%. The recovery rates of SO2 and-NOx can reach as high as 68.7% and 77.1%, respectively.
     The research has solved two difficult problems of production of·OH with high concentration and SO2/NOx oxidation in gas-phase. Therefore, the method for SO2 and NOx removal from flue gas by radical injection without absorbent and catalyst additive, may open a new perspective on resourcify flue gas desulphurization and denitrification.
引文
[1]汪家权,吴劲兵,李如忠等.酸雨研究进展与问题探讨.水科学进展,2004,15(4):526-530.
    [2]Sanchez D G, Rios G F, Garcia M A. Acid rain and forest ecosystems. Revista Chapingo Serie Ciencias Forestales Y Del Ambiente,2010,16(2):187-206.
    [3]霍寿喜.酸雨危害人体健康.医药与保健,2004,7:44.
    [4]李芳.酸雨对建筑材料的影响及防治研究综述.污染防治技术,2010,1:18.
    [5]吴飞华,刘廷武,裴真明等.酸雨引起森林生态系统钙流失研究进展.生态学报,2010,4:30.
    [6]凌大炯,章家恩,欧阳颖.酸雨对土壤生态系统影响的进展.土壤,2007.4:5.
    [7]Xu M H, Yan R, Zheng C G, et al. Status of trace elements emission in a coal combustion process:a review. Fuel Processing Technology,2004,85(2/3):215-237.
    [8]隋建才,杜云贵,徐明厚等.我国煤燃烧研究发展现状与趋势.热能动力工程,2008,23(2):111-117.
    [9]国家环保总局,2009年中国环境状况公报.
    [10]渠时远.我国节能减排形势和面临的严峻挑战.中外能源,2010,15(12):12-16.
    [11]国家环保总局,2008年中国环境状况公报.
    [12]国家环保总局,2007年中国环境状况公报.
    [13]国家环保总局,2006年中国环境状况公报.
    [14]国家环保总局,2005年中国环境状况公报.
    [15]国家环保总局,2004年中国环境状况公报.
    [16]国家环保总局,2003年中国环境状况公报.
    [17]国家环保总局,2002年中国环境状况公报.
    [18]国家环保总局,2001年中国环境状况公报.
    [19]高晓燕,张慧娟,韩玉霞.湿法烟气脱硫技术及其应用.能源研究与利用,2008,3:43-45.
    [20]Ing C, Dahl L. Corrosion in flue gas desulfurization plants and other low temperature equipment. Materials and Corrosion,1992,43(6).
    [21]白学利,郑晓永,张瑾.湿法脱硫烟囱腐蚀现状及防腐方案的选择.热力发电,2011,40(2):84-87.
    [22]封志飞,王丽华,张媛.电厂石灰石-石膏法烟气脱硫废水处理.辽宁工程技术大学学报,2006,25:321-323.
    [23]杨勇.石灰石-石膏湿法脱硫系统中的堵塞与对策.华东电力,2006,34(11):95-97.
    [24]Bai H L, Lee S H, Lin C H, et al. Field study, design, and catalyst cost of selective catalytic reduc-tion process. Journal of environmental engineering,2001, 8:735-740.
    [25]Javed M T, Irfan N, Gibbs B M. Control of combustion-generated nitrogen oxides by selective non-catalytic reduction. Journal of Environmental Management,2007, 83(3):251-289.
    [26]刘丽梅,韩斌桥,韩正华.燃煤锅炉SNCR脱硝系统常见问题及对策.热力发电,2010,39(6):65-68.
    [27]周国民,唐建成,胡振广等.燃煤锅炉SNCR脱硝技术应用研究.电站系统工程,2010,26(1):18-21.
    [28]周涛,刘少光,唐名早等.选择性催化还原脱硝催化剂研究进展.硅酸盐学报,2009,37(2):317-324.
    [29]Salker A V, Weisweiler W. Catalytic behaviour of metal based ZSM-5 catalysts for NO., reduction with NH3 in dry and humid conditions. Appl Catal A,2000,203:221-229.
    [30]Shimizu K, Hashimoto M, Shibata J, et al. Effect of modi-fied-alumina supports on propane-hydrogen-SCR over Ag/alumina. Catal Today,2007,126:266-271.
    [31]杨全武.烧结烟气湿法脱硫与干法脱硫工艺比较与总结.梅山科技,2010,4:36-40.
    [32]曹宇飞,干法内回流循环流化床烟气脱硫与炉内喷固硫剂脱硫运行特性的比较.电站系统工程,2003,19(6):4-6.
    [33]Frank N W. Economics of the Electron Beam Process, NATO ASI Series (Penetrante and Schultheis, Eds), Springer-Verlag,1993, G34, Part B,27-32.
    [34]Kawamura k, Aoki A, Kimura H, et al. Electron Beam Dry Flue Gas Treatment Process. Environ Sci Tech,1980,14:228-310.
    [35]青木慎治.电子(?)-ム排ガス处理技术,燃料及燃烧,1990,47(3):23-26.
    [37]Tokunaga. Flue gas treatment using electron beam technology. Fuel and Combustion, 1993,10.
    [38]毛本将.电子束脱硫关键技术与工艺研究.中国工程物理研究院,四川,2004.
    [39]郝吉明,王书肖,陆永琪.燃煤二氧化硫污染控制技术手册.北京:北京化工出版社,2005.
    [40]李燕.电子束烟气脱硫脱硝技术.西山科技,2002,(6):3-4.
    [41]Okihiro T. Electron Beam Irradiation Technology for Purification of Flue Gas. Journal of the Institute of the Institute of Electrostatics Japan,1995,19(4): 296-300.
    [42]Paur H R, Jordan S. Aerosol Formation in the Electron Beam Dry Scrubbing Process. Radiat Phys Chem,1988,31(3):9-13.
    [43]陈亚非,张奇兴.电子束烟气脱硫若干问题探讨.中国电力,2000,33(7):78-80.
    [44]邰德荣,韩宾兵.成都电厂电子束烟气脱硫示范工程.中国电力,1998,31(11):42-47.
    [45]Masuda S, Hirano M, Akutsu K. Enhancement of electron beam denitrization process bymeans of electric field. Radiat. Phys. Chem.,1981,17:223-228.
    [46]Mizuno A, Clements J S, Davis R H. Combined treatment of SO2 and high resistivity fly ash using a pulse energized electron reactor. Proc. Ind. Int. Con. f Tokyo, Japan: Electrostatic Precipitation,1984:879-885.
    [47]Mizuno A, Clements J S, Davis R H. A method for the removal of sulfur dioxide from exhaust gas utilizing pulsed streamer corona for electron energization. IEEE Trans. Ind. App.l,1986, IA-22 (3):516-521.
    [48]Masuda S, Wu Y. Removal of NO, by corona discharge induced by sharp rising nanosecond pulse voltage. Proc. Int.Conf. Oxford:Electrostatics,1987:249-254
    [49]Masuda S. Pulse Corona Induced Plasma Chemical Process:A Horizon of New Plasma Chemical Technologies. Pure and Appl Chem,1988,60:727-731.
    [50]Dinelli G, Civitano L, Rea M. Industial experiments on pulse simultaneous removal ofNOxand SOxfrom flue gas. IEEE Trans. Ind. App.l,1990,26(3):535-541.
    [51]Lee Y H, Jung W S, Choi Y R. Application of pulsed corona induced plasma chemical process to an industrial incinerator. Environ. Sci Techno.1,2003,37(11):2563-2567.
    [52]Yan K P, Takashi Y, Sei ji K, et al. NO removal characteristics of a corona radical shower system under DC and AC/DC superimposed operations. IEEE Transactions on Industry Applications,2001,37(5):1499.
    [53]Yan K P, Li R N, Zhu T L, et al. A semi-wet technological process for flue gas desulfurization by corona discharges at an industrial scale. Chemical Engineering Journal,2006,116:139-147.
    [54]胡小吐,姜学东,朱天乐等.流光放电等离子体氨法烟气脱硫工艺.化工学报,2007,58(4):1001-1005.
    [55]毛本将,王保健,姜一鸣等.等离子体烟气脱硫脱硝工业试验装置.电力环境保护,2000, 16(3):5-7.
    [56]吴祖良,孙培德,李济吾等.电晕放电同时脱硫脱硝机理研究.电站系统工程,2007,23(3):1-4.
    [57]Penetrante B M, Bardsley J N, Hsiao M C. Kinetic analysis of non-thermal plasmas used for polltion control. Jpn J Appl Phys,1997,36 (7B):5007-5017.
    [58]曹玮,骆仲泱,徐飞等.脉冲电晕放电协同烟气脱硫脱硝试验研究.环境科学学报,2008,28(12):2487-2492.
    [59]Takeshi M. Gas discharge application for environmental protection. Static Electro Assoc,19(4):281-252
    [60]Dahli S K, Sardja I. Dielectric barrier discharge for processing of SO2/NO5. J Appl Phys,1991,69:6318-6320.
    [61]Moo B C, Jeanne H B, Mark J R, et al. Removal of SO2 from gas streams using a dielectric barrier discharge and combined plasma photolysis. J Appl Phys,1991,69(8): 4409-4414.
    [62]Filimonova E A, Amirrov R H, Kim H T. Comparative modeling of NOx and SO2 removal from pollutant gases using pulsed-corona and silent discharges. J Plys D Appl Phys, 2000,33:1716-1727.
    [63]Ma H B, Chen P, Zhang M L, et al. Study of S02 Removal Using Non-thermal Plasma Induced by Dielectric Barrier Discharge (DBD). Plasma Chemistry and Processing,2002, 22(2):239-254.
    [64]Slater S M, Rizzone M S. Simultaneous oxidation of S02 and NO in flue gas by ozone injection. Fuel,1980,59:897-899.
    [65]Young S M, Lee H J. Remova of sulfer dioxide and nitrogen oxides by using ozone injection and absorption-reduction technique. Fuel Processing Technology,2006:591-597.
    [66]Young S M. Absorption-reduction technique assisited by ozone injection and sodium sulfide for NOx remval from exhaust gas. Chemical Engineering Journal, 2006:63-67.
    [67]魏林生,周俊虎,王智化等.臭氧氧化结合化学吸收同时脱硫脱硝的研究.动力工程,2006,26(4):563-568.
    [68]Wang Z H, Zhou J H, Fan J R, et al. Direct numerical simulation of ozone injection technology for NOx control in flue gas. Energy & Fuels,2006,20:2432-2438.
    [69]Wang Z H, Zhou J H, Zhu Y Q, et al. Simultaneous removal of NOx, SO2 and Hg in nitrogen flow in a narrow reactor by ozone injection:Experimental results.Fuel Processing Technology,2007:817-823.
    [70]王智化,周俊虎,魏林生等.用臭氧氧化技术同时脱除锅炉烟气中NOx及SO2的试验研究.中国电机工程学报,2007,27(11):1-4.
    [71]王智化,周俊虎,温正城等.利用臭氧同时脱硫脱硝过程中N0的氧化机理研究.浙江大学学报,2007,41(5):765-770.
    [72]魏林生,周俊虎,王智化等.臭氧氧化结合化学吸收同时脱硫脱硝的研究-石灰石浆液吸收特性理论分析.动力工程,2008,28(1):112-117.
    [73]杨国华,胡文佳,周江华等.船舶尾气臭氧氧化-海水吸收的脱硫脱硝新工艺研究.内燃机学报,2008,26(3):278-282.
    [74]胡文佳,杨国华,周江华.C2H4对臭氧氧化N0影响的试验研究.宁波大学学报,2008,21(4):584-589.
    [75]Ohkubo T, Kanazawa S, Nomoto Y, et al.NOx removal by a pipe with nozzle-plate electrode corona discharge system. IEEE Trans on Indus Appli,1994,30(4):856-861.
    [76]Ohkubo T, Kanazawa S, Nomoto Y, et al. Time dependence of NOx removal rate by a corona radical shower system. IEEE Trans on Indus Appli,1996,32(5):1058-1062.
    [77]Wu Y, Li J, Wang N. Study on increasing the SO2 removal efficiency with the radieals produced by H2O in pulse discharge plasma proeess. Jpn J Appl Phys,2001,40(8A):838-840.
    [78]吴祖良,高翔,骆仲泱等.自由基簇射电催化同时脱硫脱硝过程反应特性及机理研究.高校化学工程学报,2006,20(6):925-931.
    [79]白希尧,张芝涛,白敏冬等.高气压强电离放电等离子体学科的形成及应用展望.自然杂志,2000,22(3):156-161.
    [80]Bai M D, Zhang Z T, Bai M D, et al. Removal of SO2 from Gas Streams by Oxidation of using Plasma-Generated Hydroxyl Radicals. Plasma Chem. Plasma Process,2006,26: 177-186.
    [81]白敏冬,白希尧,汤红等.强电离放电模拟烟气脱硫.应用化学,2005,22(2):128-131.
    [82]白敏药,张芝涛,杨波等.烟气中水、氧含量对羟基资源化脱硫效率的影响.中国环境科学,2007,27(5):619-622.
    [83]Zhang Z T, Bai M D, Bai M D, et al. Removal of S02 from simulated flue gases using non-thermal plasma-based microgap discharge. Journal of the Air and Waste Management Association,2006,56(6):810-815.
    [84]吴晓东.强电离放电调控模拟内燃机尾气中NOx实验研究(硕士学位论文).大连:大连海事大学,2007.
    [85]Andrei A K. Production of Chemically Active Species in the Air by a Single Positive Streamer in a Non-uniform Field. IEEE Trans. on Plasma Science,1997,25 (3):439-446.
    [86]Chang M B, Balbach J H, Rood M J, et al. Removal of SO2 from gas streams using a dieletric barrier discharge and combined plasma photolysis. J. Appl. Phys.,1991, 69(8):4409-4417.
    [87]Gleason J F, Howard. C J. Temperature dependence of the gas-phase reaetion HOSO2+O2→SO3+HO2. J. Pys. Chem,1988,92:3414-3417.
    [88]Paur H R, Jordan S. Aerosol formation in the electron beam dry scrubbing process (ES-Verfahren) Radiation Physics and Chemistry,1988,31:9-13.
    [89]Huie R E, Neta P. Rate constants for some oxidations of S(IV) by radicals in aqueous solutions. Atmospheric Environment,1987,21 (8):1743-1747.
    [90]Potapkin B V, Deminsky M A, Fridman A A. The effect of clusters and heterogeneous reactions on non-equilibrium plasma flue gas cleaning. Radiation Physics and Chemistry,1995,45:1081-1088.
    [91]Li R N. Heterogeneous reaction in removal of SO2 by corona discharge.10th Particulate Control Symp.& 5th Int. Conf. Electrostatic Precipitation,1993,31:1-8.
    [92]Zhu Y M, Wang N H. Optimization off pulsed corona discharged for flue gastretment. Proc.7th Int. Conf. on Electrostatic Precipitation,1998:207-211.
    [93]Kim H H, Wu C X, Kinoshita Y, et al. The influence of reaction conditions on S02 oxidation in a discharge plasma reactor. IEEE Transactions on Industry Applications,2001,37(2):480-487.
    [94]赵志斌,刘建民.温度与湿度对氨为添加剂脉冲放电烟气脱硫影响的研究.东北电力技术,1999,1:13-15.
    [95]Mok Y S, Ham S W, Nam I S. Evaluation of energy utilization efficiencies for S02 and NO removal by pulsed corona discharge process. Plasma Chem. Plasma Proc.,1998, 18(4):535-550.
    [96]Hilda M S, Marquidia P P, Joel 0 P, et al. Modeling and experimental study on nitric oxide treatment using dielectric barrier discharge. IEEE Transaction on Plasma Science,2007,35(5):1533-1539.
    [97]中华人民共和国发展和改革委员会.2007年度火电厂烟气脱硫产业信息.
    [98]王文龙.干法半干法脱硫灰的特性与综合利用研究.电站系统工程,2005,21(5):27-29.
    [99]戴海夏,钱华,耿春女等.燃煤电厂烟气脱硫石膏循环利用与市场需求分析.环境污染与防治,2007,11:1-3.
    [100]谢红波,曹杨,曹凤霞等.脱硫石膏综合利用现状及其抹面材料的研制.再生资源研究,2006,(6):28-31.
    [101]贾同春,翟学雷,赵秀云.脱硫石膏在纸面石膏板生产中的应用.新型建筑材料,2004,(8):15-16.
    [102]金巧平.用脱硫石膏粉代替部分二水石膏作水泥缓凝剂的应用.水泥,2006,(7):13-14.
    [103]赵建华,杨玉发.应用电厂脱硫石膏生产石膏砌块及发展前景.粉煤灰,2007,(1):40-42.
    [104]万建东,方爱民.脱硫灰渣及其在水泥生产中的应用探索.江苏建材,1995,2:5.
    [105]钱骏,徐强.干法脱硫灰渣的性能及应用探索.粉煤灰,2003,5:14.
    [106]赵立群,叶光锐,陈宁.干法脱硫灰渣在干粉砂浆中的应用研究.粉煤灰,2009,4:12.
    [107]王圣,巴尔莎,俞华.我国火电烟气脱硫存在的问题及对策建议.中国环保产业,2010,3:12-15.
    [108]Eliasson B, Kogelschatz U. Nonequilibrium volume plasma chemical processing. IEEE Trans. Plasma Sci,1991,19(6):1063-1077.
    [109]Roth J R. Industrial plasma engineering:Principles. University of Tennessee Knoxville. TNUSA:IOP Publishing Ltd,1995:98-210.
    [110]赵化侨.等离子体化学与工艺.合肥:中国科学技术大学出版社,1993.
    [111]张芝涛,鲜于泽,白敏冬等.强电离放电研究.东北大学学报,2002,23(5):507-510.
    [112]王宁.常温常压无催化剂CH4与N2等离子体合成新物质研究(硕士学位论文).大连:大连海事大学,2004.
    [113]Basfar A A, Fageeha 0 I, Kunnummal N, et al. A review on electron beam flue gas treatment (EBFGT) as a multicomponent air pollution control technology. NUKLEONIKA, 2010,55(3):271-277.
    [114]白希尧,张芝涛,杨波等.强电离放电及其应用研究的进展.中原工学院学报,2003,8(14): 5-9.
    [115]Wang X W, Zhong S M, Shen G X. Bell's Disk Polynomials and Parallel Disk Iteration, Numerical Mathematics,1987,4:328-346.
    [116]Hoigne J, Bader H. The role of hydroxyl radical reactions in ozona-tion processes in aqueous solutions. Water Res.,1976,10(2):377.
    [117]Bach A, Shemer H, Semiat R. Kinetics of phenol mineralization by Fenton-like oxidation. Desalination,2010,264(3):188-192.
    [118]Bai M D, Zhang Z T, Xue X H, et al. Killing Effects of Hydroxyl Radical on Algae and Bacteria in Ship's Ballast Water and on Their Cell Morphology. Plasma Chemistry and Plasma Processing,2010,30(6):831-840.
    [119]Yang X, Yang S Y, Shao X T, et al. Activated Carbon Catalyzed Peroxide Degradation of Organic Pollutants in Water. Progress in Chemistry,2010,22(10):2071-2078.
    [120]Lakretz A, Ron E Z. Biofilm control in water by a UV-based advanced oxidation process.Biofouling,2011,27(3):295-307.
    [121]Collins MM, Cooper C D, Dietz J D, et al. Pilot-scale evaluation of H202 injection to control NOx emissions. Environ. Eng.,2001,127(4):329-336.
    [122]Cooper C D, Clausen C A, Pettey L, et al. Investigation of UV enhanced H202 oxidation of NOx emissions. Environ. Eng.,2002,128(1):68-72.
    [123]马双忱,马京香,赵毅等.采用UV/H202体系进行烟气脱硫脱硝的实验研究.中国电机工程学报,2009,29(5):27-31.
    [124]刘洁.类Fenton试剂用于烟气脱硫的高效可行性研究(硕士学位论文).北京:北京化工大学,2009.
    [125]赵董艳.羟基自由基致死空间有害微生物的实验研究(硕士学位论文).大连:大连海事大学,2008.
    [126]山本克治,设乐和弘,广濒宏树.石川岛播磨技报,1996,36(3):153.
    [127]Lias S. G., Ionization Energy Evaluation. NIST Chemistry WebBook, National Institute of Standards and Technology, Gaithersburg,2001.
    [128]Hoigne J, Bader H. Beeinf lussung der oxidationswirkung von ozone and OH radikelen durch carbonat. Vom wasser,1977,48:283-304.
    [129]Hoigne J, Bader H. Rate constants of reactions of ozone with organic and inorganic and inorganic compounds in water-I. Non dissociating organic compounds, Water research,1983 a,17:173-183.
    [130]Hoigne J, Bader H. Rate constants of reactions of ozone with organic and inorganic and inorganic compounds in water-Ⅱ. Dissociating organic compounds, Water research, 1983 b,17:185-194.
    [131]Hoigne J, Bader H. Rate constants of reactions of ozone with organic and inorganic and inorganic compounds in water-Ⅲ. Inorganic compounds and radicals, Water research,1985,19:993-1004.
    [132]陈志平,章序文,林兴华等.北京:化学工业出版社.搅拌与混合设备设计选用手册,2004.
    [133]Waitz I A, Underwood D S. Effect of heat release on streamwise vorticity enhanced mixing. AIAA Journal,1995:2471.
    [134]王卫东.氢冲压发动机中用流向涡旋强化氢气与空气混合的研究.北京:清华大学,1997.
    [135]王卫东.垂直射流混合的三维湍流数值模拟.推进技术,1998,19(2):58-62.
    [136]孙健.静电除尘器离子输运特性与测量方法研究(硕士学位论文).大连:大连海事大学,2007.
    [137]林榕,毛根旺,唐金兰等.用Lungmuir探针诊断MPT羽流.固体火箭技术,2005,28(2):149-153.
    [138]张芝涛,鲜于泽,白敏冬等.电荷电压法测量DBD等离子体的放电参量.物理,2003,32(7):458-463.
    [139]Martin C. Air pollution control theory. McGraw-Hill,1976.
    [140]闫君.湿式静电除雾器脱除烟气中酸雾的试验研究(硕士学位论文).山东大学,2010,5.
    [141]Davidson J H, Mckinney P J. EHD flow visualization in the wire-plate and barbed plate electrostatic precipitator. IEEE Transactions on Industry Applications,1991, 27:154-160.
    [142]马广大.大气污染控制工程.北京:中国环境科学出版社,2004:182-186,
    [143]Kildes J. An experimental investigation for agglomeration of aerosols in alternating electric Field. Aerosol Sci and Technol,1995,23:603-610.
    [144]乌饶夫B H.工业气体的电滤法净化.北京:化学工业出版社,1966.
    [145]牟世芬,刘克纳.离子色谱方法及应用.北京:化学工业出版社,2000.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700