用户名: 密码: 验证码:
城市污泥干燥特性及工艺研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国城市化进程的加快,越来越多的污水产生并得到处理,同时大量的污泥也同时产生。污泥具有高含水率高体积的特点,而且含有大量的有毒物质。如果不能妥善地处理处置城市污泥,将会造成二次污染,并且影响污水厂的正常运行。如何经济而有效地处理处置污泥是目前国内外共同研究的重点。
     目前常见的污泥处理方法有:卫生填埋、土地利用、热干燥和焚烧,热干燥已经成为污泥处理的重要步骤。本文通过对污泥干燥特性的研究,结合利用烟气余热处理污泥发明专利技术的工程实践,提出了污泥干燥工艺的改进方法,并建立了一套新的污泥干燥工艺。
     4种不同质量等级的污泥颗粒在100~200℃的条件下进行了恒温干燥实验。结果表明,污泥干燥过程包括预热阶段、恒速干燥阶段、第一降速干燥阶段、第二降速干燥阶段4个阶段。在100~120℃时,污泥为弱强度干燥,临界含水率受温度和颗粒大小影响不明显;在140~200℃时为高强度干燥,临界含水率随温度升高或颗粒变大而增大。污泥干燥速率不仅取决于温度,还取决于污泥颗粒表面单位面积上实际用于蒸发水分的热量:减小污泥颗粒不仅可以增大比表面积,而且可以提高单位面积的干燥速率:而污泥的干燥时间与温度呈二次方关系,与污泥的表面积呈线性关系。
     污泥颗粒在200~500℃条件下干燥时,经历了预热阶段、类恒速干燥阶段和降速干燥阶段,类恒速干燥阶段的干燥速率并不是恒定的,而是呈波动型的,其中类恒速干燥阶段占据了总干燥时间和总失重率的70%左右。干燥过程中会产生裂纹,且前期由小变大而后期由大变小,主要是由于内外层失水不均匀所致。
     干污泥的粒径主要为砂级、粉砂级和粘土级,实际工程中干污泥产生的灰尘可以通过水膜除尘去除,结合污泥的热重分析确定了污泥的干燥温度可以在100~300℃,该温度范围内干燥冷凝水中最主要的有机物是链状烷烃、芳香烃和含氮杂环化合物,苯、邻二甲苯和苯酚是主要污染物。
     通过对江阴污泥处理工程的实际经验总结,并结合实验结论,我们认为可以通过低温干燥、自然干燥、太阳能干燥和余热回收利用等途径,利用热管和热泵等先进技术,对现有的污泥干燥工艺进行改进,改进后的工艺可以将煤的热利用率从44.62%提高到64.60%,并且将每吨湿污泥的能耗成本从104.07元/吨降到42.61元/吨,并且可以大大地减少二氧化碳和二氧化硫的排放量。
With the development of urbanization in China,more and more municipal wastewater as well as sewage sludge is produced.Sewage sludge formed during wastewater treatment has high water content and large volume as well as various toxic substances. Any improper disposal of the sewage sludge will result in secondary environmental pollution and influence the operation of sewage treatment plant.How to dispose of it economically and efficiently has become a newly worldwide problem,and is being sought after both in China and abroad.
     There are four general sludge disposal methods:land application,landfill,drying and incineration.Drying has become an important step in sludge disposal.Drying characteristics of sludge granules were studied,and a project drying sludge by waste heat from flue gas was summarized.Based on these,improvement schemes of sludge drying technique were proposed,and a new sludge drying technique was established.
     Four different weight grades of sludge granules were dried at constant temperature of 100~200℃.Results showed that sludge drying process included four periods:preheating period,constant rate drying period,the first falling rate drying period and the second falling rate drying period.Sludge drying process was a weak intensity drying process at 100~120℃,critical moisture content was constant.It was a high intensity drying process at 140~200℃,and critical moisture content increased with the drying temperature or granule size increasing.The drying rate was affected with not only drying temperature but also the quantity of water evaporating heat in a unit surface area.Reduction of granule size can increase specific surface area and drying rate in a unit surface area.There were a quadratic nonlinear relationship between drying time and temperature,and a linear relationship between drying time and sludge surface area.
     Sludge drying process at 200~500℃included three periods:preheating period, constant-like rate drying period,falling rate drying period.Drying rate during constant-like rate drying period was not constant,but fluctuant.It took 70%of total drying time and total loss.Cracks were produced,which became larger in earlier stage then became smaller in later stage,it was because of water loss imbalance in sludge surface and inner.
     The particle size of dried sludge were mainly sand,silty sand and clay.Dust produced during sludge drying could be collected by water film dust collector.On the basis of thermogravimetric analysis,it was suitable to dry sludge at 100~300℃.Main organic matters in condensate at this temperature were chain alkane,aromatic hydrocarbon and nitrogenous heterocyclic compounds,and main pollutants were benzene,o-xylene and phenol.There were no PAHs in consendate.
     On the summarize of Jiangyin Sludge Drying Project and experiment conclusion, several techniques as low temperature drying,nature drying,solar drying and waste heat recovery,also some advanced equipments as heat pipe and heat pump,could be used in sludge drying technique.Heat utilization efficiency of improved technique could be enhanced from 44.62%to 64.60%,and emission of CO_2 and SO_2 was reduced significantly.
引文
1.曹崇文.农产品干燥机理、工艺与技术.曹崇文论文选编.中国农业大学出版社.1998
    2.曹锡隽.国外污水和污泥处理发展动向[A].天津市市政(公路)工程研究院院庆五十五周年论文选集(1950-2005)下册[C].2005.
    3.陈东,谢继红.热泵干燥装置.北京:化学工业出版社,2007
    4.陈镜泓,李传儒.热分析及其应用[M].北京:科学出版社,1985.
    5.陈鸣.城市污水处理厂污泥最终处置方式的探讨[J].中国给水排水.2000,16(8):23-24.
    6.陈同斌,黄启飞,高定,等.中国城市污泥的重金属含量及其变化趋势[J].环境科学学报.2003,5(23):561-569
    7.邓晓林,王国华,任鹤云.上海城市污水处理厂的污泥处置途径探讨[J].中国给水排水,2000,16(5):19-22.
    8.丁虹,刘邵武.嗅觉与恶臭污染[C].北京:恶臭污染测试与控制技术.2004:31-34
    9.丁亚兰.国内外废水处理工程设计实例.北京:化学工业出版社,2000:43-45
    10.杜兵,张彭义,张祖麟,等.北京市某典型污水处理厂中内分泌干扰物的初步调查[J].环境科学,2004,25(1):114-116.
    11.奉华,张衍国,邱天,等.城市污水污泥的热解特性[J].清华大学学报(自然科学版).2001,41(10):91-93
    12.甘海军,钱晓倩.浙江省城市污水处理厂产泥现状与处置对策[J].中国给水排水.2006.22(16):1-3
    13.顾芳珍,钱树德.临界湿含量与特性干燥曲线[J].化工装备技术.1993,14(2):8-12.
    14.郭媚兰.城市污泥和污泥与垃圾堆肥的农田施用对土壤性质的影响[J].农业环境保护.1994,13(5):204-209。
    15.郭淑琴,孙孝然.几种国外城市污水处理厂污泥干化技术及设备介绍[J].给水排水,2004,30(6):34-37
    16.韩军,徐明厚,姚洪,等.污泥焚烧中重金属和碱金属气固转变区域[J].华中科技大学学报(自然科学版).2006,34(6):108-110
    17.杭世珺,刘旭东,梁鹏.污泥处理处置的认识误区与控制对策[J].中国给水排水,2004,20(12):92-95
    18.何晶晶,邵立明,顾国维,等.城市污水厂污泥低温热解动力学模型研究[J].环境科学学报.2001,21(2):148-151.
    19.何品晶,顾国维,李笃中,等.城市污泥处理与利用[M].北京:科学出版社.2003:31-35.
    20.何品晶,顾国维,邵立明,等.污水污泥低温热解处理技术研究[J].中国环境科学.1996,16(4):254-257
    21.何品晶,邵立明,宗兵年.污水厂污泥综合利用与消纳的可行性途径分析[J].环境卫生工程,1997,(4):21-25.
    22.何品晶,邵立明,宗兵年.污水厂污泥综合利用与消纳的可行性途径分析[J].环境卫生工程.1997,04;21-26
    23.何品晶,邵立明.污泥综合处理技术系统的可行性分析[J].上海环境科学.1997,12:36-38
    24.胡龙,品晶,立明.城市污水厂污泥热干燥处理技术及其应用分析[J].重庆环境科学.1999,21(1):53-55
    25.黄志刚,毛志怀.转筒干燥器的现状及发展趋势[J].食品科学,2003,24(8):168-170.
    26.江刚.美国污水处理厂污泥焚烧装箕面临更严格的排放限制[J].中国环境科学.1999,19(6):509-512.
    27.蒋成爱.城市污水污泥处理利用研究进展[J].农业环境与发展.1999,34(11):209-217
    28.蒋旭光,池涌,严建华,等.污泥的热解动力学特性研究[J].环境科学学报.1999,19(2):221-224.
    29.蒋旭光,池涌,严建华,等.污泥在流化床内燃烧过程及结团微观机理分析[J].燃烧科学与技术.1998,4(2):121-127.
    30.金国淼.化工设备设计全书--除尘设备.北京:化学工业出版社.2005
    31.金国淼.化工设备设计全书--干燥设备.北京:化学工业出版社.2002
    32.金儒霖.污泥处置.北京:中国建筑工业出版社,1999:35
    33.金兆丰.污水处理组合工艺及工程实例[M].北京:化学工业出版社,2003:124-136
    34.卡尔·贝尔廷.污泥热处理技术.污泥处理处置技术与装备国际研讨会,2003
    35.库德T(Tadeusz Kudra),牟久大A S(Arun S.Muiumdar).先进干燥技术.化学工业出版社.2005
    36.雷菊霞.德国污泥处置技术的分析与研究[J].宁夏工程技术.2005,4(4):389-392
    37.李爱民,曲艳丽,陈满堂,等.污水污泥干燥特性的实验研究[J].燃烧科学与技术.2003,9(5):404-408.
    38.李爱民,曲艳丽,杨子贤,等.污水污泥干燥过程中表观形态变化及水分析出特性[J].化工学报.2004,55(6):1011-1015.
    39.李国平,丁建伟.污水处理厂污泥热化学处理技术简介[J].水利天地,2004,5:41
    40.李季,吴为中.城市污水处理厂污泥堆肥及土地修复利用[A].首届北京生态建设国际论坛文集[C],2005
    41.李金红,何群彪.欧洲污泥处理处置概况[J].中国给水排水.2005,21(1):102-104
    42.李军,陈邦林.高温突越法处理城市污泥的研究[J].环境科学学报.2000.20(6):751-754.
    43.李余增.热分析[M].北京:清华大学出版社,1989.
    44.刘丽,毛建华.城市污泥农用对生态的影响[J].生物学杂志.2002,19(6):63-64.
    45.刘相东,于才渊,周德仁.常用工业干燥设备及应用.北京:化学工业出版社.2005
    46.吕清刚,李志伟,那永洁.CFBC混烧城市污泥与煤:N_2O和NO的排放[J].工程热物理学报.2004,25(1):163-166
    47.罗建华,魏贵臣.污泥热处置技术概述[J].江苏环境科技.2006.19(3):55-57
    48.罗凯,刘旭东.污泥处理处置是我国城市污水处理厂亟待解决的问题[A].科技、工程与经济社会协调发展--中国科协第五届青年学术年会论文集[C],2004
    49.马宪国,王耀华.工业锅炉最佳排烟温度的探讨[J].能源工程.1991,11(4):20-22.
    50.潘永康,王喜忠,刘相东.现代干燥技术[M].北京:化学工业出版社.2007:670-675.
    51.彭晓峰,陈剑波,陶涛,等.污泥特性及相关热物理研究方向[J].中国科学基金.2002.5:284-287.
    52.钱颂文.换热器设计手册.北京:化学工业出版社.2003
    53.乔显亮,骆永明,吴胜春.污泥的土地利用及其环境影响[J].土壤.2000,32(2):79-85
    54.秦叔经,叶文邦.化工设备设计全书--换热器.北京:化学工业出版社.2005
    55.曲艳丽,李爱民,李润东.饼状污泥干燥特性的研究[J].燃烧科学与技术.2005,11(1):96-99.
    56.曲艳丽,李爱民.污泥处理热干燥工艺的研究进展[J].城市环境与城市生态.2004.13(2):36-39
    57.邵立明,何品晶,胡龙,等.城市污水厂污泥间壁热干燥过程实验研究[J].重庆环境科学.2001,23(2):51-53
    58.谭中欣,严建华,蒋旭光,等.电镀污泥焚烧过程中的热分析以及重金属的迁移规律[J].环境科学,2006,27(5):998-1002
    59.涂颉,毛润治,田晓亮,等.物料干燥特性模拟[J].天津大学学报.1993(4):54-60
    60.王国华,孙晓,张辰.污水污泥送火力发电厂焚烧的环境风险研究进展[J].给水排水.2006,32(6):20-23
    61.王俊锋,完颜华.污泥处理及其资源化[J].甘肃环境研究与监测.2002.15(4):287-290
    62.王凯军,贾立敏.城市污水生物处理新技术开发与应用.北京:化学工业出版社,2001:484
    63.王伟,袁光钰.我国的固体废弃物处理处置的现状与发展[J].环境科学.1997,18(2):87-90.
    64.王兴润,金宜英,聂永丰.国内外污泥热干燥工艺的应用进展及技术要点[J].中国给水排水.2007,23(8):5-8.
    65.魏国侠.污泥处理和资源化技术[A].2004全国能源与热工学术年会论文集(2)[C].2004
    66.翁焕新,马学文,苏闽华等.利用烟气余热干化城市污泥工艺的应用[J].中国给水排水.2008,24(4):1-4
    67.翁焕新,苏闽华.利用热电厂烟气余热的污泥干化系统[P].中国:专利号:ZL200510049554.1.
    68.徐雪源.锅炉排烟温度分析[J].锅炉技术.1999,30(3):7-12
    69.薛栋林.美国污水污泥的研究和利用概况[J].国外农业环境保护.1991,(1):31
    70.薛文源.城市污水污泥处理与处置的途径[J].中国给水排水.1992,8(1):41-46
    71.杨居荣,王素芬,金玉华.污泥中重金属对土壤的污染及控制途径[J].环境科学.1982,3(3):9-13.
    72.杨琦,刘广立,钱易.污泥处理和处置技术新进展[J].上海环境科学.1999,18(3):33-34+38
    73.杨小文,杜英豪.污泥热干化在美国的应用[J].中国给水排水.2002(1):92-94
    74.姚刚.德国的污泥利用和处置(Ⅰ)[J].城市环境与城市生态.2000,13(2):24-26.
    75.叶子瑞.国内外污泥处置和管理现状[J].环境卫生工程.2002.10(2):85-88
    76.尹军,谭学军,任南琪.污水污泥处理与处置[J].中国给水排水.2003(8):15-22
    77.余洁,田宁宁,王凯军.我国污泥处理、处置技术政策探讨[J].中国给水排水.2005,21(8):84-87
    78.曾庭华,池涌,严建华,等.污泥在流化床中的焚烧特性研究[J].燃烧科学与技术.1997,3(02):120-125
    79.曾庭华,严建华,蒋旭光,等.造纸污泥在流化床中的结团特性和污染排放特性研究[J].化工进展.1998,17(2):22-25
    80.张蓓敏.污泥热干燥处理技术在城市污水处理厂的应用[A].浙江省2005年给水排水论文集[C],2005.
    81.张壁光,郭建华.湿空气参数对除湿干燥机能耗的影响[J].林产工业.1994,21(3):13-14
    82.张壁光,赵忠信.热泵在木材干燥工业中的应用[J].北京林业大学学报.1995,18(2):24-25
    83.张璧光.除湿(热泵)干燥的节能分析[J].林产工业.1995.2(6):35-38.
    84.张璧光.实用木材干燥技术.北京:化学工业出版社.2005
    85.张辰,王国华,孙晓.污泥处理处置技术与工程实例[M].北京:化学工业出版社.2006:1-20
    86.张文丽,金建国.等速干燥浅议[J].中国陶瓷.1997,33(1):16-18.
    87.赵长遂,黄超,陈晓平,等.造纸污泥热解试验和化学动力学研究[J].南京工程学院学报.2003,1(2):2-6.
    88.赵乐军,戴树桂,辜显华.污泥填埋技术应用进展[J].中国给水排水.2004.20(4):27-30.
    89.赵丽君,张大群,陈宝柱.污泥处理与处置技术的进展[J].中国给水排水.2001,17(6):23-25
    90.赵庆祥.污泥资源化技术[M].北京:化学工业出版社,2002.
    91.赵由才,徐迪民,陈绍伟,等.污泥的DSC和TGA分析[J].环境工程.1994.12(4):38-41.
    92.郑宗和,梁江,贾为群.太阳能污泥干燥的试验研究[A].中国太阳能学会2001年学术会议论文摘要集[C].2001
    93.郑宗和,牛宝联,雷海燕.利用太阳能进行污泥脱水干燥的试验[J].中国给水排水.2003,(S1).
    94.中华人民共和国建设部,2001-2006年城市建设统计公报.
    95.周立祥,胡忠明,胡霭堂.未消化生活污泥中氮磷供应特性及其环境行为[J].农村生态环境.1995(4):19-22+56
    96.周立祥,沈其荣,陈同斌等.重金属及养分元素在城市污泥主要组分中的分配及其化学形态[J].环境科学学报.2000,20(3):269-274.
    97.周立祥.城市生活污泥农田利用对土壤肥力性状的影响[J].土壤通报.1994,25(3):126-129。
    98.周立祥.城市污泥土地利用研究[J].生态学报,1999,19(2):185-193
    99.朱建公,唐毅夏,静波.提高回转式烘干机烘干效率的方法探讨[J].西南工学院学报.1997,(02).
    100.朱敬平,李篤中.污泥處置(Ⅱ):污泥之前處理.國立臺灣大學「台大工程」學刊[J].2001,2:49-76
    101.朱敬平,李篤中.污泥處置(Ⅲ):污泥後處理.國立臺灣大學「台大工程」學刊[J].2001,83:59-81
    102.朱敬平,李篤中.污泥處置(Ⅳ):策略與永續利用.國立臺灣大學「台大工程」學刊[J].2002,84:91-101
    103.朱南文,高廷耀,周增炎.我国城市污水厂污泥处置途径的选择[J].上海环境科学.1998,17(11):40-42
    104.朱南文,徐华伟.国外污泥热干燥技术[J].给水排水,2002(1):20-23
    105.朱文学.热风炉原理与技术.北京:化学工业出版社.2005
    106.邹绍文,张树清,王玉军,等.中国城市污泥的性质和处置方式及土地利用前景[J].中国农学通报.2005(01):206-209+290
    107.Abdul G L,Azni I,Abdul A S,et al.Reusability of sewage sludge in clay bricks[J].Journal of Material Cycles and Waste Management.2004,6(1):41-47
    108.Aggelides S M,Londra P A.Effects of compost produced from town wastes and sewage sludge on the physical properties of a loamy and a clay soil[J].Bioresource Technalogy.2000,71(3):253-259.
    109.Babalis S J,Belessiotis V G.Influence of the drying conditions on the drying constants and moisture diffusivity during the thin-layer drying of figs[J].Journal of Food Engineering.2004,65(3),449-458.
    110.Bayer B,Kutubuddin M.Temperature Conversion of Sludge and Waste to Oil[A].Proceedings of the International Recycling Congress[C].Berlin:EF Verlag,1978
    111.Borodulya VA,Dikalenko Ⅵ,Palchonok GI,et al.Fluidized bed combustion of solid organic waste and lowgrade coal,research and modelling.In:Heinschel KJ,editor.Proceedings 13th International Conference on Fluidized Bed Combustion.Orlando,FL:ASME,1995:135-142.
    112.Brauer H,Varma G.Air Pollution Control Equipment[M].NewYork:Berlin Heidiberg,1981,6(3):30-40
    113.Bridle T R,Hammerton L,Hertle C K.Control of heavy metals and organochlorines using the oil from sewage process[J].Water science and technology,1990,22(12):249-258
    114.Burgess J E,Parsons S A,Stuetz R M.Developments in odour control and waste gas treatment biotechnology:A review[J].Biotechnology Advances,2001,19(1):35-63
    115.Burlingame,Gary A,Odor profiling of environmental odors[J].Water science and technology,1999,40(6):31-38
    116.Campbell H W.Sewage Sludge Treatment and Use:New Development[M].London:Elsevier Applied Science,1989.
    117.Celma A R,S Rojas,F Lo'pez,et al.Thin-layer drying behaviour of sludge of olive oil extraction[J].Journal of Food Engineering.2007,80(4):1261 - 1271
    118.Cenni R,J anisch B,Splietho H,et al.Legislative and environmental issues on the use of ash from coal and municipal sewage sludge co-firing as construction material[J].Waste Management.2001.21(1):17-31
    119.Chao A C,Luca S J,Idle C N.Quality improvement of biosolids by ferrate(Ⅵ)oxidation of offensive odour compounds[J].Water Science and Technology,1996,33(3):119-130
    120.Chen G W,Chang 1 L,Hung W T,et al.Continuous moisture distribution in waste activated sludge[J].Journal of Environmental Engineering ASCE.1997,123(3):253-258.
    121.Chen J B,Peng X F,Xue Y,et al.Convective drying of sludge cake[J].Journal of Thermal Science.2002.11(3):277-282
    122.Cheng H F,Chen S Y.Biodegradation of di-(2-ethylhexyl) phthalate in sewage sludge [J].Water Science and Techology,2000,41(2):1-6
    123.Cheng H F,Chen S Y.Hazarous organic matters in municipal sewage sludge in Taiwan [J].Water Science and Techology,2001,44(10):65-70.
    124.Childs P S,Dunn A J.Modelling to solve odour problems[J].Water Science and Technology,2001,44(2):227-234
    125.Coackley P,Allos R.The drying characteristics of some sewage sludge[J].The Institute Of Sewage Purification.1962,6:557-564.
    126.Colin F,Gazbar S.Distribution of water in sludges in relation to their mechanical dewatering[J].Water Research.1995.29(8):2000-2005.
    127.Diane G,Guadno C,Davis R.Sludge disposal trends around the globe.Water Engineering and Management,1993,140(12):17-20.
    128.Doshi V A,Vuthaluru H B,Bastow T.Investigations into the control of odour and viscosity of biomass oil derived from pyrolysis of sewage sludge[J].Fuel Processing Technology.2005,86(8):885-897
    129.Eljarrat E,Caixach J.Effects of sewage sludges contaminated with polychlodnated dibenzo-p-dioxins,dibenzofurans,and biphenyls on agricultural soils[J].Environmental Science and Technology.1997,31(10):2765-2771.
    130.EPA.Process design manual for sludge treatment and disposal[J].U.S.A.1979:126
    131.Epstein E,Taylor J M.,Chaney R L.Effects of sewage sludge and sludge compost applied to soil on some soil physical and chemical properties[J].Journal of Environmental Quality.1976,5(4):422-426.
    132.European Commission,DG Environment.Disposal and Recycling Routes for Sewage Sludge,Part 2-Regulatory Report,Office for Official Publications of the European Communities,Luxembourg,2001.
    133.Fang M,Wong J W C.Effects of lime amendment on availability of heavy metals and maturation in sewage sludge composting.Environmental Pollution.1999,106(1):83-89.
    134.Fayza A N.Treatment and reuse of sewage sludge[J].The Environmentalist.1997,17(2):109-113.
    135.Frost R C,Bruce A M.Altermative Uses for Sewage Sludge[M].Oxford:Pergamon Press,1991.
    136.Gomez-Rico M F,Font R,Aracil I,et al.Analysis of Organic Pollutants in Sewage Sludges from the Valencian Community(Spain)[J].Archives of Environmental Contamination and Toxicology.2007,52(3):306-316.
    137.Graham N,Chen X G,Jayaseelan S.The potential application of activated carbon from sewage sludge to organic dyes removal[J].Water Science and Technology.2001,43(2):245-252.
    138.Gruter H,Matter M,Oehlmann K,et al.Drying of sewage sludge - an important step in waste-disposal[J].Water Science and Technology.1990,22(12):57-63.
    139.Halde R E.Sewage sludge characterization by vacuum drying[J].Filtration and Separation.1979.92(5):238-242.
    140.Hall J E.Treatment and use of sewage sludge in EC.In:Bradshaw AD,Southwood R,Warner F,editors.The treatment and handling of wastes.London:Chapman and Hall,1992.
    141.Hardy P,Burgess J E,Morton S.Simultaneous activated sludge wastewater treatment and odour control[J].Water Science and Technology.2001,44(9):189-196
    142.Hobson J.Odour potential:A new tool for odour management[J].Journal of the Chartered Institution of Water and Environment Management.1995,9(5):458-463
    143.Jakob A,Stucki S,Kuhn P,et al.Evaporation of heavy metals during the heat treatment of municipal solid waste incinerator fly ash[J].Environmental Science and Technology.1995,29(9):2429-2436.
    144.Jaya S,Das H.A vacuum drying model for mango pulp[J].Drying Technology.2003,21(7):1215-1234
    145.Jeyaseelan S,Lu G Q.Development of adsorbent/catalyst from municipal wastewater sludge[J].Water Science and Techonoly.1996,34(3):499-505.
    146.Jiang A X,Liu B,Zhao Y G,et al.lsolation and characterization of deodorizing bacteria for organic sulfide malodor[J].Journal of Environmental Sciences.2004,16(5):856-859
    147.Jobbagy A,Szanto 1,Varga G I.Sewer system odour control in the Lake Balaton area [J].Water Science and Technology.1994,30(1):195-204
    148.Karr P R,Keinath T M.Influence of particle size on sludge dewaterability[J].Journal Water Pollution Control Federation.1978;50(8):1911-1930.
    149.Kasakura T,Imoto Y,Mori T.Overview and system analysis of various sewage sludge drying processes[J].Drying Technology.1993,11(5):871-900
    150.Koe L C C,Tan NC.Odour generation potential of wastewaters[J].Water Research.1990,24(12):1453-1458
    151.Laine M M,Ahtiainen J,Wagmam N,et al.Fate and toxicity of chlorophe nols,polychlorinated dibenzop-dioxins and dibenzofurans during composting of contaminated sawmill soil[J].Environmental Science and Technology.1997,31:3244-3250.
    152.Lee D J,Hsu Y H.Measurement of bound water in sludge:a comparative study[J].Water Environment Research.1995,67(3):310-317.
    153.Lee D J,Lee S F.Measurement of bound water content in sludge:the use of differential scanning calorimetry(DSC)[J].Journal of chemical technology and biotechnology.1995.62(4):359-365.
    154.Lewis D L,Gattie D K.Pathogen risks from applying sewage sludge to land[J].Environmental Science and Technology.2002,36(13):287A-293A
    155.Li DH,Ganczarczyk J J.Physical characteristics of activated sludge flocs[J].Critical Reviews in Environmental Control.1986.17(1):53-87.
    156.Litz N.Assessment of organic constituent in sewage sludge[J].Water Science and Technology.2000,142(9):89-192.
    157.Liu L,Tindall J A,Friedel M J.Biodegradation of PAHs and PCBs in Soils and Sludges [J].Water Air and Soil Pollution.2007,181(1-4):281-296
    158.Lowe P.Development in the Thermal Drying of Sewage[J].Water and Environment Journal.1995,10(9):306-316.
    159.Lue-Hing C,Matthew P,Namer J,et al.Sludge management in highly urbanized areas [J].Water Science and Technology.1996,34(3):517-524.
    160.Madsen P L,Thyme J B.Kinetics of di-(2-ethylhexyl) phthalate mineralization in sludge-amended soil[J].Environmental Science and Technology.1999,33(15):2601-2606.
    161.McGhee TJ.Water supply and sewerage[M].New York:McGraw-Hill,1991.
    162.Mininni G,et al.Partitioning of Cr,Cu,Pb and Zn in sewage sludge incineration by rotary kiln and fluidized bed furnaces[J].Water Science and Technology.2000,14(8):61-68.
    163.Mueller J A.Pretreatment processes for the recycling and reuse of sewage sludge[J].Water Science and Technology.2000,42(9):167.
    164.Nagaharu O,Shiro T.Full scale application of manufacturing bricks from sewage [J].Water science and technology.1997.36(11):243-250
    165.Neyens E,Baeyens J.A review of thermal sludge pretreatment processes to improve dewaterability[J].Journal of Hazardous Materials.2003;98(1-3):51-67.
    166.O'Kelly B C.Geotechnical properties of municipal sewage sludge[J].Geotechnical and Geological Engineering.2006,24(4):833-850
    167.Rauret G,pOpez-Saichez J F L,Sahuquillo A,et al.Improvement of the BCR three step sequential extraction procedure prior to the certification of new sediment and soil reference materials[J].Journal of Environmental Monitoring.1999,1(1):57-61
    168.Rauret G.Extraction procedures for the determination of heavy metals in contaminated soil and sediment[J].Talanta.1998,46(3):449-455.
    169.Richards,B K,Steenhuis,T S,Peverly,J H,et al.Effect of processing mode on trace elements in dewatered sludge products[J].Journal of Environmental Quality.1997,26(3):782-788.
    170.Riffaldi R,Levi-Minzi R,Saviozzi A,et ai.Sorption and release of cadmium by some sewage sludge[J].Journal of Environmental Quality.1983,12:253-256,
    171.Roane T M,Pepper I L.Microbial responses to environmentally toxic[J].Microbial Ecology.1999,38(4):358-364.
    172.Robinson J,Knocke W R.Use of dilatometric and drying techniques for assessing sludge dewatering characteristics[J].Water Environment Research.1992,64(1):60-68.
    173.Santen H.Sludge Production Treatment and Disposal in the European Union[M].J CIWEM.1995.19(8):335-343.
    174.Sato H,Suzuki H.Relationship between amount of bound water and dewatering characteristics of alum sludge[J].Filtration and Separation.1982:492-497.
    175.Schafer P L.Biosolids management moves forward[J].Pollutlon Engineering.1995,27(13):28-30.
    176.Schnaak W,Kuchler Th,Kujawa M.Organic contaminants in sewage sludge and their ecotoxicoiogicai significance in the agricultural utilization of sewage sludge [J].Chemosphere.1997,35(1/2):5-11.
    177.Simeoni L A,Barbarick K A,Sabey B R.Effect of small-scale composting of sewage sludge on heavy metal availability to plants[J].Journal of Environmental Quality.1984,13:264-268
    178.Smith J K,Vesilind P A.Dilatometric measurement of bound water in waste water sludge[J].Water Research.1995,29(12):2621-2626.
    179.Smollen M.Evaluation of municipal sludge drying and dewatering with respect to sludge volume reduction[J].Water Science and Technology.1990,22(12):153-161.
    180.Stasta P,Boran J,Bebar L.Thermal processing of sewage sludge[J].Applied Thermal Engineering.2006,26(9):1420-1426
    181.Tay J H,Show K Y.Resource recovery of sludge as a building and construction material- a future trend in sludge management[J].Water Science and Technology.1997.36(11):259-266.
    182.Tsang K R,Vesilind P A.Moisture distribution in sludge[J].Water Science and Technology.1990,22(12):135.
    183.Ulrich L.Solar sludge drying-based on the IST process[J].Renewable Energy.1999,16(4):785-788.
    184.United States Environmental Protection Agency.Land Application of Sewage Sludge-A Guide for Land Appliers on the Requirements of the Federal Standards for the Use or Disposal of Sewage Sludge(40 CFR Part 503.EPA/831-B-93-002b).Washington,DC:Office of Enforcement and Compliance Assurance,1994
    185.United States National Research Council.Biosolids applied to land:advancing standards and practice.Committee on Toxicants and Pathogens in Biosolids Applied to Land,Board on Environmental Studies and Toxicology,Division on Earth and Life Studies.National Academy Press,Washington,DC.2002
    186.Vesilind PA,Ramsey TB.Effect of drying temperature on the fuel value of wastewater sludge[J].Wastewater Management and Research.1996,14(2):189-196.
    187.Wang MJ.Land application of sewage sludge in China[J].The Science of the Total Environment.1997,197(3):149-60
    188.Water Environment Federation.Biosolids Composting:A Special Publication[J].Water Environment Federation.Alexandria.1995
    189.Werther J,Ogada T,Borodulya VA,et al.Devolatilisation and combustion kinetic parameters of wet sewage sludge in a bubbling fluidised bed furnace.In:Proc.Inst.Of Energy's 2nd International Conference on Combustion and Emission Control.London,UK,1995:149-158.
    190.Werthera J,Ogadab T.Sewage sludge combustion[J].Progress in Energy and Combustion Science.1999,25(1):55-116
    191.Wu C C,Huang C,Lee D J.Bound water content and water binding strength on sludge flocs[J].Water Research,1998,32(3):900-904.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700