用户名: 密码: 验证码:
多级A/O+好氧生物膜组合工艺特性及处理污水效能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,城市污水处理厂普遍存在因污水中碳源匮乏而导致脱氮除磷效果不稳定等问题,对生态环境的影响日趋严重。在这种情况下,开发优化碳源有效利用和强化脱氮污水处理工艺技术十分必要。研究将分段进水工艺与好氧生物膜法相结合,使该系统具有节省内回流设施、无需外加碳源、提高系统抗冲击负荷能力及增加系统生物量等优点,通过理论分析、中试试验结合小试试验研究等手段,对组合工艺处理效能进行了系统的研究。以期该工艺在高效脱氮污水领域的应用推广和类似工艺的污水厂升级改造提供指导。
     为确保组合工艺反应器整体处于推流状态,通过示踪剂流态实验对反应器的结构进行了改造,同时通过Fluent软件进行模拟,证实改造后的反应器推流状态明显,为实现后续生化试验提供了合适的反应器流态。
     通过对HRT、温度、进水流量分配比、污泥回流比及缺好氧区容积比等因素对组合工艺处理效能影响的研究,系统研究组合工艺的特点和优势,优选合理的参数取值范围。发现组合工艺系统相对于单纯活性污泥系统抗击外界冲击能力明显。在低HRT的情况下,采取增加曝气和减少排泥的措施提高系统的脱氮效果,对于TP采取化学方式予以去除;对于温度的变化,为了保证较好的处理效果,主要采取调整污泥浓度和DO浓度来实现。根据试验城市污水水质条件分析,得到分段进水分配方式为逐级递减。污泥回流比对组合工艺脱氮影响不大,从不影响脱氮效能又能减少能耗的角度出发,采用50%~100%的回流较适宜。在采用最佳进水分流比的前提下,尽量扩大缺氧区所占容积可以提高系统TN去除率。
     组合工艺好氧区出现了明显的同步硝化反硝化现象,通过小试实验可以发现,各级好氧区的同步硝化反硝化脱氮效能存在明显差别,第一级脱氮效果最佳,第二级次之,第三级最差。同时发现投加填料有助于同步硝化反硝化脱氮能力的提升。在综合考虑各水质指标处理效果情况下,中试反应器在采取梯级曝气溶解氧搭配为0.5mg/L、1.0mg/L、1.5mg/L的工况下运行时,反应器的同步硝化反硝化能力得到了最合理的发挥,并从进水方式和生物膜结合的角度分析了组合工艺的脱氮机理。
     采用显微镜镜检技术观察系统运行阶段活性污泥及生物膜的微生物组成和形态特征,发现组合工艺的生物相较为丰富,活性污泥与生物膜污泥生物相存在一定的差异,并分析了反应器内的微生物特性及微生物固定化机理。组合工艺在试验期间污泥的表观产率基本上在0.12~0.21kgMLSS/kgCOD之间,明显低于常规活性污泥法。采用环境扫描电镜结果显示污泥絮体及生物膜内外均存在供物质交流的孔洞和通道,为组合工艺系统同步硝化反硝化的发生创造了物质和环境条件。组合工艺反应器各级活性污泥及生物膜上微生物的SOUR和DHA均呈下降趋势,生物活性还受温度和碳源的影响,系统的污泥活性与所处环境中的有机质浓度呈正相关关系。
     通过对系统菌群多样性指数和相似性分析,每一级的活性污泥和生物膜多样性指数相比较,生物膜的多样性指数高于活性污泥,说明生物膜中的微生物种群更为丰富。同时生物膜样品的相似性明显高于活性污泥,这与生物膜中微生物菌群的多样性更高有关。
     多级A/O+好氧生物膜组合工艺是一种节能、高效和稳定的污水处理工艺,可运用到新建及改造的实际工程中,并通过调节各运行参数以实现系统的最佳工况,提高出水水质。
At present, the prevalent problems in urban sewage treatment plants of nitrogenand phosphorus removal unstable caused by lack of carbon source have influenced onthe ecological environment increasingly serious. In this case, it is necessary to developand optimize the effective utilization of the carbon source and integrate nitrogen andphosphorus removal wastewater treatment technology. The advantages of the systemcombining step-feed process with aerobic biofilm are saving internal reflux facilities, noexternal carbon source, improving system resistance to impact load and increasingsystem biomass, etc. By the means of theoretical analysis, pilot tests combined withsmall scale tests, a systematic study on the performance of the combined process iscarried out to hope to provide guidance of promoting the application in the field oflow-carbon source area and upgrading sewage plants of similar processes.
     In order to ensure the combined-process reactor in the state of the plug-flow aswhole, the structure of the reactor has been transformed through flow patternexperiments, providing a suitable reactor flow pattern for subsequent biochemical tests.
     Through the research of HRT, temperature, influent flow distribution ratio, sludgerecycle ratio and anoxic zone volume ratio impacting on the combined process efficacy,the study researchs on the features and advantages of the combined processsystematically, optimizes reasonable range of parameter values. It is found that theefficiency against external shock of the combined process system was more obviouscompared with purely activated sludge system. In the case of low HRT, the measures ofincreasing aeration and reducing sludge can improve denitrification effect of the system,and TP can be removed by chemical approach; temperature changes can be mainlyachieved by adjusting the sludge concentration and DO concentration in order to ensurebetter treatment effect. Through analyzing test urban sewage water conditions, it is foundthat the segmented water distribution pattern is progressively decreasing. The sludgereturn ratio made little influence on denitrification of the combined process, and thereturn ratio of50%to100%is more appropriate in view of not affecting thedenitrification performance and reducing energy consumption. Under the premise ofbest water diversion ratio, maximizing the anoxic zone 's volume can improve system TN removal.
     Obvious simultaneous nitrification and denitrification phenomenon appeared in theaerobic zone of th combined proces, it can be found that simultaneous nitrification anddenitrification performance of all levels of aerobic zone differs significantly, the firstlevel best, the second stage, followed by the third level worst. Dosing filler enhance theability of simultaneous nitrification and denitrification. In the case of the treatmenteffect of the overall consideration of various water quality indicators, pilot reactortaking the cascade aeration dissolved oxygen with0.5mg/L,1.0mg/L,and1.5mg/Lrunning condition, simultaneous nitrification reactor denitrification capacity has beenfully played, and the study analyzed denitrification mechanism from the angle of thewater way combined with biofilm.
     Using microscope microscopic examination technology, through observingmicrobial composition and morphological features of activated sludge and biofilm in therunning stage of the system, it is found that the biofacies are abundant of the combinedprocess,and biofacies of biological activated sludge and biofilm sludge are different,then the study analyzed microbial feature in the reactor and microbial immobilizationmechanism. During the test,sludge observed yield of the combined process are basicallybetween0.12and0.21kgMLSS/kgCOD, significantly lower than the activated sludgeprocess. Environmental scanning electron microscope results showed that holes andchannels for the exchange of substances existe in the floc and biofilm, and they createthe material and environmental conditions for simultaneous nitrification anddenitrification of combined process systems. SOUR and DHA of activated sludge andbiofilm of the combined process reactor showed a downward trend, biological activity isaffected by temperature and carbon source, and the sludge activity is proportional toorganic matter concentration in the environment.
     Through system flora diversity and similarity analysis,comparing biofilm diversityindex of each level of the activated sludge with the biofilm, diversity index of biofilm ishigher than the activated sludge, indicating that microbial populations in the biofilm aremore rich. Simultaneously, similarity of biofilm samples is significantly higher than thatof activated sludge, caused partly by higher diversity of the microbial flora in thebiofilm.
     Process combining Multi-level A/O with aerobic biofilm is an energy-saving, efficient and stable wastewater treatment process, it can be applied to new constructionand renovation projects, by adjusting the various operating parameters to achieve thebest conditions, and improving water quality.
引文
[1]钱正英,张光斗.为可持续发展提供水资源保障[M].北京:中国水利水电出版社,2001:1-30.
    [2]张杰.水资源、水环境与城市污水再生回用[J].给水排水.1998,24(8):1-4.
    [3] San D M, Azanza R V, Villanoy C L, et al. Eutrophic waters, algal bloom and fish kill in fishfarming areas in Bolinao, Pangasinan, Philippines[J]. Mar Pollut Bull.2008,57(6-12):295-301.
    [4]中华人民共和国环境保护部.2010年中国环境状况公报[G].2011.
    [5]吴季松.用可持续利用的资源观认识水资源问题[N].中国水利报.
    [6]住房和城乡建设部.《关于全国城镇污水处理设施2011年第四季度建设和运行情况的通报》[R].,2012.
    [7]杨勇,王玉明,王琪,等.我国城镇污水处理厂建设及运行现状分析[J].给水排水.2011,37(8):35-39.
    [8]陈中颖,刘爱萍,刘永,等.我国城镇综合污水的可生化性调查与分析[J].给水排水.2009,35(z1):248-251.
    [9]仇保兴.中国城镇水务"十二五"发展展望[J].建设科技.2010(21):15-17.
    [10]中华人民共和国国家统计局.中国统计年鉴(2005~2010)[M].中国统计出版社,2006.
    [11]王伟,王淑莹,王海东.连续流分段进水生物脱氮工艺控制要点及优化[J].环境污染治理技术与设备.2006,10(7):83-87.
    [12] Vazquez I, Rodriguez J, Maranon E, et al. Study of the aerobic biodegradation of cokewastewater in a two and three-step activated sludge process[J]. J Hazard Mater.2006,137(3):1681-1688.
    [13] J F, K R, A C. Full-scale evaluation of step feed BNR process at a New York City waterpollution control plant [Z]. Chicago:2002.
    [14] G rgün E, Artan N, Orhon D, et al. Evaluation of nitrogen removal by step feeding in largetreatment plants[J]. Water Science and Technology.1996,34(1–2):253-260.
    [15] Larrea L, Larrea A, Ayesa E, et al. Development and verification of design and operationcriteria for the step feed process with nitrogen removal[J]. Water Sci Technol.2001,43(1):261-268.
    [16] Frigon J C, Breton J, Bruneau T, et al. The treatment of cheese whey wastewater by sequentialanaerobic and aerobic steps in a single digester at pilot scale[J]. Bioresource Technology.2009,100(18):4156-4163.
    [17]王社平,于莉芳,韩光辉,等. A/O工艺分段进水生物脱氮技术分析[J].工业用水与废水.2006,37(1):7-10.
    [18] Lee Y W, Kim Y J, Chang N I, et al. Development of sequencing batch reactor with step feedand recycle[J]. Water Science and Technology.2007,55(1/2):477-484.
    [19] Lu L, Zhang S, Li H, et al. A reformed SBR technology integrated with two-step feeding andlow-intensity aeration for swine wastewater treatment[J]. Environmental Technology.2009,30(3):251-260.
    [20] Wang S P, Yu L F, Han G H, et al. A pilot study on a step-feeding anoxic/oxic activated sludgesystem[J]. Water Science and Technology.2006,53(9):95-101.
    [21] Tang C C, Kuo J, Weiss J S. Maximum nitrogen removal in the step-feed activated sludgeprocess[J]. Water Environment Research.2007,79(4):367-374.
    [22] Lemaire R, Marcelino M, Yuan Z G. Achieving the nitrite pathway using aeration phase lengthcontrol and step-feed in an SBR removing nutrients from abattoir wastewater[J].Biotechnology and Bioengineering.2008,100(6):1228-1236.
    [23] Lesoue A, Pyaruadeua M, F R, et al. Optimizing nitrogen removal reactor configurations byon-site calibration of the IWAPRC activated sludge mode[J]. Wat Sci Tech.1992,25:115-123.
    [24] Fujii S. The oretical analysis on nitrogen removal of the step-feed anxoic-oxic activatedsludge Process and its application for the optimal operation[J]. Wat Sci Tech.1996,34(1-2):459-466.
    [25] Debabradrilo C, Carrio L, Mahoney K, et al. Practical consideration for design of a step feedbiological nutrient removal system[J]. Florida Water Resources Journal.2002(Januay):18-33.
    [26]王伟,彭永臻,孙亚男.污泥回流比对分段进水A/O生物脱氮工艺的影响[J].中国环境科学.2008,28(2):116-120.
    [27]葛士建,彭永臻,曹旭,等.改良UCT分段进水工艺处理生活污水性能优化研究[J].环境科学.2011,32(7):2006-2010.
    [28]王社平,彭党聪,朱海荣,等.城市污水分段进水APO脱氮工艺试验研究[J].环境科学研究.2006,19(3):75-80.
    [29] H G J, Q Y, Z P Y, et al. Biological nitrogen removal with real-time control using step-feedSBR technology[J]. Enzyme and Microbial Technology.2007,40(6):1564-1569.
    [30]周律,李哿, Hangsik Shin,等.污水生物处理中生物膜传质特性的研究进展[J].环境科学学报.2011,31(8):1580-1586.
    [31] Hwang J H, Cicek N, Oleszkiewicz J A. Achieving biofilm control in a membrane biofilmreactor removing total nitrogen[J]. Water Res.2010,44(7):2283-2291.
    [32] Nogueira R, Melo L F, Purkhold U, et al. Nitrifying and heterotrophic population dynamics inbiofilm reactors: effects of hydraulic retention time and the presence of organic carbon[J].Water Research.2002,36(2):469-481.
    [33] Beyenal H, Lewandowski Z. Modeling mass transport and microbial activity in stratifiedbiofilms[J]. Chemical Engineering Science.2005,60(15):4337-4348.
    [34] Beyenal H, Lewandowski Z. Internal and external mass transfer in biofilms grown at variousflow velocities[J]. Biotechnology Progress.2002,18(1):55-61.
    [35]刘俊新,丛丽,王宝贞,等.生物膜与活性污泥结合工艺脱氮除磷研究[J].中国给水排水.2000,16(12):1-5.
    [36]李桂平,周增炎.复合活性污泥-生物膜反应器硝化能力的研究[J].重庆环境科学.2003,25(6):35-37.
    [37]王建龙,吴立波,钱易,等.复合生物反应器处理废水特性的研究[J].中国给水排水.1998,14(2):29-32.
    [38] Wanner, Kucman, Grau. Activated sludge process combined with biofilmcultivation[J]. WaterResearch.2004,22(2):207-215.
    [39] Sher M I, Arbuckle W B, Shen Z. Oxygen uptake rate inhibition with PACT sludge[J].Hazardous Mater.2000,73:129-142.
    [40] Henze M. Capabilities of biological nitrogen removal processes from wastewater[Z]. Kyoto,Jpn:1991:23,669-679.
    [41]马培舜,王海玲,成丽华,等.昆明的城市污水处理现状及发展[J].中国给水排水.2003,19(4):19-22.
    [42]张雁秋,李昂,李燕,等.分点进水脱氮除磷新工艺的理论基础和实践[J].中国给水排水.2008,24(24):13-15.
    [43]王德河,房安富,何远光. CAST工艺处理市政污水的设计与运行[J].中国给水排水.2008,24(24):45-47.
    [44]李勇,陈杰云,张智,等.倒置A2/O工艺调控运行效果分析[J].给水排水.2009,35(5):37-40.
    [45]杨鲁豫,王琳,王宝贞.适宜中小城镇的水污染控制技术[J].中国给水排水.2001,17(1):23-25.
    [46] Baeza J A, Gabriel D, Lafuente J. Improving the nitrogen removal efficiency of an A2/Obased WWTP by using an on-line Knowledge Based Expert System[J].2006,36(8):2109-2123.
    [47] Vaiopoulou E, Aivasidis A. A modified UCT method for biological nutrient removal:configuration and performance[J]. Chemosphere.2008,72(7):1062-1068.
    [48] Bever, Stein, Teichmann.现代德国脱氮除磷技术[M].青岛:中德城市污水处理培训中心,1995.
    [49] Henze M., Harremoes P., Cour Jansen Jesla,等.污水生物与化学处理技术[M].国家城市给水排水工程技术研究中心.中国建筑工业出版社,1999.
    [50] Zhu G B, Peng Y Z, Ma B, et al. Optimization of anoxic/oxic step feeding activated sludgeprocess with fuzzy control model for improving nitrogen removal[J]. Chemical EngineeringJournal.2009,151(1/3):195-201.
    [51] Frigon J C, Breton J, Bruneau T, et al. The treatment of cheese whey wastewater by sequentialanaerobic and aerobic steps in a single digester at pilot scale[J]. Bioresource Technology.,100(18):4156-4163.
    [52]周健,张欣宇,干丽莎,等.分段进水多级生物膜反应器脱氮效能影响因素研究[J].环境工程学报.2012,6(1):120-124.
    [53] Johnson B R, Goodwin S, Daigger G T, et al. A comparison between the theory and reality offull-scale step-feed nutrient removal systems[J].2005,52(10-11):587-596.
    [54]高旭,龙腾锐.连续进出水间歇曝气工艺污泥好氧速率研究[J].给水排水.2002,28(3):4-8.
    [55] Crocetti G, Hugenholt Z, Bond P, et al.Identification of polyphosphate accumulatingorganisms and design of16S rRNA directed probes for their detection and quantification[J].Applied and Environmental Microbiology.2000,66(3):1175-1182.
    [56] Andreasen K, Nielsen P. Application of micro autoradiography to the study of substrate uptakeby filamentous microorganisms inactivated sludge[J]. Environmental Microbiology.1997,63(9):3662-3668.
    [57] Beffa T, Blanc M, Lyon P F, et al. Isolation of thermal strains from hot composts (60to808C)[J]. Appl Environ Microbiol.1996,62(5):1723-1727.
    [58] Ryckeboer J, Margaret J, Vaes K, et al. A survey of bacteria and fungi occurring duringcomposting and self-heating processes[J]. Ann Microbiol.2003,53(4):349-410.
    [59] Watanabe K, T Eramoto M, Futamata H, et al. Molecular detection, isolation, andphysiological characterization of functionally dominant phenol-degrading bacteria in activatedsludge[J]. Appl Environ Microbiol.1998,64(11):4396-4402.
    [60] Briones A, Raskin L. Diversity and dynamics of microbial communities in engineeredenviroranents and their implications for process stability[J]. Current Opinion inBiotechnology.,14(3):270-276.
    [61] Lvnitsky H, Katz I, Minz D, et al. Bacterial community composition and structure of biofilmsdeveloping on nanofiltration membranes applied to wastewater teatment[J]. Water Research.2007,41(17):3924-3935.
    [62]许保玖,龙腾锐.当代给水与废水处理原理[M].北京:高等教育出版社,2000.
    [63]傅贵萍,吴振斌,任明迅.反应器理论在复合垂直流构建湿地水流流态研究中的应用[J].环境科学.2002,23(4):76-80.
    [64]詹德昊,吴振斌,晟张,等.堵塞对复合垂直流湿地水力特征的影响[J].中国给水排水.2003,19(2):1-4.
    [65]郭静,李清雪,马华年. ABR反应器的性能及水力特性研究[J].中国给水排水.1997,13(4):17-20.
    [66] Liu X L, Ren N Q, Wan C L. Hydrodynamic characteristics of a four-compartment periodicanaerobic baffled reactor[J]. J Environ Sci (China).2007,19(10):1159-1165.
    [67]周琪,胡纪萃,顾夏声.升流式厌氧污泥层反应器水力混合特性研究[J].环境科学学报.1995,15(2):170-176.
    [68]季铁军,罗固源,张佳丹.中国给水排水.2006,22(15):54-57.
    [69]郭素红,王凯军,邹安华.旋转流厌氧附着膜膨胀床运行及水力流态研究[J].环境污染与防治.2007,29(9):644-651.
    [70]罗麟,李伟民,邓荣森,等.一体化氧化沟的三维流场模拟与分析[J].中国给水排水.2003,19(12):15-18.
    [71]赵杰.基于CFD的同心环流反应器流态模拟研究及优化[D].重庆大学,2010.
    [72]张宗才,张新申,张铭让.氧化沟水力分析及流场计算[J].中国皮革.2004,33(11):22-25.
    [73]王福军.计算流体动力学分析[M].北京:清华大学出版社,2004.
    [74]李媛. AIRE-O2充氧机性能浅析与Orbal氧化沟流态测试及三维模拟[D].重庆大学,2005.
    [75]张凯,王瑞金,王刚,等. Fluent技术基础与应用实例[M].北京:清华大学出版社,2010.
    [76] Fowler H W, Mckay A J. Micobial Adhesion to Surface[M]. London: Academic Press,1980.
    [77]周平,何嘉汉,钱易,等.内循环生物流化床反应器载体挂膜特性的研究[J].环境科学学报.1998,18(1):68-72.
    [78] Tijhuis L, van Loosdrecht M C M, Heijnen J J. Formation and growth of heterotrophic aerobicbiofilms on small suspended partical in airlift reactors[J]. Biotechnology and Bioengineering.1994,44.
    [79]周群英,王士芬.环境工程微生物学[M].第三版.北京:高等教育出版社,2008.
    [80] Arcand Y, Guiot S R, Desrochers M, et al. Impact of the reactor hydrodynamics and organicloading on the size and activity of anaerobic granules[J]. The Chemical Engineering Journaland the Biochemical Engineering Journal.1994,56(1):23-35.
    [81]张林军.上向流与下向流曝气生物滤池启动与挂膜特性研究[J].徐州工程学院学报.2005,20(1):53-57.
    [82]许春生.生物复合工艺处理寒冷地区城市污水试验研究[D].哈尔滨:哈尔滨工业大学,2006.
    [83] Jing J Y, Feng J, Li W Y. Carrier effects on oxygen mass transfer behavior in a moving-bedbiofilm reactor[J]. Asia-Pacific Journal of Chemical Engineering.2009,4(5):618-623.
    [84]刘雨,赵庆良,郑兴灿.生物膜法污水处理技术[M].北京:中国建筑工业出版社,2000.
    [85]毕学军,高廷耀.生物脱氮除磷工艺好氧区硝化功能的强化试验[J].上海环境科学.2000,19(4):183-186.
    [86]张宝杰,王宝贞,韩洪军,等.复合式生物处理系统的效能与机理研究[J].哈尔滨建筑大学学报.1999,32(6):100-104.
    [87] Wang J, Shi H, Qian Y. Wastewater Treatment in a Hybrid Biological Reactor(HBR):Eeffct ofOrganic Loading Rates[J]. Process Biochemistry.2000,36:297-303.
    [88] Kartala B, Jayne R, van Niftrika L A, et al. Candidatus “Anammoxoglobus propionicus” Anew propionate oxidizing species of anaerobic ammonium oxidizing bacteria[J]. Systematicand Applied Microbiology.2007,30:39-49.
    [89] Blackburne R, Yuan G Z, Keller J. Demonstration of nitrogen removal via nitrite in asequencing batch reactor treating domestic wastewater[J]. Water Research.2008,42(8-9):2166-2176.
    [90]顾夏声,胡洪营,文湘华,等.水处理微生物学[M].北京:中国建筑工业出版社,2006:102-104.
    [91] Metcalf, Eddy, Inc. Wastewater Engineer Treament and Reuse (Fourth Edition)[M]. New York:McGraw-Hill,2003.
    [92]张丽娟,许玫英,孙国萍. FISH法对垃圾渗滤液硝化生物膜发育的观察与分析[J].微生物学通报.2007,34(2):241-245.
    [93]宋旭升,毕学军,吴涛.悬浮填料强化活性污泥系统硝化功能的试验研究[J].工业水处理.2011,31(4):19-22.
    [94]顾夏声.废水生物处理数学模式[M].北京:清华大学出版社,1993.
    [95]周浩晖,桑军强,王占生.低温条件下陶粒滤池生物膜特性研究[J].环境工程.2003,21(1):10-12.
    [96] Moser-Engeler R, Udert K M, Wild D, et al. Product s from primary sludge fermentation andtheir suitability for nutrient removal[J]. Wat Sci Tech.1998,38(1):265-273.
    [97] Llabres P, Pavan P, Battistioni P, et al. The use of organic fraction of municipal solid wastehydrolysis products for biological nutrient removal in wastewater treatment plants[J]. Wat Res.1999,33(1):214-220.
    [98] Elefsiniotis P, Wareham D G, Smith M O. Use of volatile fatty acids from an acid-phasedigester for denitrification[J]. Journal of Biotechnology.2004,114(3):289-297.
    [99] L W J, C S H, Y Q. Wastewater treatment in a hybrid biological reactor (HBR):Effect oforganic loadingrates[J]. Process Biochemistry.2000,36(4):297-303.
    [100]饶应福,夏四清,陈轶波,等.悬浮填料生物反应器处理低浓度氨氮的动力学特性分析[J].环境工程.2005,23(5):7-10.
    [101]王洪臣,周军,王佳伟,等.5F-A2/O——脱氮除磷工艺的实践与探索[M].北京:中国建筑工业出版社,2009.
    [102]李军,杨秀山,彭永臻.微生物与水处理工程[M].北京:化学工业出版社,2002.
    [103]周健,张欣宇,干丽莎,等.分段进水多级生物膜反应器脱氮效能影响因素研究[J].环境工程学报.2012(01).
    [104]王晓莲,彭永臻. A2/O法污水生物脱氮除磷处理技术与应用[M].北京:科学出版社,2009:40-41.
    [105] Leslie Grady C. P., Jr Glen T. Daigger.废水生物处理[Z].北京:化学工业出版社,2003.
    [106]王冰.四级三相式生物流化床分段进水工艺脱氮效能研究[D].哈尔滨:哈尔滨工业大学,2011.
    [107] Henze M, Harremoёs P. Characterisation of the wastewater: The effect of chemicalprecipetation on the wastewater composition and its consequences for biologicaldenitrification[J]. In Chemical Water and Wastewater Treatment.1992:299-311.
    [108] Hellinga C, Schellen A, Mulder J, et al. The SHARON process:an innovative method fornitrogen removal from ammonium-rich waste water[J]. Wat.Sci.Tech.1998,37(9):135-142.
    [109] van Loosdrecht M, Jetten M. Microbiological conversion in nitrogen removal[J].Wat.Sci.Tech.1998,38(1):1-7.
    [110] Holley K S. Simultaneous nitrification and denitrification in activated sludge floc[D].USA:University of Missouri-Rolla,2003.
    [111] Andreadakis A D. Physical and chemical properties of activated sludge floc[J]. WaterResearch.1993,27(12):1707-1714.
    [112] Collivignare C, Bertanza G. Simultaneous Nitrification-Denitrification process Sci Tech inActivated sludge plants performance and Applicability[J]. Wat.Sci.Tech.1999,40(45):187-194.
    [113] Third K A, Burnett N, Cord Ruwisch C. Simultaneous nitrification and denitrification usingstored substrate (PHB) as the electron donor in an SBR[J]. Biotechnol Bioeng.,83(6):706-720.
    [114] Pochana K, Keller J. Study of factors affecting simultaneous nitrification and denitrification(SND)[J]. Water Sci Technol.1999,39(6):61-68.
    [115]王社平.西安市第四污水厂水质分析及分段进水A/O生物脱氮工艺研究[D].西安:西安建筑科技大学,2006.
    [116] Zhu G B, Peng Y Z, Wang S Y, et al. Simultaneous nitrification and denitrification instep-feed biological nitrogen removal Process[J].2007,19(9):1043-1048.
    [117] Puznava N, Payraudeau M, Thornberg D. Simultaneous nitrification and denitrification inbiofilterswith real-time aeration control[J].2000,43(1):269-276.
    [118] Tonkovic Z. Energetics of enhanced biological phosphorus and nitrogen removalprocesses[J]. Water Sci Technol.1998,38(1):177-184.
    [119] Littleton H X, Daigger G T, Strom P F, et al. Evaluation of autotrophic denitrification,heterotrophic nitrification,and PAOs in full scale simultaneous biological nutrient removalsystems[J]. Water Sci Technol.2002,46(1~2):305-312.
    [120] Kugleman I J, Spector M, Harvilla A, et al. Aerobic denitrification in activated sludge[J]. JEnviron Eng.1991,117(2):312-318.
    [121]彭永臻.对我国污水处理污染物排放标准的思考[J].给水排水.2009,35(10):1.
    [122]杨凌波,曾思育,鞠宇平,等.我国城市污水处理厂能耗规律的统计分析与定量识别[J].给水排水.2008,34(10):42-45.
    [123]李亚新.活性污泥法理论与技术[M].北京:中国建筑工业出版社,2007.
    [124]刘少武,周娇,张智,等. CAST工艺的强化脱氮研究[J].中国给水排水.2009,25(11):5-11.
    [125] Zhang Z, Chen J Y, Xie L H, et al. Nitrogen removal for low-carbon wastewater in reversedA2/O process by regulation technology[J]. Journal of Central South University ofTechnology.2009,16(S1):304-308.
    [126]仇保兴.中国城镇水务“十二五”发展战略与主要任务[J].给水排水.2011,37(2):7-12.
    [127]王维斌.污水处理中减少污泥产量的方法和机理[J].给水排水.2001,27(10):38-42.
    [128] Brdjanovic A D, Slamet M, van Ioosdrecht C M, et al. Impact of excessive aeration onbiological phosphorus removal from wastewater[J]. Water Res.1998,34(1):200-208.
    [129]王晓莲,王淑莹,马勇,等. A2O工艺中反硝化除磷及过量曝气对生物除磷的影响[J].化工学报.2005,56(8):1565-1570.
    [130]张自杰,林荣忱,金儒.排水工程(下)[M].北京:中国建筑工业出版社,2006.
    [131] Painter H A. Microbial transformation of inorganic nitrogen[J]. Prog. Water Technol.1977,8(4-5):3-29.
    [132] Elisabeth V M, Paul L, Jurg K. Simultaneous Nitrification and Denitrification inBench-Scale Sequencing Batch Reactor[J]. Wat.Res.1996,30(2):277-284.
    [133] Jia W, Zhang J, Xie H, et al. Effect of PHB and oxygen uptake rate on nitrous oxideemission during simultaneous nitrification denitrification process[J]. Bioresour Technol.2012,113:232-238.
    [134] Pasco N, Baronian K, Jeffries C, et al. Biochemical mediator demand--a novel rapidalternative for measuring biochemical oxygen demand[J]. Appl Microbiol Biotechnol.2000,53(5):613-618.
    [135] Van Niel E W J. Nitrification by heterotrophic denitrifiers and its relationship to autotrophicnitrification[D]. Delft: Delft University of Technology,1991.
    [136]荆肇乾.五箱一体化活性污泥工艺强化除磷脱氮研究[D].南京:东南大学,2006.
    [137]张自杰,张忠祥,龙腾锐,等.废水处理理论与设计[M].北京:中国建筑工业出版社,2002.
    [138]邱文芳,罗志腾,杜仰民,等.环境微生物学技术手册[M].北京:学苑出版社,1990.
    [139]陈声贵,许木启,曹宏,等.活性污泥微型动物种群动态与水质净化效能的关系[J].动物学报.2003,49(6):775-786.
    [140]李探微,彭永臻,朱晓.活性污泥中原生动物的特征和作用[J].给水排水.2001,27(4):24-27.
    [141]梁鹏,黄霞,钱易,等.环境因子对红斑瓢体虫生长的影响[J].中国环境科学.2004,24(5):610-613.
    [142] Tiehm A, Nickel K, Neis U. The use of ultrasound to accelerate the anaerobic digestion ofsewage sludge[J]. Water Sci Technol.1997,36(11):121-128.
    [143] Kamiya T, Hirotsuji J. New combined system of biological process and intermittentozonation for advanced wastewater treatment[J]. Water Sci Technol.1998,38(8-9):145-153.
    [144]沈锡芬.微型动物在污水处理中的原理、作用和应用[J].生物学通报.1999,34(7):1-4.
    [145] Liang P, Huang X, Qian Y, et al. Determination and comparison of sludge reduction ratescaused by microfaunaspredation[J]. Bioresource Technology.2006,97(6):854-861.
    [146] Liu Y, Lin Y M, Yang S F, et al. A Balanced Model for Biofilms Developed at DieffrentGrowth and Detachment Forces[J]. Process Biochem.,38(12):1761-1765.
    [147]尹军.消化污泥脱氢酶活性检测的若干问题[J].中国给水排水.2000,16(10):47-49.
    [148] Yin J, Tan X, Ren N, et al. Evaluation of heavy m eta l inhib ition o f activated sludge byTTC and INT-electron transport system activity tests[J]. Water Science And Technology.2005,52(8):231-239.
    [149]严媛媛,孙力平,冯雷雨. SBR法处理还原段DSD酸废水脱氢酶活性的研究[J].环境科学与技术.2007,30(3):87-90.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700