用户名: 密码: 验证码:
双泥SBR-BAF复合工艺的特性和处理效能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着水体污染不断加剧,“富营养化”问题日益突出,与此同时,严重的水资源短缺状况要求污水处理后回用。长期以来,在污水处理工程中应用的悬浮污泥和附着污泥工艺各自具有不可克服的缺陷,处理水质也难以达到回用水标准。在此背景下,通过对现有污水生物脱氮除磷理论及工艺进行详细分析,结合悬浮污泥和附着污泥工艺各自的特性,开发了“双泥SBR-BAF复合工艺”,以期能为现有污水处理厂的技术改造及新建污水处理厂的优化设计提供新思路和技术支持。
     为考察SBR-BAF工艺的运行特性和处理效能,本课题以人工模拟的高浓度城市生活污水为研究对象,结合模型试验和批式试验,对工艺去除污染物的机理进行了初步探讨和分析,考察了进水条件、工艺参数对运行效果的影响,并采用在线检测手段,就应用EC、ORP、DO、pH等水化学参数揭示脱氮除磷过程中的变化规律进行了探讨。
     首先采用接种城市污水处理厂悬浮污泥的方法对SBR-BAF系统进行启动。SBR-BAF工艺为双污泥系统,聚磷菌呈悬浮污泥生长于SBR反应器,硝化菌和反硝化菌呈附着污泥生长于BAF反应器。根据PAOs(phosphate accumulating organisms)和硝化菌在泥龄上的差异,采用8d的泥龄,在SBR反应器中逐步将硝化菌淘洗出去。经过21天的培养驯化,完成了SBR-BAF系统的启动,此时NH_4~+-N、TN、TP去除率分别达到83%、71%、80%。
     继而对SBR-BAF系统的工艺运行条件和工艺参数进行了优化,分析了SBR-BAF工艺的特性和机理。通过分析SBR反应器同一周期内水质连续监测结果和在线测量的EC、ORP、DO、pH值等水化学参数,结果表明:EC数值变化与生物除磷过程中PO_4~(3-)浓度变化具有很好的一致性;在反应器内尚存在硝化/反硝化反应时,pH值在好氧段和缺氧段的峰值分别是硝化反应开始和反硝化结束的标志;ORP数值在厌氧释磷结束后趋于稳定,但在好氧段没有清晰的的特征点。根据这些结果,将厌氧反应时间和好氧反应时间分别调整为60min、150min。此后分别研究了碳源类型及浓度、pH值、SRT对除磷效果的影响,结果表明:乙酸钠对厌氧释磷的诱导能力高于葡萄糖,但两者对系统最终除磷效果的影响作用无明显区别;生物除磷过程COD/TP应在30以上;对生物除磷过程最适宜的pH范围是7.0~7.5;对于以除磷为目的的生物处理系统,污泥龄应控制在8~10天。
     BAF反应器连续流试验结果表明:最佳气水比为4:1,硝化类型以短程硝化为主,NO_2~--N占到NOx--N的72%;综合考虑对TN的去除率和动力消耗,最佳回流比为200%;最佳缺氧/好氧容积比为3:5;由于短程反硝化较全程反硝化碳源需求量低,在BAF反应器进水NH4+-N 40mg/L左右的情况下,乙酸钠投加量为80mg/L(以COD计);设定水头损失达到6cm时进行反冲洗,随水温不同,反冲洗周期为17~20d,产水率为98.7%。
     最后,以上述最佳运行参数控制SBR-BAF系统运行,长期运行结果表明:系统中悬浮污泥的絮凝、沉降性能良好,SV值为22~30,SVI值为58~80,不再有污泥膨胀之虞,而且可以对剩余污泥进行重力浓缩,浓缩后污泥浓度可以达到3~4%;短程硝化和反硝化使得系统可以维持碱度平衡,无需额外补充碱度;系统在高负荷(SBR反应器COD负荷为2.08kgCOD/kgMLSS.d,TP负荷为41.68gTP/kgMLSS.d,BAF反应器NH4+-N负荷为1.16kgNH_4~+-N/m~3.d)、低水力停留时间(SBR反应器9h,BAF反应器1h,总计10h,约为同步脱氮除磷悬浮污泥工艺的一半)下稳定高效运行,对COD(不计BAF加入的外碳源)、TP、NH_4~+-N、TN的平均去除率为96%、98%、93%、84%,出水COD、TP、NH4+-N、TN、SS的平均浓度为20mg/L、0.23 mg/L、3.24 mg/L、7.68 mg/L、5 mg/L,各项水质指标均达到《城镇污水处理厂污染物排放标准》(GB 18918-2002 )一级标准的A标准的要求。
With the deterioration and eutrophication of water environment, it is essential to treat and reuse the municipal wastewater due to the increasingly severe water resource shortage in China. There are several limitations with the suspended growth and attached growth single-sludge system respectively. Moreover, the effluent quality can’t meet the wastewater reuse standard by means of gravity sedimentation in suspended growth sludge system. Under this background, an innovative two-sludge SBR-BAF process, combining the advantages of suspended growth and attached growth process, was developed to provide new brainstorm for the upgrade of built-up WWTPs (wastewater treatment plant) and the design of new WWTPs.
     In order to investigate the operation characteristics and removal efficiency of the SBR-BAF process, a series of bench-scale and batch experiments were carried out with synthetic municipal wastewater as influent. The mechanism of phosphorus and nitrogen removal was explored. Meanwhile, the operation and maintenance parameters were optimized by analyzing the wastewater sample quality and online hydrochemical readings such as EC (electric conductivity), ORP (oxidation reduction potential), DO (dissolved oxygen), and pH value.
     Firstly, the SBR-BAF system was start up by seeding sludge from a municipal WWTP. The SBR-BAF system consists of an anaerobic/aerobic SBR (sequencing batch reactor) and an anoxic/aerobic BAF (biological aerated filter). The nitrobacteria were elutriated from PAOs (phosphate accumulating organisms) and proliferated within the BAF because of the short 8 days’SRT (sludge retention time) of SBR. On the 21st day, the removal efficiency of NH_4~+-N, TN, and TP increased to 83%, 71%, and 80% respectively, which meant the accomplishment of sludge cultivation and acclimation.
     Secondly, the SBR-BAF system was optimized. The characteristics and mechanism of the SBR-BAF process were discussed.
     The results of batch experiments show that: the variation of EC and PO_4~(3-) is identical; the peak values of pH in aerobic and anaerobic stage indicate the end of nitrification and denitrification respectively; ORP remains constant after phosphate having been released from PAOs. Based on these results, the anaerobic duration was shortened to 60 minutes, so did the aerobic duration to 150 minutes. The P-release rate is smaller when using the glucose as carbon source than using acetate, however, there’s no difference as for the final TP removal efficiency. Other optimal operation parameters of SBR are as flows: the influent COD/TP ratio more than 30; the pH value ranging from 7.0 to 7.5; the SRT ranging from 8 days to 10 days.
     The results of continuous experiments with BAF show that: the short nitrification occurs when the Qair/Qinfluent ratio is 4:1 with NO_2~--N accounting for 72% of NOx--N; the suitable recirculation rate is 200%; the ratio of external acetate dose (as COD) to NH4+-N concentration is 2:1 attributing to the short nitrification; BAF needs being backwashed when the headloss increases to 6 cm every 17~20 days; in the water reuse context, 98.7% water yield can be obtained.
     Lastly, the long-term operation of SBR-BAF system indicates it can treat the wastewater efficiently. The sludge settling characteristic is satisfying with SV varying from 22 to 30 and SVI varying from 58 to 80ml/g.The sludge bulking problem has been avoided successfully. The excess sludge can be thickened to 3%-4 %( as solid mass proportion). The alkalinity remains equilibrious between the nitrification and denitrification in SBR-BAF system. The COD and TP loading of SBR are 2.08kgCOD/kgMLSS·d and 41.68gTP/kgMLSS·d, respectively. The NH4+-N loading of BAF is 1.16kgNH_4~+-N/m~3.d. The total HRT (hydraulic retention time) is about 10 hours which is only about half of suspended growth process for simultaneous phosphorous and nitrogen removal. Under the above mentioned high loadings and short HRT, the mean removal efficiency of COD, TP, NH4+-N, TN is 96%, 98%, 93%, and 84%, respectively. The mean effluent concentration of COD, TP, NH4+-N, TN, SS is 20mg/L, 0.23 mg/L, 3.24 mg/L, 7.68 mg/L, 5 mg/L respectively, which means every index can meet the first class (A) of Discharge Standard of Pollutants for Municipal Wastewater Treatment Plant.
引文
[1]钱易,唐孝炎.环境保护与可持续发展.北京:高等教育出版社, 2000
    [2]国家环境保护总局.2005年中国环境状况公报
    [3]国家环境保护总局.2006年中国环境状况公报
    [4]中国工程院“21世纪中国可持续发展水资源战略研究”项日组.中国可持续发展水资源战略研究综合报告.2000
    [5]Zhang Y., Chen X., Zheng X., et al. Review of water reuse practices and development in China. Wat. Sci. Tech., 2007, 55(1~2): 495~502
    [6]郑兴灿,李亚新.污水除磷脱氮技术.北京:中国建筑工业出版社,1998
    [7]国家环境保护局.GB8978-88污水综合排放标准.北京:中国标准出版社,1988
    [8]国家环境保护局.GB8978-1996污水综合排放标准.北京:中国标准出版社,1996
    [9]国家环境保护总局.GB18918-2002城镇污水处理厂污染物排放标准.北京:中国标准出版社,2002
    [10]华光辉,张波.城市污水生物除磷脱氮工艺中的矛盾关系及对策.给水排水,2000,26(12):1~4
    [11]林燕,杨永哲,袁林江.生物除磷脱氮技术的研究动向.中国给水排水,2002,18(7):20~22
    [12]张杰,臧景红,杨宏,等.A2/O工艺的固有欠缺和对策研究.给水排水,2003,29(3):22~26
    [13]G.乌尔松,B.纽厄尔[著].高景峰,彭永臻[译].污水处理系统的建模、诊断和控制.北京:化学工业出版社,2005
    [14]Martins A.M.P., Pagilla K. Filamentous bulking sludge—a critical review. Wat. Res. 2004, 38:793~817
    [15]Gaval G., Pernelle J. J. Impact of the repetition of oxygen deficiencies on the filamentous bacteria proliferation in activated sludge. Wat. Res. 2003, 37:1991~2000
    [16]Mart?nez M., Sanchez-Marre M., Comas J., et al. Case-based reasoning, a promising tool to face solids separation problems in the activated sludge process. Wat. Sci. Tech. 2006, 53(1):209~216
    [17]Andreasen K., Sigvardsen L. Experiences with sludge settleability in different process alternatives for nutriment removal. Wat. Sci. Tech.1996, 33(12):137~146
    [18]Eikelboom D.H., Andreadakis A. Survey of filamentous populations in nutriment removalplants in four European countries. Wat. Sci.Tech.1998, 37(4~5):281~289
    [19]郑俊,吴浩汀,程寒飞.曝气生物滤池污水处理新技术及工程实例.北京:化学工业出版社,2002
    [20]吕炳南,陈志强.污水生物处理新技术.哈尔滨:哈尔滨工业大学出版社,2005
    [21]郑兴灿.城市污水生物除磷脱氮工艺方案的选择.给水排水,2000, 26(5):1~4
    [22]罗志腾.污染控制工程微生物学.北京科学技术出版社,1988:190~192
    [23]章非娟.生物脱氮技术.中国环境科学出版社.1992:26
    [24]徐亚同.废水反硝化除氮.上海环境科学,1994, 13(10):8~12
    [25]Metcalf & Eddy, Inc. Wastewater Engineering: Treatment and Reuse. McGraw-Hill Companies, Inc.2003, Fourth Edition
    [26]Henze M.等[著],国家城市给水排水工程技术研究中心[译].污水生物与化学处理技术.北京:中国建筑工业出版社,1999
    [27]Rittmann B. E., McCarty P. L. [著],文湘华,王建龙等[译].环境生物技术:原理与应用.北京:清华大学出版社,2004
    [28]Janssen P.M.等[著],祝贵兵,彭永臻[译].生物除磷:设计与运行手册.北京:中国建筑工业出版社,2005
    [29]许保玖,龙腾锐,等.当代给水与废水处理原理.北京:高等教育出版社,2000,第二版
    [30]沈耀良,王宝贞.废水生物处理新技术—理论与应用.北京:中国环境科学出版社,2006,第二版
    [31]Kuba T, Wachameister A, Van Loosdrecht M C M. Effect of nitrate on phosphorus release in biological phosphorus removal system. Wat. Sci. Tech., 1994, 30(6):263~296
    [32]Saito T., Brdjanovic D., Van Loosdrecht M. C. M. Effect of nitrite on phosphate uptake by phosphate accumulation organisms. Wat. Res. 2004, 38: 3760~3768
    [33]邱慎初,丁堂堂.探讨城市污水生物处理出水的总磷达标问题.中国给水排水,2002,18(9):23~25
    [34]Berent N, Peng D C, Delgeniès J P, et al. Nitrification at low oxygen concentration in biofilm reactor. J Environ. Eng ASCE, 2001, 127(3):266~271
    [35]Hanakik, Wantawin C, Ohgaki S. Nitrification at low level of dissolved oxygen with and without organic loading in a suspended~growth reactor. Wat. Res., 1990, 24(3):297~302
    [36]王志盈,刘超翔,袁林江,等.低溶氧下生物流化床内亚硝化过程的选择特性研究.西安建筑科技大学学报,2000,32(3):4~7
    [37]张小玲,李斌,杨永哲,等.低DO下的短程硝化及同步硝化反硝化.中国给水排水,2004,20(5):13~16
    [38]陈滢,王洪臣,彭永臻.控制低溶解氧浓度实现生活污水短程硝化研究.哈尔滨商业大学学报(自然科学版),2004,20(3):339~341
    [39]汪大翚,雷乐成.水处理新技术及工程设计.北京:化学工业出版社,2001
    [40]郑平,徐向阳,胡宝兰.新型生物脱氮理论与技术.北京:科学出版社,2004
    [41]李军,杨秀山,彭永臻.微生物与水处理工程.北京:化学工业出版社,2002
    [42]中国市政工程华北设计研究院.泰安市污水处理实验研究报告.天津,1989
    [43]龙北生,孙大群,边德军,等.采用两级SBR工艺优化除磷脱氮.给水排水,2003,29(11):34~37
    [44]Hopkins L. N., Lant P.A., Newel R.B. l. Using the flexibility index to compare batch and continuous activated sludge processes. Wat.Sci.Tech.2001, 43(3):35~43
    [45]王凯军,贾立敏.城市污水生物处理新技术开发与应用,北京:化学工业出版社,2001
    [46]岳强,邹小玲,缪应祺.SBR技术的发展及应用.污染防治技术,2003,16(4):35~38
    [47]Steinmetz H., Wiese J., Schmitt T. G. Efficiency of SBR technology in municipal wastewater treatment plants. Wat. Sci. Tech.2002, 46(4~5):93~299
    [48]Wilderer P. A., Irvine R. L. Sequencing batch reactor technology--batch application of periodic processer. Wat. Sci. Tech.1997, 35(1):278
    [49]Teichgr?ber B., Schreff D., C. Ekkerlein, et al. SBR technology in Germany– an overview. Wat. Sci. Tech.2001, 43(3):323~330
    [50]Keller J., Watts S., Battye-Smith W., et al. Full-scale demonstration of biological nutrient removal in a single tank SBR process. Wat. Sci. Tech.2001, 43(3):355~362
    [51]彭永臻. SBR法的五大优点.中国给水排水,1993,9(2):29~31
    [52]Ketchum L. H. Jr. Design and physical features of sequencing batch reactors. Wat. Sci. Tech. 1997, 35(1):11~18
    [53]Artan N., Wilderer P., D. Orhon, et al. The mechanism and design of sequencing batch reactor systems for nutrient removal– the state of the art. Wat. Sci. Tech. 2001, 43(3):53~60
    [54]Kargi F., Uygur A. Nutrient removal performance of a five-step sequencing batch reactor as a function of wastewater composition. Process Biochem. 2003, 38:1039~1045
    [55]Puig S., Corominas LL., Balaguer M.D., et al. Biological nutrient removal by applying SBRtechnology in small wastewater treatment plants: carbon source and C/N/P ratio effects. Wat. Sci. Tech. 2007, 55(7):135~141
    [56]Jang J.D., Barford J.P., Lindawati, et al. Application of biochemical oxygen demand (BOD) biosensor for optimization of biological carbon and nitrogen removal from synthetic wastewater in a sequencing batch reactor system. Biosens. Bioelectron. 2004, 19:805~812
    [57]Chiu Y.C., Lee L. L., Cheng N. C., et al. Control of carbon and ammonium ratio for simultaneous nitrification and denitrification in a sequencing batch bioreactor. Int. Biodeterior. Biodegrad. 2007, 59:1-7
    [58]Obaja D., Mace S., Costa J., et al. Nitrification, denitrification and biological phosphorus removal in piggery wastewater using a sequencing batch reactor. Bioresour. Technol.2003, 87:103~111
    [59]Tsang Y.F., Hua F.L., Chua H., et al. Optimization of biological treatment of paper mill effluent in a sequencing batch reactor. Biochem. Eng. J. 2007
    [60]Ak?n B. S., Ugurlu A. Monitoring and control of biological nutrient removal in a Sequencing Batch Reactor. J. Biotechnol. 2005, 40:2873~2878
    [61]Ciappelloni F., Mazouni D., Harmand J. On-line supervision and control of an aerobic SBR process. Wat. Sci. Tech. 2006, 53(1): 169~177
    [62]Guo J.H., Yang Q., Peng Y. Z., et al. Biological nitrogen removal with real-time control using step-feed SBR technology. Enzyme Microb. Technol.2007
    [63] Yu H.Q., Gu G . W., Song L. P. The effect of fill mode on the performance of sequencing batch reactors treating various wastewaters. Bioresour. Technol. 1996.58(1):49~55
    [64]Lee Y.W., Kim Y.J., Chang N.I., et al. Development of sequencing batch reactor with step feed and recycle. Wat. Sci. Tech. 2007, 55(1~2):477~484
    [65]Kargi F., Uygur A. Nutrient loading rate effects on nutrient removal in a five-step sequencing batch reactor. Process Biochem. 2003, 39:507~512
    [66]Kargi F., Uygur A. Nutrient removal performance of a sequencing batch reactor as a function of the sludge age. Enzyme Microb. Technol.2002, 31:842~847
    [67]Kapdan I. K., Oztekin R. The effect of hydraulic residence time and initial COD concentration on color and COD removal performance of the anaerobic–aerobic SBR system. J. Hazard. Mater. 2006, 36:896~901
    [68] Kargi F., Uygur A. Hydraulic residence time effects in biological nutrient removal using five-step sequencing batch reactor. Enzyme Microb. Technol.2004, 35:167~172
    [69]Traore A., Grieu S., Puig S., Fuzzy control of dissolved oxygen in a sequencing batch reactor pilot plant. Chem. Eng. J. 2005, 111:13~19
    [70]Mikosz J., Plaza E., Kurbiel J. Use of computer simulation for cycle length adjustment in sequencing batch reactor. Wat. Sci. Tech. 2001, 43(3):61~68
    [71]Larose A., Perrier M., Comeau Y. Respirometric control of the anaerobic period duration of an SBR bio-p process. Wat. Sci. Tech. 1997, 36(5): 293~300
    [72]Third K. A., Gibbs B., Newland M., et al. Long-term aeration management for improved N-removal via SND in a sequencing batch reactor. Wat. Res. 2005, 39(15):3523~3530
    [73]Yuan Z., Keller J. Integrated control of nitrate recirculation and external carbon addition in a predenitrification system. Wat. Sci. Tech.2003, 48(11~12):345~354
    [74]Dassanayake C.Y., Irvine R.L. An enhanced biological phosphorus removal (EBPR) control strategy for sequencing batch reactors (SBRs). Wat. Sci. Tech. 2001, 43(3):183~189
    [75]张统.SBR及其变法污水处理与回用技术.北京:化学工业出版社,2003
    [76]王凯军,宋英豪.SBR工艺的发展类型及其应用特性.中国给水排水,2002, 18(7):23~26
    [77]熊红权,李文彬.CASS工艺在国内的应用现状.中国给水排水, 2003, 19(2):34~35
    [78]孙大群,边德军,张文华.循环活性污泥系统(CASS).长春工程学院学报(自然科学版) ,2001, 2(3):215~217
    [79]罗万申.新型污水处理工艺—MSBR.中国给水排水,1999,15(6):22~24
    [80]任洁,顾国维.MSBR系统的特点及其除磷脱氮的机理分析.给水排水, 2002, 28(1):22~24
    [81]Wu W., Timpany P., Dawson B. Simulation and applications of a novel modified SBR system for biological nutrient removal.Wat. Sci. Tech. 2001, 43(3):215~222
    [82]王闯,杨海真,顾国维.改进型序批式反应器(MSBR)的试验研究.中国给水排水,2003, 19(5):41~43
    [83]李春鞠,顾国维,杨海真.城市污水除磷脱氮MSBR工艺试验研究.环境工程, 2000, 18(6):19~22
    [84]李春鞠,顾国维,杨海真.改善MSBR系统脱氮效果的试验研究.中国给水排水, 2001, 17(1):9~14
    [85]Pujol R., Hamon M., Kandel X., et al. Biofilters: flexible, reliable biological reactors.Wat. Sci.Tech., 1994, 29 (10-11):33~38.
    [86]Sandino J., Wallis-Lage C., Johnson T. L. The smaller the better. Civ. Eng. 2003, October
    [87]Belgiorno V., Feo G. D., Napoli R. M. A. Combined Carbonaceous Removal and Nitrification with Biological Aerated Filters. J. Environ. Sci. Health. 2003, A38 (10):2147~2156
    [88]Canler J. P., Perretl J. M. Biological aerated filters: assessment of the process based on 12 sewage treatment palnts. Wat. Sci. Tech., 1994, 29(10-11):13~22
    [89]Barjenbruch M. Benchmarking of BAF plants: operational experience on 40 full-scale installations in Germany. Wat. Scie Tech., 2007, 55(8-9):91~98
    [90]Lazarova V., Manem J. Advances in biofilm aerobic reactors ensuring effective biofilm activity control. Wat. Scie Tech., 1994, 29:319~327
    [91]Ryhiner G., Sorensen K., Birou B., et al. Biofilm reactors configuration for advanced nutrient removal. Wat. Sci. Tech., 1994, 29(10-11): 335~345
    [92]Payraudeau M., Pearce A.R., Goldsmith R., et al. Experience with an up-flow biological aerated filter (BAF) for tertiary treatment from pilot trials to full scale implementation. Wat. Sci. Tech., 2001, 44(2~3): 63~68
    [93]Tschui M.,Boller M.,Gujer W., et al. Tertiary nitrification in aerated pilot biofilters. Wat. Sci. Tech. 1993, 29(10~11):53~60
    [94]张文艺,翟建平,郑俊,等.曝气生物滤池污水处理工艺与设计.环境工程,2006,24(1):9~13
    [95]刘旭东等.A/O一体式曝气生物滤池处理生活污水.工业安全与环保,2002,28(5):14~17
    [96]Westerman P.W., Bicudo J. R., Kantardjie A. Up-flow biological aerated filters for the treatment of flushed swine manure. Bioresour. Technol. 2000, 74:181~190
    [97]Zhao X., Wang Y. M., Ye Z. F, et al. Oil field wastewater treatment in Biological Aerated Filter by immobilized microorganisms. Process Biochem. 2006, 41:1475~1483
    [98]Kent T. D., Fitzpatrick C. S. B., William S. C. Testing of biological aerated filter-(BAF) media.Wat.Sci.Tech,1996,34(3-4):363~370
    [99]Moore R. E., Quarmby J., Stephenson T. Assessing the potential of foamed clay as a biological aerated filter (BAF)medium. Biotechnol. Lett.1999, (21): 589~593
    [100]Moore R. E., Quarmby J., Stephenson T. The effects of media size on the performance of biological aerated filters. Wat. Res.2001,35(10):2514~2522
    [101]Mann A. T., Mendoza-Espinosa L. G., Stephenson T. Performance of floating and sunkenmedia biological aerated filters under unsteady state conditions. Wat. Res.1999,33(4):1108~1113
    [102]Chang W. S., Hong S. W., Park J. Effect of zeolite media for the treatment of textile wastewater in a biological aerated filter. Process Biochem. 2002, 37:693~698
    [103]张杰,曹相生,孟雪征,等.好气滤池3种挂膜方法的实验研究.哈尔滨工业大学学报.2003,35(10):1216~1219
    [104]傅金祥,许海良,陈正清.不同原水条件下曝气生物滤池的挂膜启动.中国给水排水,2006年,22(11):90~92
    [105]周晴,傅金祥,赵玉华,等.UBAF两种挂膜方式的试验研究.工业安全与环保,2005,31(5):28~30
    [106]王华,刘翔,邓栋.两级曝气生物滤池启动过程研究.环境污染与防治, 2006,28(8):561~564
    [107]崔康平,彭书传,周元祥.上流式曝气生物滤池脱氮性能研究.合肥工业大学学报(自然科学版),2005,28(4):374~378
    [108]Joo S. H., Kim D. J., Yoo I. K., et al. Partial nitrification in an upflow biological aerated filter by O2 limitation. Biotechnol. Lett. 2000, 22: 937–940 [109 Fdz-Polanco F., Mendez E., Villaverde S. Study of nitrifying biofilms in submerged biofilters by experimental design methods. Wat. Sci. Tech. 1995, 32(8):227~233
    [110]Fdz-Polanco F., Mendez E., Uruena M. A., et al. Spatial distribution of hetertroophs and nitrifiers in a submerged biofilter for nitrification. Wat. Res. 2000, 34(10):4081~4089
    [111]Pujol R., Tarallo S. Total nitrogen removal in two-step biofiltration. Wat. Sci. Tech. 2000, 41(4~5):65~68
    [112]?degaard A., Bach H., Pujol R., et al. Denitrification in a packed biofilm reactor(BIOFOR)—experiments with different carbon sources. Wat. Res. 1998, 32(5):1463~1470
    [113]Meaney B. J., Strickland J. E. T. Operating experiences with submerged filters for nitrification and denitrification. Wat. Sci. Tech. 1994, 29(10-11):119~125
    [114]Chudoba P., Pujol R.A three-stage biofiltration process: performances of a pilot plant. Wat. Sci. Tech., 1998, 38(8-9):257~265
    [115]Canler J. P., J. Perret M., Lengr F. Nitrification in biofilters under variable load and low temperature Wat. Sci. Tech., 2003, 47(11):129~136
    [116]张杰,陈秀荣.曝气生物滤池反冲洗的特性,环境科学, 2003, 24(5):86~91
    [117]张宝杰,闫立龙,甄捷,等.曝气生物滤池最佳反冲洗周期及反冲洗方式研究.哈尔滨工业大学学报, 2006年,38(7): 1045~1046
    [118]Hall D., Fitzpatrick C. S. B. Research note—spectral analysis of pressure variations during combined air and water backwash of rapid gravity filters. Wat. Sci. Tech., 1999, 33(17):3666~3672
    [119]Osorio F., Hontoria E. Optimization of bed material height in a submerged biological aerated filter. J. Environ. Eng., Vol. 2001, 127(11):974~978
    [120]曲波,张景成,李玉华,等.曝气生物滤池工作性能与滤层高度的相关性.哈尔滨工业大学学报,2003,35(7): 84~86
    [121]万金保,兰辉,黄学平.曝气生物滤池滤层高度与去除率关系的研究.南昌水专学报, 2004,23(2):42~45
    [122]Fdz-Polanco F., Villaverde S., Garcia P. A. Temperature effect on nitrifying bacteria activity in biofilters: activation and free ammonia inhibition. Wat. Sci. Tech., 1994, 30(11):121~128
    [123]Villaverde S., Garcia P. A., Fdz-Polanco F. Influence of pH over nitrifying biofilm activity in sumerged biofilers. Wat. Res., 1997, 31:1180~1186.
    [124]Tallec X. L., Zeghal S., Vidal A, et al. Effect of influent quality variability on biofilter operation. Wat. Sci. Tech. 1997, 36(1):111~117
    [125]Chuang S. H., Ouyang C. F., Yuang H. C., et al. 1997. Effects of SRT and DO on Nutrient Removal in a Combined AS-Biofilm Process. Wat. Sci. Tech., 36(12): 19~27
    [126]邱立平,马军,张立昕.水力停留时间对曝气生物滤池处理效能及运行特性的影响.环境污染与防治, 2004,26(6):433~436
    [127]Pujol P., Lemmel H., Goudsilles M. A keypoint of nitrification in an upflow biofiltration reactor. Wat. Sci. Tech. 1998, 38(3):43~49
    [128]徐亚明,吴浩汀.气水比回流比及冲击负荷对BAF的影响.环境科学与技术,2004,27(6):47~49
    [129]彭永臻,王海东,王淑莹.曝气生物滤池的微生物种群优化与分布.北京工业大学学报,2006,32(6):542~546
    [130]Kruit J., Hulsbeek J., Visser A. Bulking sludge solved?! Wat. Sci. Tech.200, 46(1-2):457~464
    [131]Wang Z. Z, Niu Z. Q., Pelkonen M. Management of process performance at low water temperatures in respect of filamentous organisms. J. Environ. Sci. 2004, 16(1):113~116
    [132]Schuler A.J., Jenkins D., Ronen P. Microbial storage products, biomass density, and settling properties of enhanced biological phosphorus removal activated sludge. Wat. Sci. Tech.2001, 43(1):173~180
    [133]Krishna C., Van Loosdrecht M. C. M. Effect of temperature on storage polymers and settleability of activated sludge. Wat. Res. 1999, 33(10):2374~2382
    [134]Tampus M.V., Martins A.M.P., van Loosdrecht M.C.M. The effect of anoxic selectors on sludge bulking. Wat. Sci. Tech.2004, 50(6):261~268
    [135]Rothman M. Operation with biological nutrient removal with stable nitrification and control of filamentous growth . Wat Sci Tech, 1998, 37(4-5): 549~554
    [136]Pitman A. R. Bulking and foaming in BNR plants in johannesburg: problems and solutions. Wat Sci Tech, 1996, 34(3-4):291~298
    [137]Wanner J., Ruzickova I., Jetmarova P., et al. A national survey of activated sludge separation problems in the Czech Republic: filaments, floc characteristics, and activated sludge metabolic properties. Wat. Sci.Tech., 1998, 37(4-5):271~279
    [138]Westlund A. D., Hagland E., Rothman M. Foaming in anaerobic digesters caused by Microthrix parvicella. Wat Sci Tech, 1998, 37(4-5):51~55
    [139]王福珍.污泥膨胀问题与序列间歇式活性污泥法.中国环境科学, 1995,15(2): 131~134
    [140]Govoreanu R., Seghers D., Nopens I., et al. Linking floc structure and settling properties to activated sludge population dynamics in an SBR. Wat. Sci. Tech. 2003, 47(12): 9~18
    [141]Martinsa A. M.P., Heijnen J. J., van Loosdrecht M. C.M. Effect of feeding pattern and storage on the sludge settleability under aerobic conditions. Wat. Res. 2003, 37(11): 2555~2570
    [142]Dagot C., Pons M.N., Casellas M., et al. Use of image analysis and rheological studies for the control of settleability of filamentous bacteria:application in SBR reactor. Wat. Sci. Tech. 2001, 43(3):27~33
    [143]刘大鹏,曾光明,王薇,等.SBR处理废水中的污泥膨胀与控制.环境工程,2003,21(5):17~18
    [144]鞠宇平,张林生,余静.有机负荷和溶解氧的变化对SBR污泥膨胀的影响及控制方法.环境污染治理技术与设备, 2002,3(12):23~26
    [145]王立立,胡勇有.曝气生物滤池去除有机物及硝化氨氮的影响因素研究.环境污染与防治, 2006,28(4):257~260
    [146]李文捷,卢少勇,程丽.BAF系统中有机物对氨氮去除的影响研究.工业水处理,2006,26(10):46~48
    [147]Osorio F., Hontoria E. Wastewater treatment with a double-layer submerged biological aerated filter, using waste materials as biofilm support. J. Environ. Manage.2002, 65:79~84
    [148]Clark T., Stephenson T., Pearce P. A. Phosphorus removal by chemical precipitation in a biological aerated filter. Wat. Res., 1997, 31(10): 2557~2563
    [149]邹伟国,陆嘉骇,张辰,等.曝气生物滤池在脱氮除磷工艺中的应用.环境工程,20O4,22(5期):27~29
    [150]谢曙光,张晓健,王占生.曝气生物滤池最新发展和运用.水处理技术,2004,30(1):4~7
    [151]凌霄,胡勇有,马骥.曝气生物滤池铝盐化学强化与生物协同除磷.环境科学学报,26(3):409~416
    [152]王海东,彭永臻,王淑莹.二段上流式曝气生物滤池去除高标准景观补给水中氮磷营养物.水处理技术, 32(10)39~43
    [153]Lee S. E., Kim K. S., Ahn J. S., et al. Comparison of phosphorus removal characteristics between various biological nutrient removal processes. Wat. Sci.Tech.1997, 36(12):61~68
    [154]任南琪,王秀蘅,董晶颢.HITNP同步除磷脱氮新工艺.环境科学, 2007,28(1):108~112
    [155]肖文胜,徐文国,杨桔才.A/O与BAF联用处理炼油废水.中国给水排水,2004,20(9):78~80
    [156]Su J. L., Ouyang C. F. Nutrient Removal Using a Combined process with Activated Sludge and Fixed Biofilm. Wat. Sci. Tech., 1996, 34(1-2):477~486
    [157]Marsman E. H., Roeleveld P. J., Rensink J. H. High nutrient removal in the three-sludge sewage treatment system: results and economic evaluation. Wat. Sci. Tech. , 1995, 35(10): 129 ~136
    [158]Ding Y. W., Wang L., Wang B. Z, et al. Removal of nitrogen and phosphorus in a combined A2/O-BAF system with a short aerobic SRT. J. Environ. Sci. 2006, 18(6):1082~1087
    [159]Imura M., Sato Y., Inamori Y.,et al. Development of a high-efficiency household biofilm reactor. Wat. Sci. Tech. , 1995, 31(9): 163 ~171
    [160]Rother E., Cornel P., Ante A., et al. Comparison of combined and separated biological aerated filter(BAF)performance for pre-denitrification/nitrification of municipal wastewater. Wat. Sci. Tech. 2002, 46(4-5):149~158
    [161]Kim J.S., Hwang Y. W., Kim C.G, et al. Nitrification and denitrification using a single biofilter packed with granular sulfur. Wat. Sci. Tech. 2003, 47(11):153~156
    [162]Rother E., Cornel P. Potentials and limits of a pre-denitrification/nitrification biofilter configuration for advanced municipal wastewater treatment. Wat. Sci. Tech. 2007, 55(8-9):115~123
    [163]苏德林,王建龙,刘凯文,周定.ABR—BAF工艺处理采油废水的中试研究.中国给水排水,2006,22(1):22~26
    [164]Kalavrouziotisa I. K., Apostolopoulos C. A. An integrated environmental plan for the reuse of treated wastewater effluents from WWTP in urban areas. Building Environ., 2007,42:1862~1868
    [165]G. Wade Miller. Integrated concepts in water reuse: managing global water needs. Desalination, 2006, 187:65~75
    [166]Lazarova V., Perera J., Bowen M., et al. Application of aerated biofilters for production of high quality water for industrial reuse in West Basin. Wat.Sci.Tech., 2000,41 (4-5):417~424
    [167]Kim S.W., Park J.B., Choi E. Possibility of sewage and combined sewer overflow reuse with biological aerated filters. Wat.Sci.Tech., 2007,55 (1-2):1~8
    [168]许仕荣,张宗彩,张发鹏.两级BAF在污水再生回用中除氮的试验研究.中国给水排水,2006,22(9):97~100
    [169]王效琴,王启山,李金河,等.不同中水回用模式的技术经济分析.中国给水排水,2006,22(16):73~76
    [170]国家环境保护总局《水和废水监测分析方法》编委会.水和废水监测分析方法.北京:中国环境科学出版社,2002,第四版
    [171]Caulet P., Bujon B., Philippe J.P., et al.Upgrading of Wastewater treatment plant for nitrogen removal: Industrial application of an automated aeration management based on ORP evolution analysis. Wat. Sci. Tech.1998, 37(9):41-47
    [172]刘瑾,高廷耀.生物除磷机理的研究.同济大学学报.1995, 23(4):387392
    [173]Fleit E. Intracellular pH regulation in biological excess phosphorus removal systems[J]. Water Res. 1995, 29(7):1787–1792.
    [174]Serralta J., Borrás L., Blanco C., et al. Monitoring pH and electric conductivity in an EBPR sequencing batch reactor. Wat. Sci. Tech.2004, 50(10):145~152
    [175]Filipe C. D. M., Daigger G. T., Grady C. P. L. PH as a key factor in the competition between glycogen-accumulating organisms and phosphorus-accumulating organisms [J]. Water Environ.Res. 2001, 73(2):223–232.
    [176]Jeon C. O., Lee D. S., Park J. M. Morphological characteristics of microbial sludge performing enhanced biological phosphorus removal in a sequencing batch reactor fed with glucose as sole carbon source. Wat. Sci. Tech.2000, 41(12):79~84

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700