用户名: 密码: 验证码:
基于亚硝化、厌氧氨氧化与反硝化的脱氮耦合工艺及其控制策略研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基于亚硝化与厌氧氨氧化的耦合,开发出了两类脱氮新工艺,一类为两级反应,以SHARON-ANAMMOX (Single Reactor for High Ammonium Removal Over Nitrite-ANAMMOX)为代表,该工艺是荷兰Delft大学2001年开发了一种新型的脱氮工艺。其基本原理是先在一个反应器内有氧条件下,将NH4+-N部分氧化为N02--N,然后在另一个反应器内缺氧条件下将NH4+-N和N02--N转化为N2。另一类为单级反应,短程硝化和厌氧氨氧化在一个反应器中实现,以CANON为代表,该工艺也是由Delft大学又开发完成,基本原理是,在限氧条件下,利用氨氧化菌和厌氧氨氧化菌的协同作用,在同一个反应器中完成短程硝化和厌氧氨氧化。尽管亚硝化与厌氧氨氧化的组合工艺对于高氨氮浓度废水具有良好的适应性和处理效果,但是实际污水处理时不但要求反应系统拥有高效的脱氮性能,并且必须适应有机环境及有机环境所带来的大量异养菌。而厌氧氨氧化与亚硝化在单一反应器中耦合也被证明能够解决亚硝酸盐氮过度积累导致细菌活性受抑制的问题,因此研究厌氧氨氧化菌与亚硝酸菌及其他异养菌的共存就非常必要。
     本研究从亚硝酸菌和厌氧氨氧化菌的高效富集开始着手,首先摸清亚硝酸菌和厌氧氨氧化菌的富集特征和调控策略,然后对亚硝化和厌氧氨氧化进行耦合,耦合分别采取两级工艺(SBR-ASBR两级)和一级工艺(单级SBR工艺)进行尝试,并在此基础上和研发出新型的序批式内循环反应器;最后分别在SBR和SBBR反应器中分别启动亚硝化/厌氧氨氧化/反硝化耦合反应器,并对两者进行对比。
     亚硝酸菌的高效富集与适应性调控过程中,利用有机环境向无机环境的变化淘汰所以异养菌,目标性持留能以氨为电子供体进行生长繁殖的硝化菌,并且通过基质控制将硝酸菌洗脱,让亚硝酸菌成为优势菌种,富集完成后污泥颜色由深褐色逐渐变为浅棕色,SVI指数先增大后减小(由102mL/g增加至146mL/g,最后减少至107mL/g), MLSS浓度明显降低(由2730mg/L降低至1490mg/L),富集完成后,污泥中的细菌群落数量明显减少(DGGE条带由16条减少为6条)。为使得完成富集的污泥适应垃圾渗滤液,采取将进水中的渗滤液体积比由20%提高至100%,调节过程中分别在渗滤液体积比提高至50%、70%和100%的时候采取进水模式调节、pH调节、DO调节策略,以不断提高反应器的处理效果和负荷。
     厌氧氨氧化菌的高效富集与适应性调控过程分为泥适应阶段、活性提高阶段和稳定运行阶段三个阶段,以活性提高阶段为调控重点和关键,通过添加联氨(1mg/L)和羟胺(1mg/L)、NO(600mg/L)、微量有机质(COD10mg/L)的调控手段,使得厌氧氨氧化的负荷率不断提高,最终进水负荷达到280mg/L·d。
     为实现亚硝化、厌氧氨氧化与反硝化有效耦合,首先在成功富集亚硝酸菌和厌氧氨氧化菌的基础上,利用模拟废水对亚硝化和厌氧氨氧化进行耦合,耦合过程采取三种形式进行,分别是两级的SBR-ASBR工艺、一级的SBR工艺一级综合性的序批式内循环工艺。三种工艺中,序批式内循环工艺能够承受最高的NH4+负荷,负荷率达0.8kgN/m3·d,其次是SBR-ASBR两级工艺,负荷率为0.5kgN/m3·d,单级SBR工艺的抗负荷能力则较差,负荷率只有0.4kgN/m3·d。对氮的去除能力序批式内循环工艺仍是最高的,TN去除率高达84%左右,SBR-ASBR两级工艺和单级SBR工艺对氮的去除能力相当,TN去除率约为80%。
     在成功实现亚硝化与厌氧氨氧化耦合的基础上,采用相对成熟的SBR和SBBR工艺进行亚硝化、厌氧氨氧化与反硝化三者的耦合启动并分别研究其调控方式。首先采用模拟废水实现亚硝化和厌氧氨氧化的耦合,该阶段完成后反应器中的最大氨氧化活性达到0.79kg NH4+-N/kgvss/day,最大厌氧氨氧化活性达到了0.18kg NH4+-N/kgvss/day。然后通过进水中的原生垃圾渗滤液中携带的反硝化菌实现亚硝化/厌氧氨氧化/反硝化的耦合,进水中的渗滤液体积由20%逐渐提高至100%,为消除FA对亚硝酸菌的抑制,对pH按照如下梯度进行调整:第1-34d的pH为7.8,第35-103d的pH为7.5,第104-124d的pH为7.2。该阶段完成后反应器中的最大氨氧化活性达到2.83g NH4+-N/kgvss/day,最大厌氧氨氧化活性达到了0.65kg NH4+-N/kgvss/day。
Based on the coupling process of partial nitrification and anaerobic ammonium oxidation, it has been developed two new kinds of biological nitrogen removal processes——Single Reactor for High Ammonium Removal Over Nitrite-ANAMMOX(SHARON-ANAMMOX) and completely autotrophic nitrogen removal over nitrite(CANON). The SHARON-ANAMMOX process, which was developed by Dutch Delft University in2001, was performed in two different reactors. According to its basic principle, firstly50%of ammonia is oxidized to nitrite in an aerobic reactor and then both ammonia and nitrite are converted to nitrogen gas in an anoxic one with a small amount of nitrate. The CANON process, which was also developed in Dutch Delft University, was performed in a single reactor. In terms of the basic principle, a co-operation with aerobic and anaerobic ammonium oxidation bacteria under a limited dissolved oxygen condition could achieve the partial nitrification and anaerobic ammonium oxidation in a single reactor. Although the combination of partial nitrification and anaerobic ammonium oxidation process has good adaptability and high removal efficiency when it is used to deal with high concentration of ammonia nitrogen wastewater, the reaction systems in the practical wastewater treatment not only require high nitrogen removal performance, but also need to adapt to organic environment and subsequently large amounts of heterotrophic bacteria brought by it. The coupling of partial nitrification and anaerobic ammonium oxidation in a single reactor has been proved to be able to solve the problem of excessive nitrite accumulation, which could inhibit the bacterial activity. So it's very necessary to carry out the research on the co-operation among aerobic, anaerobic ammonium oxidation bacteria and other heterotrophic bacteria.
     This study began with the objective to enrich the nitrite oxidizing bacteria and anaerobic ammonium oxidation bacteria. After finding out the enrichment characteristics and controlling strategies of them, we investigated the coupling of the partial nitrification and anaerobic ammonium oxidation respectively in two kinds of process——SBR-ASBR and single SBR. A new type of sequencing batch inner loop reactor was developed on the above research. Finally, with the start-up of that coupling respectively in SBR and SBBR, both of the reactors were compared. During the highly enrichment and adaptive controlling process of nitrite oxidizing bacteria, almost all the heterotrophic bacteria were eliminated due to the change of organic environment to the inorganic one. As a result, the nitrifying bacteria growing by receiving electron donor of ammonia were mainly retained. And the nitrite oxidizing bacteria became the dominant bacteria, while the nitrate oxidizing bacteria was eliminated by the means of matrix control.
     After the enrichment of nitrite oxidizing bacteria, the sludge has been turned from dark brown to shallow brown in color. The SVI with102mL/g firstly increased to146mL/g and then decreased to107mL/g, while MLSS with2730mg/L significantly decreased to1490mg/L. The decreasing number of DGGE stripe from16to6indicated the decreasing number of bacterial community in the sludge. In order to complete enrichment of the sludge to adapt to the municipal landfill leachate, the leachate volume for the feeding was increased from20%to100%. During the controlling process, the changes in influence mode, pH, DO were used as the strategies to improve the removal efficiency and load rate of the reactor when the leachate volume rate was50%,70%and100%respectively.
     The highly enrichment and adaptive controlling process of anaerobic ammonium oxidation was divided into three stages——adaptive phase, activity enhanced phase, and activity stable phase, and the key point is to control the second phase. The means of adding combine hydrazine (1mg/L) and hydroxyl ammonia (1mg/L), NO(600mg/L), trace organic matter (COD10mg/L) was used to improve the anaerobic ammonium oxidation load rate during the experiment. The experiment used the activity stable phase as the main control phase, and the ammonium load finally reached to280mg/L·d.
     In order to realize the effective coupling of partial nitrification, anaerobic ammonium oxidation and denitrification, the artifical wastewater was used to couple the partial nitrification and anaerobic ammonium oxidation on the basis of enrichment of nitrite oxidizing bacteria and anaerobic ammonium oxidation bacteria. The coupling process of partial nitrification and anaerobic ammonium oxidation adopted three forms:two-stage SBR-ASBR process, one-stage SBR process and comprehensive sequencing batch inner loop process. The research indicated that the sequencing batch inner loop process could bear the highest load (0.8kgN/m3·d), following by SBR-ASBR process (0.5kgN/m3·d) and one-stage SBR (0.4kgN/m3·d). At the same time, the sequencing batch inner loop process has the highest removal efficiency of TN which up to84%, while the removal ability of TN was comparative in SBR-ASBR process and one-stage SBR process which were around80%.
     Base on the successful coupling of partial nitrification and anaerobic ammonium oxidation, the experiment investigated the start-up and controlling strategies of the coupling of partial nitrification, anaerobic ammonium oxidation and denitrification by using the relatively mature SBR and SBBR process.
     Firstly, the artifical wastewater was used to realize the coupling of partial nitrification and anaerobic ammonium oxidation. In this period, the ammonia oxidation activity and anammox activity reached the maxium value of0.79kg NH4+-N/kgvss/day and0.18kg NH4+-N/kgvss/day, respectively. Then the denitrifying bacteria carried by primary landfill leachate were used to realize the coupling of partial nitrification, anaerobic ammonium oxidation and denitrification. The volume rate of landfill leachate in the feeding was ranging from20%to100%in a gradual step. In order to eliminate the inhibition of FA, the pH was controlled as the following strategy:pH was7.8,7.5,7.2in1~34d,35~103d,104~124d, respectively. At the end of this period, the ammonia oxidation activity and anammox activity reached the maxium value of2.83g NH4+-N/kgvss/day and0.65kg NH4+-N/kgvss/day, respectively.
引文
[1]万本太.中国水资源的问题与对策.环境保护,1999,7:30-32
    [2]洪阳.中国21世纪的水安全,环境保护,1999,10:29-31
    [3]Kang K, Shin H, Park H, et al. Characterization of humic substances present in landfill leachate with different landfill ages an its implications. Water Research, 2002,36(5):4023-4032
    [4]Van Loosdrecht MCM. Recent development on biological wastewater nitrogen removal technologies. In:Proceedings of the presentation in international conference on wastewater treatment for nutrient removal and reuse (ICWNR'04); 2004
    [5]国家环境保护部,2009年中国环境状况公报,2010
    [6]国家环境保护部,2010年中国环境状况公报,2011
    [7]杨霞,杨朝晖,陈军等.城市生活垃圾填埋场渗滤液处理工艺的研究.环境工程,2000,18(5):12-14
    [8]John H R, William M D. Nitrogen, Phosphorus, and Eutrophication in the Coastal Marine Environment. Science,1971,171(3975):1008-1013
    [9]Hai X, Paerl HW, Boqiang Q. Nitrogen and phosphorus inputs control phytoplankton growth in eutrophic Lake Taihu, China. Limnology and oceanography,2010,55(1):420-432
    [10]谢珊,李小明,曾光明等.好氧颗粒污泥的性质及其在脱氮除磷中的应用.环境污染治理技术与设备,2003,4(7):70-73
    [11]Young-Ho A. Sustainable nitrogen elimination biotechnologies:A review. Process Biochemistry,2006,41(8):1709-1721
    [12]Jetten MSM, Schmid M, Schmidt I, et al. Improved nitrogen removal by application of new nitrogen-cycle bacteria. Environmental Science & Bio/ Technology,2002,1(1):51-63
    [13]Bernat K, Wojnowska-Baryla I, Dobrzynska A. Nitrogen oxidation and reduction in aerated single-stage activated sludge process. Polish Journal of Environmental Studies,2003,12(4):387-94
    [14]杨朝晖,高锋,曾光明等.短程硝化反硝化去除高氨氮猪场废水中的氮.中国环境科学,2005,25(B06):43-46
    [15]Strous M, van Gerven E, Kuenen JG, et al. Effects of aerobic and microaerobic conditions on anaerobic ammonium-oxidizing (Anammox)sludge. Applied & Environmental Microbiology,1997,63(6):2446-2448
    [16]谢珊,李小明,曾光明等.SBR系统中好氧颗粒污泥脱氮特性研究.中国环境科学,2004,24(3):355-359
    [17]Grabinska-Loniewska A. Denitrification unit biocenosis. Water Research,1991, 25(12):1565-73
    [18]Kuypers MMM, Sliekers AO, Lavik G, et al. Anaerobic ammonium oxidation by anammox bacteria in the Black Sea. Nature,2003,422:608-611
    [19]Francis CA, Beman JM, Kuypers MMM. New processes and players in the nitrogen cycle:the microbial ecology of anaerobic and archaeal ammonia oxidation. The ISME Journal,2007,1(1):19-27
    [20]Mulder A, Van de Graaf AA, Robertson. Anaerobic ammonium oxidation discovered in a denitrifying fluidized bed reactor. FEMS Microbiology Ecology, 1995,16(3):177-183
    [21]Hellinga C, Schellen AAJC, Mulder JW, et al. The Sharon process:an innovative method for nitrogen removal from ammonium-rich waste water. Water Science & Technology,1998,37(9):135-142
    [22]Rittmann BE, Langeland WE. Simultaneous denitrification with nitrification in single channel oxidation ditches. Water Pollution Control Federation,1985, 57(4):300-308
    [23]Munch EV, Lant PA, Keller J. Simultaneous nitrification and denitrification in bench-scale sequencing batch reactors. Water Research,1996,30(2):277-284
    [24]Hippen A, Baumgarten G, Rosenwinkel KH, et al. Aerobic deammonification:a new experience in the ttreatment of wastewater. Water Science & Technology,1997,35(10):111-120
    [25]Schmidt I, Bock E. Anaerobic ammonia oxidation with nitrogen dioxide by Nitrosomonas eutropha. Archives of Microbiology,1997,167(2-3):106-111
    [26]Kuenen JG, Robertson LA. Combined nitrification-denitrification processes. FEMS Microbiology Reviews,1994,15(2-3):109-117
    [27]Than K, Ajit PA. Novel microbial nitrogen removal processes. Biotechnology Advances,2004,22(7):519-532
    [28]王歆鹏,陈坚,华兆哲等.硝化菌群在不同条件下的增殖速率和硝化活性.应用与环境生物学报,1999,5(1):64-68
    [29]任宏洋,张代钧,丛丽影等.呼吸法测定硝化菌产率系数实验研究.环境工程学报,2010,4(08):1726-1728
    [30]Betlach M. R, Tiedje J.M. Kinetic explanation for accumulation of nitrite, nitric oxide, and nitrous oxide during bacterial denitrification. Applied & Environmental Microbiology,1981,42(6):1074-1084
    [31]Focht D.D, Verstraete W. Biochemical ecology of nitrification and denitrification. Advances in Microbial Ecology,1977,1:135-214
    [32]Robertson L A, Kuenen J. G. Aerobic denitrification:a controversy revived. Archives of Microbiology,1984,139(4):351-354
    [33]Knowles R. Denitrification.Microbiological Reviews,1982,46(1):43-70
    [34]王淑莹,孙洪伟,杨庆等.传统生物脱氮反硝化过程的生化机理及动力学.应用与环境生物学报,2008,14(5):732-736
    [35]赵旭涛.强化反硝化作用及机理分析.中国给水排水,1997,13(5):15-16
    [36]Staley JT, Bryant MP, Pfeng N et al. Bergey's manual of systematic bacteriology (Vol.3). USA:Williams & Wilkins,2001,1807-1835
    [37]Teske A, Alm E, Regan J M, et al. Evolutionary relationships among ammonia-and nitrite-oxidizing bacteria. Journal of Bacteriology,1994,76(21):6623-6630
    [38]George A K, John R S. Ammonia-Oxidizing Bacteria:A Model for Molecular Microbial Ecology. Annual Review of Microbiology,2001,55:485-529
    [39]Ward B B, Carlucci A F. Marine Ammonia-and Nitrite-Oxidizing Bacteria: Serological Diversity Determined by Immunofluorescence in Culture and in the Environment. Applied & Environmental Microbiology,1985,50(2):194-201
    [40]易鹏,张树军,孟春霖等.城市污水连续流半亚硝化实现维持机理与工艺创新研究.环境科学学报,2010,30(8):1608-1614
    [41]张子健,王舜和,王建龙等.利用碱度控制SBR中短程硝化反应的进程.清华大学学报(自然科学版),2008,48(9):1475-1478
    [42]Keisuke H. et al Nitrification at low levels of dissolved oxygen with and without organic loading in a suspended-growth reactor. Water Reseach,1990, 24(3),297-302
    [43]胡宝兰,徐向阳,郑平.新型生物脱氮理论与技术.北京:科学出版社,2004,15-75
    [44]Zart D, Bock E. High rate of aerobic nitrification and denitrification by Nitrosomonas eutropha grown in a fermenter with complete biomass retention in the presence of gaseous NO2 or NO. Archives of Microbiology,1998,169(3): 282-286
    [45]Jiade Wang, Chengqiang Wu, et al. Denitrification removal of nitric oxide in a rotating drum biofilter. Chemical Engineering Journal,2006,121(1):45-49
    [46]Tiedje JM. Ecology of denitrification and dissimilatory nitrate reduction to ammonium. In:Biology of Anaerobic Microorganisms, Zehnder AJB(ed), John Wiley & Sons. New York,1988:179-244
    [47]De Lucas A, Rodriguez L, Villasenor J, et al. Denitrification potential of industrial wastewaters. Water Research,2005,39(9):3715-3726
    [48]A Haikara, Helander I. The Prokaryotes:An Evolving Electronic Database for the Microbiological Community. New York:Springer Verlag,2002,100-191
    [49]Bianchi M, Bonin P, Feliatra. Bacterial nitrification and denitrification rates in the Rhone River plume (northwestern Mediterranean Sea). Marine Ecology Process Series,1994,103(1):197-202
    [50]Van de Graaf AA, Mulder A, de Bruijn P, et al. Anaerobic oxidation of ammonia is a biologically mediated process. Applied & Environmental Microbiology, 1995,61(4):1246-1251
    [51]Rhee GY, Fuhs GW. Wastewater denitrification with one-carbon compounds as energy source. Water Pollution Control Federation,1978,50(9):2111-2119
    [52]McCarty P L, Beck L, Amant P S. Biological denitrification of wastewaters by addition of organic materials. In Proceedings of the 24th Industrial. Waste Conference. India:Purdue University, Lafayette,1969,1271-1285
    [53]Hovanec T A, Taylor L T, Blakis A, et al. Nitrospira-like bacteria associated with nitrite oxidation in freshwater aquaria. Applied & Environmental Microbiology,1998,64(1):258-264
    [54]周少奇,周吉林.生物脱氮新技术研究进展.环境污染治理技术与设备,2000,(06):11-19
    [55]冯叶成,王建龙,钱易.生物脱氮新工艺研究进展.微生物学通报,2001,(04):88-91
    [56]郑平,胡宝兰.生物脱氮技术的研究进展.环境污染与防治,1997,(04):25-28
    [57]杨麒,李小明,曾光明,等.同步硝化反硝化机理的研究进展.微生物学通报,2003,30(4):88-91
    [58]Mulder JW, van Kempen R.N-removal by Sharon. Water Quality international, 1997,2(1):30-31
    [59]Sliekers AO, Derwort N, Gomez JLC, et al. Completely autotrophic nitrogen removal over nitrite in one single reactor. Water Research,2002,36(60): 2475-2482
    [60]Hashimoto S, Furukawa K, Masahiko S. Autotrophic Denitrification Using Elemental Sulfur. Journal of FermentationTechnology,1987,65(6):683-692
    [61]Dash BP, Chaudhari S.Electrochemical denitrificaton of simulated ground water. Water Research,2005,39(17):4065-4072
    [62]Read-Daily B, Tank J, Nerenberg R. Stimulating denitrification in a stream mesocosm with elemental sulfur as an electron donor. Ecological Engineering, 2011,37(4):580-588
    [63]Volcke EIP, van Loosdrecht MCM, Vanrolleghem P.A. Controlling the nitrite: ammonium ratio in a SHARON reactor in view of its coupling with an Anammox process. Water Science & Technology,2006,53(4-5):45-54
    [64]Van Dongen U, Jetten MSM, van Loosdrecht MCM. The SHARON-ANAMMOX process for treatment of ammonium rich wastewater. Water Science & Technology,2001,44(1):153-160
    [65]廖德祥,吴永明,李小明等.亚硝化-厌氧氨氧化联合工艺处理高含氮废水的研究.环境科学,2006,(09):1776-1780
    [66]Okabe S, Oshiki M, Takahashi Y, et al. Development of long-term stable partial nitrification and subsequent anammox process. Bioresource Technology,2011, 102(13):6801-6807
    [67]杨洋,左剑恶,沈平等.温度、pH值和有机物对厌氧氨氧化污泥活性的影响.环境科学,2006,27(4):691-695
    [68]胡安辉.高效短程硝化/厌氧氨氧化富集培养物的研究.导师:郑平:浙江大学,2010
    [69]Zhang L, Yang J, Furukawa K.Stable and high-rate nitrogen removal from reject water by partial nitrification and subsequent anammox. Journal of Bioscience & Bio engineering,2010,110(4):441-448
    [70]Kornaros M, Dokianakis SN, Lyberatos G. Partial Nitrification/Denitrification Can Be Attributed to the Slow Response of Nitrite Oxidizing Bacteria to Periodic Anoxic Disturbances. Environmental Science & Technology,2010,44 (19):7245-7253
    [71]Fux C, Boehler M, Huber P, et al. Biological Treatment of Ammonium-rich Waste water by Partial Nitritation and Subsequent Anaerobic Ammonium Oxidation in a Pilot Plant. Journal of Biotechnology,2002,99(3):295-306
    [72]李冬,陶晓晓,李占等.SBR亚硝化快速启动过程中影响因子研究.环境科学,2011,(08):2317-2322
    [73]Strous M, Heijnen J.J, Kuenen J.G, et al. The sequencing batch reactor as a powerful tool for the study of slowly growing anaerobic ammonium-oxidizing microorganisms. Applied microbiology & biotechnology,1998,50(5):589-596
    [74]Jianlong W, Ning Y. Partial nitrification under limited dissolved oxygen conditions. Process biochemistry,2004,39, (10):1223-1229
    [75]薛源,杨凤林,刘思彤等.膜生物反应器亚硝化性能的影响因素研究.环境科学,2009,(09):2630-2634
    [76]Hellinga C, Schellen AAJC, Mulder J W, et al. The SHARON process:an innovative method for nitrogen removal from ammonium-rich waste water. Water Science & Technology,1998,37(9):135-142
    [77]Hao XD, Heijnen JJ, Van Loosdrecht MCM. Model-based evaluation of temperature and inflow variations on a partial nitrification-ANAMMOX bio film process. Water Research,2002,36(19):4839-4849
    [78]Hisashi S, Hideki O, Bian R, et al. Macroscale and microscale analyses of nitrification and denitrification in biofilms attached on membrane aerated bio film reactors. Water Research,2004,38(6):1633-1641
    [79]Peng YZ, Gao JF, Wang SY, et al. Use of pH as fuzzy control parameter for nitrification under different alkalinity in SBR process. Water Science & Technology,2003,47(11):77-84
    [80]高景峰,彭永臻,王淑莹.以pH作为SBR法硝化过程模糊控制参数的基础研究.应用与环境生物学报,2003,(05):549-553
    [81]Villaerde S, Garcia-Encina PA, Fdz-Polanco F. Influence of pH over nitrifying bio film activity in submerged bio filters. Water Research,1997,31(5):1180-1186
    [82]Anthonisen Ac, Loehr Rc, Prakasam Tbs, Srinath Eg.Inhibition Of Nitrification By Ammonia And Nitrous Acid. Journal Water Pollution Control Federation, 1976,48(5):835-852
    [83]Xue y, Fenglin y, Sitong l, et al. The influence of controlling factors on the start-up and operation for partial nitrification in membrane bioreactor. Bioresource Technology,2009,100(3):1055-1060
    [84]Ruiz G, Jeison D, Chamy R. Nitrification with high nitrite accumulation for the treatment of wastewater with high ammonia concentration. Water Research, 2003,37(6):1371-1377
    [85]Shammas NK. Interactions of temperature, pH, and biomass on the nitrification process. Water Pollution Control Federation,1986,58(1):52-59
    [86]Laanbroek H J. Competition for Limiting Amounts of Oxygen between Nitrosomanas europaea mad Nitrobacteria winogradskyi Grown in Mixed Continuous Cultures. Archives of Microbiology,1993,159:453-459
    [87]Hunik J H, Tramper J, Wijffels R H. A strategy to scale up nitrification processes with immobilized cells of nitrosomonas europaea and nitrobacter agilis. Bioprocess & Biosystems Engineering,1994,11(2):73-82
    [88]Laanbroek HJ, Bodelier PLE, Gerards S.Oxygen consumption kinetics of Nitrosomonas europaea and Nitrobacter hamburgensis grown in mixed continuous cultures at different oxygen concentrations. Archives of Microbiology,1994,161(2):156-162
    [89]Garrido JM, van Benthum WAJ, van Loosdrecht MCM, et al. Influence of oxygen concentration on nitrite accumulation in a biofilm airlift suspension reactor. Biotechnology and Bioengineering,1997,53(2):168-178
    [90]Pollice A, Tandoi V, Lestingi C. Influence of aeration and sludge retention time on ammonium oxidation to nitrite. Water Research,2002,36(10):2541-2546
    [91]Van de Graaf AA, Mulder A, de Bruijn P, et al. Autotrophic growth of anaerobic ammonium-oxidizing microorganisms in a fluidized bed reactor. Microbiology, 1996,142(8):2187-2196
    [92]Strous M, Van Gerven E, Kuenen J.G, et al. Ammonium removal from concentrated waste streams with the Anaerobic Ammonium Oxidation (Anammox) process in different reactor configurations. Water Research,1997, 31(8):1955-1962
    [93]Van de Graaf A. A, Mulder A, de Bruijn P, et al. Metabolic pathway of anaerobic ammonium oxidation on the basis of 15N studies in a fluidized bed reactor. Microbiology,1997,143(7):2415-2421
    [94]Jetten SMM, Wagner M, Fuerst J, et al. Microbiology and application of the anaerobic ammonium oxidation (anammox) process. Environmental Biotechnology,2001,12(3):283-288
    [95]Jetten MSM, Strous M, van de Pas-Schoonen KT, et al. The anaerobic oxidation of ammonium. Fems microbiology reviews,1999,22(5):421-437
    [96]Strous M, Heijnen JJ, Kuenen JG., et al. The sequencing batch reactor as a powerful tool for the study of slowly growing anaerobic ammonium-oxidizing microorganisms. Applied & Environmental Microbiology,1998,50(6):589-596
    [97]Fux C, Marchesi V, Brunner I, et al. Anaerobic ammonium oxidation of ammonium-rich waste streams in fixed-bed reactors. Water Science & Technology,2004,49(11-12):77-82
    [98]Isaka K, Date Y, Sumino Y, et al. Growth characteristic of anaerobic ammonia-oxidizint bacateria in an anaerobic biological filtrated reactor. Applied Microbiology & Biotechnology,2006,70(1):47-52
    [99]Tsushima I, Ogasawara Y, Kindaichi T, et al. Development of high-rate anaerobic ammonium-oxidizing (anammox) biofilm reactors. Water Research, 2007,41(8):1623-1634
    [100]Van der Star W R L, Abma W R, Bolmmers D, Mulder J, et al. Startup of reactors for anoxic ammonium oxidation:Experiences from the first full-scale ANAMMOX reactor in Rotterdam. Water Research,2007,41 (18):4149-4163
    [101]Van der Star W R L, Miclea A I, Van Dongen U G J M, et al. The membrane bioreactor:a novel tool to grow anammox bacteria as free cells. Biotechnology & Bioengineering,2008,101(2):286-294
    [102]Chamchoi N, Nitisoravut S, Schmidt JE. Inactivation of ANAMMOX commnities under concurrent operation of anaerobic ammonium oxidation (ANAMMOX) and denitrificaiton. Bioresouce Technology,2008,99(9):3331-3336
    [103]Van Niftrik L, Geerts W J C, Van Donselaar E G, et al. Linking ultrastructure and function in four genera of anaerobic ammonium-oxidizing bacteria:cell plan, glycogen storage, and localization of cytochrome c proteins. Journal of Bacteriology,2008,190(2):708-717
    [104]张蕾,郑平,胡安辉.铁对厌氧氨氧化反应器性能的影响.环境科学学报,2009,29(8):1629-1634
    [105]Strous M. Microbiology of anaerobic ammonium oxidation. USA:Ph.D.thesis, 2000,201-265
    [106]陈曦,崔莉凤,杜兵等.温度和pH值对厌氧氨氧化微生物活性的影响分析.北京工商大学学报,2006,24(3):5-8
    [107]Schalk J, et al. The anaerobic oxidation of hydrazine:a novel reaction in microbial nitrogen metabolism nitrogen metabolism. FEMS Microbiology Letters,1998,158(1):61-67
    [108]郑平,胡宝兰.厌氧氨氧化菌混培物生长及代谢动力学研究.生物工程学报,2001,17(2):193-198
    [109]Edwards VH. The influence of high substrate concentration on microbial kinetics.Biotechnology & Bioengineering,1970,12(5):679-712
    [110]刘寅,杜兵,司亚安等.厌氧氨氧化菌的培养与推流式反应器氨厌氧工艺.环境科学,2005,26(2):137-141
    [111]Chen H, Liu S, Yang F, et al. The development of simultaneous partial nitrification, ANAMMOX and denitrification (SNAD) process in a single reactor for nitrogen removal. Bioresour Technology,2009,100(9):1548-1554
    [112]Abma W, Schultz C,Mulder JW,et al. The advance of Anammox. Water Research,2007, (2):36-37
    [113]Thole D, Cornelius A, Rosenwinke KH. Full scale experiences with deammonification of sludge liquor at Hattingen wastewater treatmentplant. GWF, Wasser/Abwasser,2005,146(2):104-109
    [114]Gut L, Plaza E,Trela J,et al. Combined partialnitritation/Anammox system for treatment of digester supernatant. Water Science & Technology,2006,53(12): 149-159
    [115]Fux C, Boehler M, Huber P,et al. Biological treatment of ammonium-rich wastewater by partial nitritation and subsequent anaerobic ammonium oxidation (Anammox)in a pilotplant. Journal of Biotechnogy,2002,99(3):295-306
    [116]Wett B. Solved upscaling problems for implementing deammonification of rejection water. Water Science & Technology,2006,53(12):121-128
    [117]Nyhuis G, Stadler V,Wett B. Inbetriebnahme der ersten DEMON-Anlage in der Schweiz zur direkten Stickstoffe limination und erste Betriebsergebnisse (Taking into operation the first DEMON installation in Switzerland for directnitrogen removal and first process results) [R].6. AachenerTagung mit Informationsforum:Stickstoff riickbelastung-Stand der Technik 2006, Aachen(Ger), ATEMIS GmbH. p. Fachbeitrag 17 (19 p),2006
    [118]Schmid M, Walsh K, Webb R, et al. Candidatus"Scalindua brodae", sp. Nov., candidatus"Scalindua wagneri", sp. Nov., two new species of anaerobic ammonium oxidizing bacteria. Systematic & Applied Microbiology,2003,26(4): 529-538
    [119]Hippen A, Baumgarten G, Rosenwinkel K-H, et al. Aerobic deammonification-A new experience in the treatment of wastewater. Water Science & Technology, 1997,35(10):111-120
    [120]Siegrist H, Reithaar S, Koch G,et al. Nitrogen loss in anitrifying rotating contactor treating ammonium-rich wastewaterwithout organic carbon. Water Science & Technology,1998,38(8-9):241-248
    [121]Szatkowska B, Cema G, Plaza E, et al. One-stage system with partial nitritation and anammox processes in moving-bed biofilm reactor. Water Science & Technology,2007,54(7):49-58
    [122]Bipin K, Pathak, Futaba Kazama, et al. Presence and activity of anammox and denitrification process in low ammonium-fed bioreactors. Bioresource Technology,2007,98(11):2201-2206
    [123]Chamchoi N, Nitisoravut S, Schmidt J.E. Inactivation of ANAMMOX communities under concurrent operation of anaerobic ammonium oxidation (ANAMMOX) and denitrification. Bioresource Technology,2008,99(9):3331-3336
    [124]Sliekers A O, Third K, Abma W, et al. CANON and Anammox in a gas-lift reactor. FEMS Microbiology Letters,2003,218(2):339-394
    [125]国家环境保护总局.水和废水监测分析方法(第4版).北京:中国环境科学出版社,2002,291-299
    [126]Third K.A, Sliekers A.O, Kuenen J.G, et al. The CANON System (Completely Autotrophic Nitrogen-removal Over Nitrite) under Ammonium imitation: Interaction and Competition between Three Groups of Bacteria System. Applied Microbiology & Biotechnology,2001,24:588-596
    [127]Buys B.R, Mosquera-Corral, A Sanchez, et al. Development and application of a denitrification test based on gas production. Water Science & Technology.2000, 41(12):113-120
    [128]Yang Zh H, Xiao Y, Zeng G M, et al. Comparison of methods for total community DNA extractionand purification from compost. Applied Microbiology & Biotechnology,2007,74(4):918-925
    [129]肖勇,杨朝晖,曾光明等PCR-DGGE研究处理垃圾渗滤液序批式生物膜反应器(SBBR)中的细菌多样性.环境科学,2007,28(5):1095-1101
    [130]Anthonisen A.C, Loehr R.C, Prakasam T.B.S, et al. Inhibition of nitrification by ammonia and nitrous acid. Water Pollution Control Federation,1976,48(5): 835-852
    [131]Ganigue R, Lopez H, Balaguer MD, et al. Partial ammonium oxidation to nitrite of high ammonium content urban landfill leachates. Water research,2007, 41(15):3317-3326
    [132]魏琛,罗固源.FA和pH值对低C/N污水生物亚硝化的影响.重庆大学学报(自然科学版),2006,29(3):124-127
    [133]Balmelle B. Study of factors controlling nitrite build-up in biological processes of water nitrification. Water Science & Technology,1992,26(5-6):1017-1025
    [134]Stein L, Arp DJ. Loss of ammonia monooxygenase actiVity in Nitrosomonas europaeaupon exposure to nitrite. Applied & Environmental Microbiology,1998, 64(10):4098-4102
    [135]Sharma B, Ahlert RC. Nitrification and nitrogen removal. Water Research,1997, 11(10):897-925
    [136]Yany L, Alleman JE. InVestigation of batchwise nitrite build-up by an enriched nitrmcation culture. Water Science & Technology,1992,26(5-6):997-1005
    [137]Yoo H, Ahn KH, Lee HJ, et al. Nitrogen remoVal from synthetic wastewater by simultaneous nitrification and denitrification Via nitrite in an intermittently-aerated reactor. Water Research,1999,33(1):145-154
    [138]Gieseke A, Bjerrum L, Wagner M, et al. Structure and activity of multiple nitrifying bacterial populations co-existing in a biofilm. Environmental Microbiology,2003,5(5):355-369
    [139]Wiesmann U. Biological nitrogen removal from wastewater. Advances in Biochemical Engineering/Biotechnology,1994,51:113-154
    [140]Kuenen JG. Anammox bacteria:from discovery to application. Nature,2008, 6(4):320-326
    [141]Kartal B, Kuenen GJ, van Loosdrecht MCM. Sewage Treatment with Anammox. Science,2010,328(5979):702-703
    [142]Van Hulle SWH, Vandeweyer HJP, Meesschaert BD, et al. Engineering aspects and practical application of autotrophic nitrogen removal from nitrogen rich streams. Chemical Engineering Journal,2010,162(1):1-20
    [143]Van Nift rik L A, Fuerst J A, Sinninghe DamsteJ S, et al. The anammoxosome: an intracytoplasmic compartment in anammox bacteria. FEMS Microbiology Letters,2004,233(1):7-13
    [144]Ni S Q, Lee P H, Fessehaie A, et al. Enrichment and biofilm formation of Anammox bacteria in a non-woven membrane reactor. Bioresour Technology. 2010,101(6):1792-1799
    [145]Linping K, Willy V. Ammonium removal by the oxygen-limited autotrophic nitrification-denitrification system. Applied & Environmental Microbiology, 1998,64(11):4500-4506
    [146]沈平,左剑恶,杨洋.接种不同污泥的厌氧氨氧化反应器的启动与运行.中国沼气,2004,22(3):3-7
    [147]Dapena-Mora A, Campos J L, Mosquera-Corral A, et al. Stability of the ANAMMOX process in a gas-lift reactor and a SBR. Journal of Biotechnology, 2004,110(2):159-170
    [148]Tomonori K, Takanori A, Yuji S, et al.Enrichment Using an Up-flow Column Reactor and Community Structure of Marine Anammox Bacteria from Coastal Sediment. Microbes & Environments,2011,26(1):67-73
    [149]Schmidt I, Look C, Bock E, et al. Ammonium and hydroxylamine uptake and accumulation in Nitrosomonas. Microbiology,2004,150(5):1405-1412
    [150]Schmidt I, Bock E, Jetten MSM. Ammonia oxidation by Nitrosomonas eutropha with NO2 as oxidant is not inhibited by acetylene. Microbiology,2001,147: 2247-2253
    [151]郝晓地,仇付国,Van der Star WRL,等.厌氧氨氧化技术工程化的全球现状及展望.中国给水排水,2007,23(18):15-19
    [152]Guven D, Van de Pad-Schoonen K, Schmid MC, et al. Implementation of the Anammox process for improved nitrogen removal. Journal of Environmental Science & Health,2004,39(7):1729-1738
    [153]Wanga C, Leeb P, Kumara M, et al. Simultaneous partial nitrification, anaerobic ammonium oxidation anddenitrification (SNAD) in a full-scale landfill-leachate treatment plant. Journal of Hazardous Materials,2010, (175):622-628
    [154]Okabe S, Oshiki M, Takahashi Y, et al. Development of long-term stable partial nitrification and subsequent anammox process. Bioresource Technology.2011, 102(13):6801-6807
    [155]张少辉,郑平.厌氧氨氧化反应器启动方法的研究.中国环境科学,2004,24(4):496-500
    [156]Strous M, Kunen J G, Jetten M S M. Key physiology of anaerobic ammonium oxidation. Applied & Environmental Microbiology,1999,65(7):3248-3250
    [157]Verstraete W, Philips S. Nitrification-denitrification processes and technologies in new contexts. Environmental Pollution,1998,102(1):717-726
    [158]Blaszczyk M. Effect of medium composition on the denitrification of nitrate by Paracoccus denitrificans. Applied & Environmental Microbiology,1993,59(11): 3951-3953
    [159]Koch G, Egli K, Van der Meer JR, et al. Mathematical modeling of autotrophic denitrification in a nitrifying biofilm of a rotating biological contactor. Water Science & Technology,2000,41(4-5):191-198

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700