用户名: 密码: 验证码:
基于清洁生产理念的污水处理系统节能降耗支撑技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
污水处理系统的能源资源消耗已经占到我国消耗总量的一定比重。但是污水处理系统开展节能降耗在工程技术和实施管理层面上仍然存在着很多技术难点,特别是缺乏可行性高的工程技术措施和可持续实施的系统方案。清洁生产作为一个全新的战略对策,为污水处理系统的节能降耗提供了一个系统解决方案。
     本研究通过现场调研、试验分析和工程示范,以清洁生产理念为指导,针对污水处理系统的节能降耗进行研究,重点解决评价指标的合理性、进水碳源高效利用降耗技术和曝气系统优化控制节能技术的工程可实施性问题,并利用自适应方式来推进污水处理清洁生产的持续实施。
     通过对污水处理系统和清洁生产发展过程的回顾评价,分析了污水处理系统的生产过程属性,清洁生产方法的理论意义,论述了在清洁生产理念指导下进行包括评价体系、工程技术、管理方案在内的污水处理系统节能降耗概念模式。在此基础上,通过对国内11个城市污水处理系统调研分析,建立了直接反映污水处理系统COD、氨氮、总氮、总磷等重点污染物总量削减所需电耗和运行成本的模型。并通过模型确定的节能降耗评价指标,提出了高碑店和清河二期两个污水处理系统节能降耗的关键分别是进水碳源高效利用和曝气系统优化控制两项节能降耗技术。
     中试试验和高碑店厂生产性示范表明活性初沉池同时具有开发进水碳源和去除进水中污染物的效果,根据实际情况组合使用传统初沉池和活性初沉池,可以同时达到节能和无外加碳源条件下强化生物脱氮除磷的目的。清河二期污水处理厂生产性示范采用进水水量调节堰来均衡各单元水量,采用硝化过程控制来合理分配曝气量在好氧段的分布,减少了污水处理各子系统之间水量分配不均匀引起的曝气系统压力较高、好氧段过度曝气等问题造成的能耗浪费。论文最后提出了污水处理系统节能降耗自适应实施方法,并针对高碑店和清河二期污水处理系统进行了详细分析,从而保障污水处理节能降耗技术的持续实施。
Energy and resources used in wastewater treatment systems (WTSs) account for acertain proportion of total amount of consumption in China. However, many technicaldifficulties remain in terms of engineering and management for energy and resourcesconservation in WTS, particularly, the lack of sustainable management systems andfeasible engineering measures. Cleaner production theory, as a new strategy, provides asystemic solution for WTS to save energy and to lower resource consumption.
     Through field investigation, experiment, and practical demonstrations, this study isdevoted towards the analysis of energy conservation and consumption reduction inWTSs based on cleaner production theory, especially the sound evaluation indicators,the technologies for efficient use of influent carbon source, and aeration control. Anadaptive management approach is then applied to promote sustainable implementationof cleaner production in WTSs.
     Comprehensive reviews were conducted regarding the development of sewagetreatment systems and cleaner production. The properties of the production process andthe significance of cleaner production for WTS were also investigated. A systemicframework for energy and resources conservation in WTSs in the context of evaluationsystems, engineering technologies, and management programs was developed. On thebasis of the review above and through field studies of11municipal WTSs, this studyestablishes a model that directly reflects energy consumption and operating cost for thetotal emission load reduction of COD, NH4+-N, TN, and TP. The model results showthat the key technical measure for Gaobeidian WTS is an efficient use of influent carbonsource to reduce consumption, whereas the Qinghe WTS utilizes aeration systemoptimization control to save energy.
     The pilot plant testing and demonstration in the Gaobeidian WTS showed that theactivated primary sedimentation tank possesses both utilization of influent carbonsource and removal of influent pollutants. When the conventional primarysedimentation tank and activated primary sedimentation tank was used in combinationaccording to the actual situation, biological nutrient removal without carbon source andenergy conservation was achieved simultaneously. In the demonstration of the QinghePhase II WTS, adjustable weir was used to regulate water balance of every unit, whereas nitrification aeration control was used to allocate the airflow distribution in theaerobic zone to reduce aeration system pressure and excessive aeration. Finally thisstudy establishes an adaptive framework for the sustainable implementation of cleanerproduction for the Gaobeidian and Qinghe WTSs, thereby ensuring that the proposedtechnical measures for energy conservation and consumption reduction are sustainable.
引文
[1] Urbain V, Wright P and Thomas M. Performance of the full-scale biological nutrient removalplant at Noosa in Queensland, Australia: nutrient removal and disinfection. Wat Sci&Technol,2001,44(2-3):57-62.
    [2] Winkler S, Matsché N, Gasser M, et al. Upgrading of wastewater treatment plants for nutrientremoval under optimal use of existing structures. Wat Sci&Technol,2008,57(9):1437-1443.
    [3] S rensen J, Andersen J, Andreasen K, et al. Experience with the upgrading of14treatmentplants to N&P removal in the municipality of Aarhus. Wat Sci&Technol,1998,37(9):201-208.
    [4] Caulet P, Bujon B, Philippe J, et al. Upgrading of wastewater treatment plants for nitrogenremoval: industrial application of an automated aeration management based on ORP evolutionanalysis. Wat Sci&Technol,1998,37(9):41-98
    [5] Munch E and Koch F. A survey of prefermenter design, operation and performance inAustralia and Canada. Wat Sci&Technol,1999,39(6):105-112
    [6] Daigger G, Wastewater Management in the21st Century. J Environ Eng(ASCE),2007,133(7):671-680.
    [7] Daigger G, Rittmann B, Adham S, et al. Are membrane bioreactors ready for widespreadapplication. Environ Sci&Technol,2005,39(19):399A-406A.
    [8] Cokgor E.U. and Randall C.W. Alternatives for upgrading the Wilderness WastewaterTreatment Plant for biological nutrient removal. Wat Sci&Technol,2004,48(11):453-462.
    [9] F. Osorio, J.C. Torres. Biogas purification from anaerobic digestion in a wastewater treatmentplant for biofuel production. Renewable Energy.2009,34(10):2164-2171.
    [10] Kobayashi T, Li Y, Harada H. et al. Upgrading of the anaerobic digestion of waste activatedsludge by combining temperature-phased anaerobic digestion and intermediate ozonation. WatSci&Technol,2009,59(1):185-193.
    [11] Bordeleau E and Droste R. Comprehensive review and compilation of pretreatments formesophilic and thermophilic anaerobic digestion. Wat Sci&Technol,2011,63(2):291-296.
    [12] Wiesmann U, Choi I, Dombrowski E.废水生物处理原理.盛国平,王曙光,译.1版.北京:科学出版社,2009:13-15.
    [13] Ludzack F J and Ettinger M B. Controlling operation to minimize activated sludge effluentnitrogen. J of Wat Poll Cont Fed.1962,34(9):920-931.
    [14] Barnard J L. Biological denitrification. J of Wat Poll Cont Fed,1973,72(6):705-717.
    [15] Barnard J L. A review of biological phosphorus removal in the activated sludge process. WatSA,1976(2):136-144.
    [16] Randall C W, Barnard J L, Stensel H D. Design and retrofit of wastewater treatment plants forbiological nutrient removal. Lancaster:Technomic Pub Co,1992.
    [17] Shannon M, Bohn P, Elimelech M, et al. Science and technology for water purification in thecoming decades. Nature,2008(452):301-310.
    [18] Olsson G, Nielsen M, Yuan Zhiguo, et al.马勇,彭永臻,译.1版.污水系统的仪表、控制和自动化.北京:中国建筑工业出版社,2007:20-26.
    [19] Kartal1B, Kuenen J and van Loosdrecht M. Sewage Treatment with Anammox. Science,2010,328(5979):702-703.
    [20]杨凌波,曾思育,鞠宇平,等.我国城市污水处理厂能耗规律的统计分析与定量识别.给水排水,2008,34(10):42-45.
    [21]催民选.中国能源发展报告(2010).北京:社会科学文献出版社,2010:4.
    [22]中华人民共和国国家统计局.《2010-中国统计年鉴》.北京:中国统计出版社,2010.
    [23] Baas L. Cleaner production: beyond projects. Journal of Cleaner Production,1995,3(1-2):55-59.
    [24]李景龙,马云.清洁生产审核与节能减排.北京:中国建材工业出版社,2009.
    [25] Glavi P, Lukman R. Review of sustainability terms and their definitions. Journal of CleanerProduction,2007,15(18):1875-1885.
    [26]张凯,崔兆杰,编著.清洁生产理论与方法.北京:科学出版社,2005:31-33.
    [27]石磊,钱易.清洁生产的回顾与展望.中国人口资源与环境,2002,12(2):121-124.
    [28]王守兰,武少华,万融,等.清洁生产理论与实务.北京:机械工业出版社,2002.
    [29]元炯亮.清洁生产基础.北京:化学工业出版社,2009.
    [30]张天柱,石磊,贾小平.清洁生产导论.北京:高等教育出版社,2006.
    [31] Luken R, Navratil J. A programmatic review of UNIDO/UNEP national cleaner productioncentres. Journal of Cleaner Production,2004,12(3):195-205.
    [32] Zeng Saixing, Meng Xiaohua, Yin Haitao, et al. Impact of cleaner production on businessperformance. Journal of Cleaner Production,2010,18:975-983.
    [33] Kemp R, Volpi M. The diffusion of clean technologies: a review with suggestions for futurediffusion analysis. Journal of Cleaner Production,2008,16(1): s14-s21.
    [34]王明远.论清洁生产法治的技术基础.中国人口资源与环境,2007,17(1):28-32.
    [35]任宪友,蔡述明.清洁生产运行机制探讨.中国人口资源与环境,2003,13(3):101-105.
    [36]战友,付宝军,李晓梅等.清洁生产技术在洗选生产中的应用.煤炭技术,2002,21(12):48-49.
    [37]王灵梅,张金屯,倪维斗.火电厂清洁生产的可持续性分析与评估.环境科学与技术,2005(2):64-65.
    [38]屠振密,李宁,于元春,等.电镀清洁生产的途径.电镀与精饰,2005,27(5):31-34.
    [39]蔡建宏.电镀清洁生产改造的依据.电镀与精饰,2008,30(7):13-19.
    [40] Kiperstok A, Silva C. The responsibility of the pulp and paper sector with regard tosustainable development: how much is enough? Wat Sci&Technol,2007,55(6):65-71.
    [41] Abbasi G, Abbassi B. Environmental assessment for paper and cardboard industry in Jordan—a cleaner production concept. Journal of Cleaner Production,2004,12(4):321-326.
    [42]王明浩.浙江省造纸行业推行区域性清洁生产审核模式的探索.环境工程,2008(26):365-369.
    [43] Morales M, Herrero V, Martinz S, et al. Cleaner production and methodological proposalofeco-efficiency measurement in a Mexican petrochemical complex. Wat Sci&Technol,2006,53(11):11-16.
    [44] Rumazo C, Pryor A, Mendoza F, et al. Cleaner production in the chemical industry. Wat Sci&Technol,2000,42(5-6):1-7.
    [45]王仰东,孙桂芳,刘国文,等.废油脂制备生物柴油的清洁生产工艺.化工环保,2007,27(2):177-179.
    [46] Hosang Yi, Jaehong Kim, Hoon Hyung, et al. Cleaner production option in a food (Kimchi)industry. Journal of Cleaner Production,2001,9(1):35-41.
    [47] Schramm W. New findings on the generation of waste and emissions, and a modified cleanerproduction assessment approach—illustrated by leather production. Journal of CleanerProduction,1997,5(4):291-300.
    [48] Kim Jae-Sok, Kim Byung-Gee, Lee Chung-Hak, et al. Development of clean technology inalcohol fermentation industry. Journal of Cleaner Production,1997,5(4):263-267.
    [49] Galka A. Using a cleaner production preventive strategy for the reduction of the negativeenvironmental impacts of agricultural production—using cattle husbandry as a case study.Journal of Cleaner Production,2004,12(5):513-516.
    [50]莫测辉,吴启堂,李桂荣.关于我国21世纪农业清洁生产的思考.中国人口资源与环境,2000,10(1):42-45.
    [51] Thrane M, Nielsen E, Christensen P. Cleaner production in Danish fish processing-experiences, status and possible future strategies. Journal of Cleaner Production,2009,17(3):380-390.
    [52]朱国伟.第三产业推行清洁生产初探.中国人口资源与环境,2001,11(3):104-106.
    [53]杨作精.清洁生产是防治工业污染的新战略.上海环境科学.1993(8):5-7.
    [54] Foley J, de Haas D, Hartley K, et al. Comprehensive life cycle inventories of alternativewastewater treatment systems. Water Research,2010,44(5):1654-1666.
    [55]“十二五”规划:深化节能减排.建设科技,2011,(5):11-12..
    [56] Maksimovic C, Tejada-guibert J,陈吉宁.陈吉宁,译.城市水管理中的新思维-是僵局还是希望.北京:化学工业出版社,2006:196-198.
    [57] Samuelsson P, Halvarsson B, Carlsson B. Cost-efficient operation of a denitrifying activatedsludge process. Water Research,2006,41(11):2325-2332.
    [58]王勤耕,李宗凯,等.总量控制区域排污权的初始分配方法.中国环境科学,2000,20(1):68-72.
    [59] Committee to Assess the Scientific Basis of the Total Maximum Daily Load Approach toWater Pollution Reduction. Assessing the TMDL Approach to Water Quality Management.Washington DC: National Academy Press,2001:12-21.
    [60] Parena R and Smeets E. Benchmarking initiatives in the water industry. Wat Sci&Technol,2001,44(2-3):103-110.
    [61] Schulz A, Obenaus F, Egerland B, et al. Elimination costs for different wastewater compounds.Wat Sci&Technol,2003,47(12):119-124.
    [62] Lindtner S, Kroiss H, Nowak O. Benchmarking of municipal waste water treatment plants (anAustrian project). Wat Sci&Technol,2004,33(1):237-245.
    [63] Vanrolleghem P, Gillot S. Robustness and economic measures as controlbenchmarkperformance criteria. Wat Sci&Technol,2002,45(4-5):117-126.
    [64] Yamanaka O, based on the COST benchmark process O. Yamanaka, Obara T and YamamotoK. Total cost minimization control scheme for biological wastewater treatment process and itsevaluation based on the COST benchmark process. Wat Sci&Technol,2006,53(4-5):203-214.
    [65] Gussem K, Wambecq T, Roels J, et al. Cost optimisation and minimisation of theenvironmental impact through life cycle analysis of the waste water treatment plant of Bree(Belgium).Wat Sci&Technol,2011,63(1):164-170.
    [66] Foley J, de Haas D, Hartley K, et al. Comprehensive life cycle inventories of alternativewastewater treatment systems. Water Research,2010,44(5):1654-1666.
    [67] Gallego A, Hospido A, Moreira M, et al. Environmental performance of wastewater treatmentplants for small populations. Resources Conservation and Recycling,2008,52(6):931-940.
    [68] Pasqualino J, Meneses M, Abella M, et al. LCA as a decision support tool for theenvironmental improvement of the operation of a municipal wastewater treatment plant.Environmental Science&Technology,2009,43(9):3300-3307.
    [69] Houillon G, Jolliet O. Life cycle assessment of processes for the treatment of wastewaterurban sludge: energy and global warming analysis. Journal of Cleaner Production,2005,13(3):287-299.
    [70] Lim Seong-Rin, Park Jong Moon. Environmental impact minimization of a total wastewatertreatment network system from a life cycle perspective. Journal of EnvironmentalManagement,2009,90(3):1454-1462.
    [71] Muga H, Mihelcic J. Sustainability of wastewater treatment technologies. Journal ofEnvironmental Management,2008,88(3):437-447.
    [72] Hans Brix. How 'green' are aquaculture, constructed wetlands and conventional wastewatertreatment systems? Wat Sci&Technol,40(3):45-50.
    [73]吉倩倩,张琼华,熊家晴,等.运用LCA方法分析污水再生处理的成本效益.环境工程学报,2010,4(3):517-520.
    [74]杨健,吴敏.城镇污水处理技术清洁性的评估.环境保护,2001(9):26-28.
    [75] Smith B. Re-thinking wastewater landscapes: Combining innovative strategies to addresstomorrow's urban wastewater treatment challenges. Wat Sci&Technol,2009,60(6):1465-1470.
    [76] Chuang Shun-Hsing, Ouyang Chiao-Fuei and Wang Yeuh-Bin. Kinetic competition betweenphosphorus release and denitrification on sludge under anoxic condition. Water Research,1996,30(12):2961-2965.
    [77] Tchobanoglous G, Burton F, and Stensel D. Wastewater engineering treatment and reuse.McGraw Hill Higher Education,2002.
    [78] Eastman J, Ferguson J. Solubilization of particulate organic carbon during the acid phase ofanaerobic digestion. Water Poll Con Fed,1981,53(3):352-366.
    [79] Banister S and Pretorius W. Optimisation of sludge acidogenic fermentation for biologicalnutrient removal. Water SA,1998,24(1):35-42.
    [80] Chyi Y, Dague R. Effects of particulate size in anaerobic acidogenesis using celluloseas a solecarbon source. Water Environment Resources,1994,(66):670-678
    [81] Andreasen K., Petersen G., Thomsen H. and Strube R.(1997). Reduction of nutrient emissionby sludge hydrolysis. Wat Sci&Technol,35(10):79-85.
    [82] Moser-Engeler R, Udert K, Wild D, et al. Products from primary sludge fermentation andtheir suitability for nutrient removal. Wat Sci&Technol,1998,38(1):265-273.
    [83] Munch E and Koch F. A survey of prefermenter design, operation and performance inAustralia and Canada. Wat Sci&Technol,1999,39(6):105-112.
    [84] Latimer R, Pitt P, and van Niekerk A. Review of primary sludge fermentation performance insouth Africa and the USA. Proceedings of the Water Environment Federation, WEFTEC2007,1651-1671.
    [85] Chanona J, Ribes J, Sceco A, et al. Optimum design and operation of primary sludgefermentation schemes for volatile fatty acids production. Water Research,2006,40:53-60.
    [86]吕鉴,赵永志,王佳伟,等.初沉污泥水解酸化对A2/O工艺强化除磷影响.北京工业大学学报,2008,34(9):981-985.
    [87]吴一平,王旭东.初沉污泥作为生物脱氮除磷快速碳源的转化因素研究.西安建筑科技大学学报(自然科学版),2005,34(9):501-503.
    [88] Zhang Peng, Chen Yinguang, Zhou Qi. Waste activated sludge hydrolysis and short-chainfatty acids accumulation under mesophilic and thermophilic conditions: Effect of pH. WaterResearch,2009,43:3735-3742.
    [89] Yuan Q, Sparling R, Oleszkiewicz J. Waste activated sludge fermentation: Effect of solidsretention time and biomass concentration. Water Research,2009,43:5180-5186.
    [90]郝晓地,汪慧贞,钱易,等.欧洲城市污水处理技术新概念—可持续生物除磷脱氮工艺.给水排水,2002,28(6):6-13.
    [91] van Loosdrecht M, Jetten M. Microbiological conversions in nitrogen removal, Water Sci andTechnol,1998,38:1-7.
    [92] Mulder A. Anaerobic ammonium oxidation. US patent documents,427849(507884):1992.
    [93] Kuba T, van Loosdrecht M, Heijnen J. Phosphorus and nitrogen removal with minimal CODrequirement by integration of denitrifying dephosphatation and nitrification in a two-sludgesystem. Water Research,1996,30(7):1702-1710.
    [94] Hao Xiaodi, Heijnen J, Qian Yi, et al. Contribution of P-Bacteria in BNR processes to overalleffects on the environment. Wat Sci&Technol,2001,44(1):67-76.
    [95] Osborn D, Nicholls H. Optimization of the activated sludge process for the biological removalof phosphorus. Prog Water Technol,10(1/2):261-177.
    [96]马勇,王淑莹,曾薇,等. A/O生物脱氮工艺处理生活污水中试(一)短程硝化反硝化的研究.环境科学学报,2006,26(5):703-709.
    [97]李捷,张杰.厌氧氨氧化工艺处理低氨氮污水的影响因素研究.中国给水排水,2008,24(23):67-71.
    [98]吴昌永,彭永臻,彭轶. A2/O工艺的反硝化除磷特性研究.中国给水排水,2008,24(15):11-14.
    [99] Bj rklund J, Geber U, Rydberg T. Emergy analysis of municipal wastewater treatment andgeneration of electricity by digestion of sewage sludge. Resources, Conservation andRecycling,2001,31(4):293-316.
    [100] Sung T, Kim J, Premier G, et al. Sustainable wastewater treatment: How might microbial fuelcells contribute. Biotechnology Advances,2010,28(6):871-881.
    [101] Ahn Y, Logan B. Effectiveness of domestic wastewater treatment using microbial fuel cells atambient and mesophilic temperatures. Bioresource Technology,2010,101(2):469-475.
    [102] Arias M, Brown M. Feasibility of using constructed treatment wetlands for municipalwastewater treatment in the Bogotá Savannah, Colombia. Ecological Engineering,2009,35(7):1070-1078.
    [103] nnerth T, Nielsen M and Stamer C. Advanced computer control based on real and softwaresensors, Water Sci&Technol,1996,33(1):237-245.
    [104]张自杰.排水工程下册(第四版).北京:中国建筑工业出版社,2000.
    [105]胡寿松.自动控制原理(第四版).北京:科学出版社,2001.
    [106] Balslev P, Lynggaard-Jensen A and Nickelsen C. Nutrient sensor based real-time on-lineprocess control of a wastewater treatment plant using recirculation. Wat Sci&Technol,1996,33(1):183-192.
    [107] Ingildsen P and Wendelboe H. Improved nutrient removal using in situ continuous on-linesensors with short response time. Wat Sci&Technol,2003,48(1):95-102.
    [108] Ingildsen P, Jeppsson U and Olsson G. Dissolved oxygen controller based on on-linemeasurements of ammonium combining feed-forward and feedback. Wat Sci&Technol,2002,45(4-5):453-460.
    [109] Husmann M, Orth H, Schlegel S, et al. Application of process control for improved nitrogenremoval. Wat Sci&Technol,1998,38(3):263-269.
    [110] Samuelsson P and Carlsson B. Control of the aeration volume in an activated sludge processfor nitrogen removal. Wat Sci&Technol,2002,45(4-5):45-52.
    [111] Yu R, Liaw S, Chang C, et al. Monitoring and control using on-line ORP on thecontinuous-flow activated sludge batch reactor system. Wat Sci&Technol,1997,35(1):57-66.
    [112] Li Y, Peng C, Peng Y, et al. Nitrogen removal from pharmaceutical manufacturing wastewatervia nitrite and the process optimization with on-line control. Wat Sci&Technol,2004,50(6):25-30.
    [113] Peng Y, Ma Y, Wang S, et al. Fuzzy control of nitrogen removal in predenitrification processusing ORP. Wat Sci&Technol,2005,52(12):161-169.
    [114] Yuan Zhiguo, Oehmen A and Ingildsen P. Control of nitrate recirculation flow inpredenitrification systems. Wat Sci&Technol,2002,45(4-5):29-36.
    [115] Yuan Z and Keller J. Integrated control of nitrate recirculation and external carbon addition ina predenitrification system. Wat Sci&Technol,2004,48(11):345-354.
    [116]祝贵兵,彭永臻,吴淑云,等.分段进水生物脱氮工艺的优化控制运行研究.中国给水排水,2006,22(21):6-10.
    [117] Nyberg U, Andersson B and Aspegren H. Real time control for minimizing effluentconcentrations during storm water events. Wat Sci&Technol,1996,34(3-4):127-134.
    [118] Bauwens W, Vanrolleghem P and Smeets M. An evaluation of the efficiency of the combinedsewer-wastewater treatment system under transient conditions. Wat Sci&Technol,1996,33(2):199-208.
    [119] Isaacs S and Thornberg D. Rule based control of a periodic activated sludge process. Wat Sci&Technol,1998,38(3):281-289.
    [120] Thomsen H, Nielsen M, Nielsen E, et al. Hansen. Load dependent control of BNR-WWTP bydynamic changes of aeration volumes. Wat Sci&Technol,1998,37(12):157-164.
    [121]林叶华.集散型控制系统在大型污水处理厂的应用.中国给水排水,2006,22(22):66-68.
    [122]王华强,宣浩.污水处理厂自动控制系统.仪器仪表用户,2006(4):46-47.
    [123]夏文辉,刘芬,周雹.污水处理厂曝气控制研究.给水排水,2009,35(1):121-125.
    [124]赵冬泉,佟庆远,李宁,等.基于节能的鼓风曝气系统溶解氧稳定智能控制方法.给水排水,2008,34(7):116-119.
    [125] Jeppsson U, Alex J, Pons M, et al.. Status and future trends of ICA in wastewater treatment-A European perspective. Wat Sci&Technol,2002,45(4-5):485-494.
    [126]国家统计局.国民经济行业代码(GB/T4754—2002).
    [127] National Research Council. Assessing the TMDL Approach to Water Quality Management.Washington, D.C.: National Academy Press,2001.
    [128]王积伟.现代控制理论与工程.北京:高等教育出版社,2003:325.
    [129]翁思义.自适应控制系统.北京:水利电力出版社,1995:1.
    [130] Hansen R, Th gersen T and Rogalla F. Comparing cost and process performance of activatedsludge (AS) and biological aerated filters (BAF) over ten years of full sale operation. Wat Sci&Technol,2007,55(8-9):99-106.
    [131] Owen W.污水能效与能耗.章北平,车武,译.1版.北京:能源出版社,1989:25-37.
    [132] Fux C and Siegrist H. Nitrogen removal from sludge digester liquids bynitrification/denitrification or partial nitritation/anammox: environmental and economicalconsiderations. Wat Sci&Technol,2004,50(10):19-26.
    [133] Lindtner S, Schaar H and Kroiss H. Benchmarking of large municipal wastewater treatmentplants treating over100,000PE in Austria. Wat Sci&Technol,2008,57(10):1487-1493.
    [134] Cornel P and Schaum C. Phosphorus recovery from wastewater: needs, technologies and costs.Wat Sci&Technol,2009,59(6):1069-1076.
    [135] Nowak O. Expenditure on the operation of municipal wastewater treatment plants for nutrientremoval. Wat Sci&Technol,2000,41(9):281-289.
    [136] Friedler E, Pisanty E. Effects of design flow and treatment level on construction and operatingcosts of municipal wastewater treatment plants and their implications on policy making.Water Research,2006,40(20):3751-3758.
    [137] Nowak O. Benchmarks for the energy demand of nutrient removal plants. Wat Sci&Technol,2003,47(12):125-132.
    [138] Henze M, Harremoes P, Jansen C, et al. Wastewater Treatment Biological and ChemicalProcesses,2nd edition. Berlin: Springer,1997.
    [139] Clauson-Kaas J, Sander T, Neergaard-Jacobsen B, et al. Economic and environmentaloptimization of phosphorus removal. Wat Sci&Technol,2004,50(7):243-248.
    [140]念东,王佳伟,刘立超,等.城市污水处理厂化学除磷效果及运行成本研究.给水排水,2008,34(5):7-10.
    [141] Jonsson L. Denitrification rate and carbon source consumption in full-scale wastewaterfiltration. Wat Sci&Technol,2004,50(7):105-112.
    [142]王佳伟,常江,周军.沉淀池泥位观测计.中国: ZL200820079560.0.2008-12-24.
    [143] Vollertsen J and Hvitved-Jacobsen T. Aerobic microbial transformations of resuspendedsediments in combined sewers-A conceptual model. Wat Sci&Technol,1998,37(1):69-76.
    [144] Chanona J, Ribes J, Sceco A, et al. Optimum design and operation of primary sludgefermentation schemes for volatile fatty acids production. Water Research,2006,40:53-60.
    [145] Ucisik A and Henze M. Biological hydrolysis and acidification of sludge under anaerobicconditions: The effect of sludge type and origin on the production and composition of volatilefatty acids. Water Research,2008,48:3729-3738.
    [146] Banerjee A, Elefsiniotis P and Tuhtar D. Effect of HRT and temperature on the acidogenesisof municipal primary sludge and industrial wastewater. Wat Sci&Technol,1998,38(8-9):417-423.
    [147] Banister S and Pretorius W. Optimisation of primary sludge acidogenic fermentation forbiological nutrient removal. Water SA,2001,24(1):35-41.
    [148] Rossle W and Pretorius W. A review of characterization requirements for in-lineprefermenters, Paper2: Process Characterisation. Water SA,2001,27(3):413-422.
    [149] Ferreiro N and Soto M. Anaerobic hydrolysis of primary sludge: Influence of sludgeconcentration and temperature. Wat Sci&Technol,2003,47(12):239-246.
    [150] Zeng R, Yuan Z and Keller J. Effects of solids concentration, pH, and carbon adition on theproduction rate and composition of volatile fatty acids in prefermenters using primary sewagesludge. Wat Sci&Technol,2006,53(8):263-269.
    [151] Bouzas A, Ribes J, Ferrer J, et al. Fermentation and elutriation of primary sludge: Effect ofSRT on process performance. Water Research,2007,47(11):2325-2332.
    [152] Moser-Engleler R, Kuhni M, Bernhard C, et al. Fermentation of raw sludge on an industrialscale and applications for elutriating its dissolved products and non-sedimentable solids.Water Research,1999,33(16):3503-3511.
    [153] Ahn Y and Speece R. Elutriated acid fermentation of municipal primary sludge. WaterResearch,2006,40:2210-2220.
    [154] Gorgun E, Artan E, Orhon D, et al. Evaluation of nitrogen removal by step feeding in largetreatment plants.Wat Sci&Technol,1996,34(1-2):253-260.
    [155] Larrea L, Larrea A, Ayesa E, et al. Development and verification of design and operationcriteria for the step feed process with nitrogen removal. Wat Sci&Technol,2001,43(1):261-268.
    [156] Lee Y, Kim Y, Chang N, et al. Development of sequencing batch reactor with step feed andrecycle. Wat Sci&Technol,2007,55(1-2):477-484.
    [157]邱慎初,丁堂堂.分段进水的生物脱氮除磷工艺.中国给水排水,2003,19(4):32-36.
    [158] Grady C, Daigger G, Lim H.废水生物处理.张锡辉,刘勇第,译.1版.北京:化学工业出版社,2003.
    [159] Zhu G, Peng Y, Wu S, et al. Automatic control strategy for step feed anoxic/aerobic biologicalnitrogen removal process. Journal of Environmental Sciences,2006,17(3):457-459.
    [160]韩志,朱军,丁颖,等.强化生物脱氮分步进水型序批式反应器.中国给水排水,2007,23(2):17-21.
    [161]吴淑云,祝贵兵,彭永臻.分段进水生物脱氮工艺最高脱氮率的探讨.哈尔滨工业大学学报,2007,39(4):594-598.
    [162] Moser-Engeler R, Udert K, Wild D, et al. Products from primary sludge fermentation andtheir suitability for nutrient removal. Wat Sci&Technol,1998,38(1):265-273.
    [163] Tchobanoglous G, Burton F, Stensel H.废水工程处理与回用(第四版) Ⅱ.北京:清华大学出版社,2003.
    [164] Moser-Engeler R, Udert K, Wild D, et al. Products from primary sludge fermentation andtheir suitability for nutrient removal. Wat Sci&Technol,1998,38(1):265-273.
    [165] Ubay-Cokgor E, Oktay S, Zengin G, et al. Effect of primary sludge fermentation products onmass balance for biological treatment. Wat Sci&Technol,2005,51(11):105-114.
    [166] Henze M, Gujer W, Mino T, et al. Activated sludge model No.2, IAWQ Scientific andTechnical Report No.3. London: IAWQ,1995.
    [167] Water Environment Federation. Energy conservation in water and wastewater facilities MOP32. Alexandria, Virgina: WEF,2009.
    [168]東京都下水道局.東京都下水道事業経営環境レポート2010[EB/OL].[2010-12].http://www.gesui.metro.tokyo.jp/jigyou/kei-kan2010/kei-kan2010.htm
    [169] Science Applications International Corporation(SAIC). Water and wastewater energy bestpractice guidebook [EB/OL].[2006-12]. http://www.werf.org/AM/Template.cfm?Section=Home&TEMPLATE=/CM/ContentDisplay.cfm&CONTENTID=10245.
    [170] U.S.EPA. Ensuring a sustainable future: an energy management guidebook forwastewater and water utilities [EB/OL].[2008-01]. http://www.epa.gov/waterinfrastructure/pdfs/guidebook_si_energymanagement.pdf.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700