用户名: 密码: 验证码:
水下高速航行体非定常空化流场数值计算
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
空化现象是水下高速航行体周围以及高速水轮机械系统中的常见现象。空化现象机理复杂,流体动力环境恶劣,在水轮机械中的空化现象,往往会导致空蚀破坏,而水下高速航行体周围的空化往往又能起到革命性的减阻效果,因而,加强空化现象的机理研究具有广泛的实际意义。
     论文参考Rayleigh-Plesset方程,首先针对无限大水域中的单个球形气泡,建立了Rayleigh-W气泡动力学方程。再将Rayleigh-W方程引入到空化相变率中,建立了基于Rayleigh-W方程的空化模型,并对该模型进行了验证和应用。具体研究工作如下:
     首先概述了空化流场的基本控制方程,指出了现有空化模型存在的问题,提出了相应的解决办法。其次,在不可压缩流场中,根据单个球形气泡的运动特点,在Rayleigh方程的基础上,重新构建了气泡动力学模型——Rayleigh-W模型。再以理想气体为例,分析了气泡变形过程中,气泡界面上空化相变进行的方向,并将之引入到Rayleigh-W模型中,得到了考虑相变作用的气泡动力学方程。
     以Rayleigh-W方程的推导过程为基础,进一步研究了单个球形气泡的扩张过程和收缩过程,估算了气泡内外压差以及泡壁运动速度。通过假设泡内气体经历多方热力学过程,进一步研究了气泡的溃灭频率。通过对Rayleigh-W方程的变分分析,研究了气泡溃灭过程中的泡壁速度与气泡直径之间的关系,同时研究了常温下气泡收缩可达到的极限半径。
     根据两相流体的连续性方程,推导并证明了球形气泡变形过程中的空化相变率,并将之推广到任意气泡形态。
     结合Rayleigh-W方程、空化相变率以及气泡变形过程中相变的进行方向,建立了基于简化的Rayleigh-W方程的空化模型。以水洞实验结果和文献资料为基准,完成了该空化模型的正确性和有效性验证(V&V验证)。
     应用基于Rayleigh-W方程的空化模型,对半球头圆柱体模型的空化流场进行了数值模拟研究。在研究过程中,首先采用枚举的方法,分别对空化模型中的模型系数进行了数值确定,然后分析了半球头圆柱体模型在水下高速航行时,流场内的流体动力布局及相关参数随时间的变化规律,同时分析了由空化模型系数引起的阻力系数的计算误差。
     在半球头圆柱体模型的空化流场中,研究了空化模型系数与主空泡形态之间的关系,总结了空化流场中出现的空泡类型及其随空化数变化的规律。分别得到了局部空化流场和弱空化流场中的空化模型系数与空化数之间的关系。
     最后,利用空化模型中的模型系数与空化流场主空泡形态之间的关系的推论,间接分析了超空化水下射弹流场中的模型阻力系数和主空泡形态。
     论文研究了气泡动力学模型和数值空化模型,实现了空化流场中的非定常细节捕捉,为深入研究气泡运动机理和空化机理,提供了理论基础和依据。
Cavitation often occurs around the high-speed submerged body and in thehigh-speed turbine system and other high-speed motion under water. Cavitation mayoften cause cavitation damage in the turbine system however may show therevolutionary drag reduction effect during the motions of the underwater vehicleenveloped in a supercavity. To strengthen the research of the cavitation mechanismhas a wide range of practical significance. The research began with the analysis ofthe bubble dynamics, the theoretical correction was implemented onRayleigh-Plesset equation and the Rayleigh-W equation was acquired. Then thesimplified Rayleigh-W equation was introduced to establish the cavitation modelwith cavitation mass rate just similar to the process of the derivation of the FullCavitation Model. The main research works are as follows.
     The paper first provides an overview of the basic control equations ofcavitation flow, and then points out the defects of the existing cavitation models.Secondly, based on the Rayleigh-W equation, a new bubble dynamics model wasestablished taking into acount the deformation characteristics of the single sphericalbubble in the incompressible flow. Taking ideal gas as an example, the changedirection of the cavitation phase-change during the bubble deformation was studiedand then the result was introduced into the Rayleigh-W model to rebuild the bubbledynamics model.
     Based on the derivative of the Rayleigh-W equation, the expansion andcontraction of a single bubble were studied, and then the pressure difference insideand outside of a bubble and the velocity of the bubble wall were estimated. Throughthe assumption that the gas inside a cavitation bubble experienced polytrophicprocess, the bubble collapse frequency was further studied. Through the variationalanalysis of the Rayleigh-W equation, the relationship between the bubble wallvelocity and the bubble diameter during the bubble collapse was studied, and theachievable contraction limit radius during the bubble collapse was also studied atnormal temperature.
     Based on the two-phase fluid continuity equation, the cavitation phase-changerate during the deformation of the spherical bubble was derived and then proved,and then the conclusions of which were generalized to an arbitrary cavity shape.
     Combined the Rayleigh-W equation, the cavitation phase change rate and phasechange direction during the bubble deformation process, a new cavitation modelbased on the simplified Rayleigh-W equations was established for the numerical study of cavitation flow. Taking the water tunnel experiment and literature data forreference, the validation and verification (V&V) were carried out on the newlycreated cavitation model.
     Numerical simulations were carried on the cavitation flow generated from theunderwater high-speed hemispherical head cylinder model using the new createdcavitation model. During the study, the calculations to verify the model coefficientswere firstly numerically carried out using enumeration method, and then thehydrokinetic layout and the variations of related parameters over time of thehemispherical head cylinder high-speed sailing underwater were analyzed. Thecalculation errors of the drag coefficients caused by the improper model coefficientswere studied. The relationship between the model coefficients and the cavity shapewas analyzed. The types of the cavities in the cavitation flow field and therelationship with the cavitation number has been summed up. The relationshipsbetween the cavitation number and the cavitation model coefficients in some typesof cavitation flow fields have been acquired.
     Indirect analysis was carried out to the relationship between the main cavityshape and the model drag coefficients in the supercavitation flow field using therelationship between the cavitation model coefficients and the shape of the maincavity.
     The thesis has studied the bubble dynamics model and numerical cavitationmodel, successfully capture the main unsteady details of the cavitation flow,provides a theoretical basis and foundation for the study of cavitation mechanismin-depth.
引文
[1]金大桥.水下动能射弹空泡形态及流体动力特性研究[D].哈尔滨:哈尔滨工业大学博士学位论文,2010:2-3.
    [2] Knapp R. T., Daily J. T., Hammit F. G. Cavitation [M]. Mc Graw Hill, New York,1970.
    [3]山口一.キャビテーションに関する研究動向[J].日本造船学会誌,1997,919:681-685.
    [4]王海斌,王聪,魏英杰等.水下航行体通气超空泡的实验研究.船舶力学.2007,11(4):514-520.
    [5] Brewer W. H., Kinnas S. A. Experiment and viscous flow analysis on a partiallycavitating hydrofoil [J]. Journal of Ship Research,1997,41(3):161-171.
    [6] Kinnas S. A. The prediction of unsteady sheet cavitation [C]//Third InternationalSymposium on Cavitation, Grenoble, France,1998:19-36.
    [7]郝宗睿,王乐勤,吴大转.水翼非定常空化流场的数值模拟[J].浙江大学学报(工学版),2010,44(5):1043-1048.
    [8]时素果,王国玉,袁海涛,等.绕三维水翼非定常空化流动结构的数值与实验研究[J].工程力学,2012,29(8):346-353.
    [9]张博,王国玉,黄彪,余志毅.云状空化非定常脱落机理的数值与实验研究[J].力学学报,2009,41(05):651-659.
    [10]朱志峰,方世良,王晓燕.空化螺旋桨非定常粘性流场特征分析.中国科学:技术科学,2011,41(2):213-222.
    [11] Young Y. L., Kinnas S. A. Numerical modeling of supercavitating propiller flows[J]. Journal of Ship Research,2003,47(1):48-62.
    [12]安東潤,金丸崇ら.簡便なパネル法による3次元非定常シートキャビテーションの計算.日本造船学会論文集,第188号,2001:91-103.
    [13] Semenenko V. N. Calculation of two-dimensional unsteady supercavities atarbitrary time dependence [J]. International Journal of Fluid Mechanics Research,2004,31(6):621-632.
    [14]杨洪澜.非定常超空泡绕流研究[D].哈尔滨:哈尔滨工业大学博士学位论文,2007.
    [15] Besant W. H. Hydrostatics and hydrodynamics [M]. London: CambridgeUniversity Press,1859,158.
    [16] Rayleigh L. On the pressure developed in a liquid during collapse of a sphericalcavity [J]. Philosophical Magazine,1917,34:94–98.
    [17] Knapp R., Daily J., and Hammit F. Cavitation [Russian translation], Mir, Moscow(1974).
    [18] Brennen C. E., Cavitation and Bubble Dynamics [M]. Oxford: Oxford UniversityPress,1995:282.
    [19] Nigmatulin R. I. Dynamics of multiphase media, Part I, Hemisphere Publ., NewYork,1991.
    [20] Hammitt F. G. Cavitation and multiphase flow phenomena [M]. Yew York:McGraw-Hill,1980.
    [21] Young F. R. Cavitation [M]. Yew York: McGraw Hill,1989.
    [22] Franc J. P., AVELLAN F. and BELHADJI B. et al. La cavitation. m canismesphysiques et aspects industrielles, collection grenoble sciences [M]. PressesUniversitaires de Grenoble,1995(in France).
    [23] Isay W. H. Kavitation, schiffahrts-verlag [M]. Hamburg: Hansa C. Shroedter andco.,1981(in Germany).
    [24] Leighton T. G. The acoustic bubble [M]. Acad. Press,1994.
    [25] Chahine Georges L. Numerical simulation of bubble flow interactions [J]. Journalof hydrodynamics,2009,21(3):316-332.
    [26] Epstein P. S. and Plesset M. S. On the stability of gas bubbles in liquid-gassolutions [J]. Journal of Chemical Physics,1950,18(11):1505-1509.
    [27] Kedrinskii V. K., Kovalev V. V. and Plaksin S. I. A model of bubble cavitation ina real liquid [J]. Journal of Applied Mechanics and Technical Physics,1986,27(5):81-85.
    [28] Leighton T. G. The Rayleigh-Plesset equation in terms of volume with explicitshear losses [J]. Ultrasonics,2008,48(2):85-90.
    [29] Tian H., Yang C. and Liao Z. Numerical simulation of cavitation bubble dynamicsbased on different frame Rayleigh-Plesset equation [C]//System Simulation andScientific Computing. ICSC. Asia Simulation Conference-7th InternationalConference,2008:1312-1316.
    [30] Bremond N., Arora M., Dammer S. M. and Lohse D. Interaction of cavitationbubbles on a wall [J]. PHYSICS OF FLUIDS,2006,18(12):1505-1514.
    [31] Pelekasis N. A., Gaki A., Doinikov A., and Tsamopoulos J. A. SecondaryBjerknes forces between two bubbles and the phenomenon of acoustic streamers[J]. Journal of Fluid Mechanics,2004,500:313-347.
    [32] Feng H, Barbosa-Canovas GV, Weiss J. Ultrasound Technologies for Food andBioprocessingSeries: Food Engineering Series [M].2011:13-64.
    [33] Lezzi A. and Prosperetti A. Bubble dynamics in a compressible liquid. Part2.Second-order theory [J]. Journal of Fluid Mechanics,1987,185:289-321.
    [34] Prosperetti A.(1999). Old-fashioned bubble dynamics [M].
    [35] Prosperetti A. and Lezzi A. Bubble dynamics in a compressible liquid. Part1.First-order theory [J]. Journal of Fluid Mechanics,1986,168:457-478.
    [36] Keller J. B. and Miksis M. Bubble oscillations of large amplitude [J]. Journal ofthe Acoustical Society of America,1980,68(2):628-633.
    [37] Brujan E. A. Bubble dynamics in a compressible shear-thinning liquid [J]. FluidDynamics Research,1998,23(5):291-318.
    [38] Brujan E. A. A first-order model for bubble dynamics in a compressibleviscoelastic liquid [J]. Journal of Non-Newtonian Fluid Mechanics,1999,84(1):83-103.
    [39] Brujan E. A. The equation of bubble dynamics in a compressible linearviscoelastic liquid [J]. Fluid Dynamics Research,2001,29(5):287-294.
    [40] Brujan E. A. Cavitation bubble dynamics in non-Newtonian fluids [J]. PolymerEngineering and Science,2009,49(3):419-431.
    [41] Prosperetti A. Bubble dynamics: a review and some recent results [J]. AppliedScientific Research,1982,38(1):145-164.
    [42] Tsai S. Thermodynamics on cavitation [J]. Applied mathematics and mechanics.HUST Press,1983,4(6):825-831.
    [43] De Giorgi M. G., Bello D, Ficarella A. Analysis of thermal effects in a cavitatingorifice using Rayleigh Equation and experiments [J]. Journal of Engineering forGas Turbines and Power,2010,132(9):092901.
    [44] Gehannin J., Arghir M., Bonneau O. Evaluation of Rayleigh-Plesset equationbased cavitation models for squeeze film dampers [J]. Journal of Tribology,2009,131(2):024501.
    [45] Wiesche S. The collapse of micro cavitation bubbles [J]. Forschung imIngenieurwes,2008,72(3):175-182.
    [46] Lee C., Roh Tae. Flow instability due to cryogenic cavitation in the downstreamof orifice [J]. Journal of Mechanical Science and Technology.2009,23(3):643-649.
    [47] Utturkar Y., Wu J., Wang G. and Shyy W. Recent progress in modeling ofcryogenic cavitation for liquid rocket propulsion [J]. Aerospace Sciences,2005,41(7):558-608.
    [48] Alehossein H., Qin Z. Numerical analysis of Rayleigh–Plesset equation forcavitating water jets [J]. International journal for numerical methods inengineering,2007,72(7):780-807.
    [49] Nigmatulin R. I. Akhatov I. Sh. and Vakhitova N. K. Forced oscillations of a gasbubble in a spherical volume of a compressible liquid [J]. Journal of AppliedMechanics and Technical Physics,1999,40(2):285-291.
    [50] Ida M. Multibubble cavitation inception [J]. PHYSICS OF FLUIDS,2009.21:113302.
    [51] Plesset M. S. The dynamics of cavitation bubbles [J]. Journal of AppliedMechanics (ASME),1949,16:277-282.
    [52] C. W. M. van der Geld. On the motion of a spherical bubble deforming near aplane wall [J]. Journal of Engineering Mathematics,2002,42(2):91-118.
    [53] Merkle C. L., Feng J, Buelow PEO. Computational modeling of dynamics of sheetcavitation [C]//Proceedings of3rd International Symposium on Cavitation, Grenoble, France,1998.
    [54] Kunz R. F., Chyczewski T. S. Multi-phase cfd analysis of natural and ventilatedcavitation about submerged bodies [C]//3rd ASME/JSME Joint FluidsEngineering Conference July18-23,1999, San Francisco, California.
    [55] Singhal A. K., Athavale M. M., Li H., et al. Mathematical Basis and Validation ofthe Full Cavitation Model [J]. J. Fluids Eng,-Trans ASME,2002,124(3):617-624.
    [56] Tamura Y., Matsumoto Y. Improvement of bubble model for cavitating flowsimulations [J]. Journal of Hydrodynamics,2009,21(1):41-46.
    [57] Zwart P., Gerber A. and Belamri T. A two-phase flow model for predictingcavitation dynamics[C]//ICMF. In2004International Conference on MultiphaseFlow,2004: Paper No.152.
    [58] Launder B. E. and Spalding D. B. The numerical computation of turbulent flows[J]. Computer Methods in Applied Mechanics and Engineering,1974,3(2):269-289.
    [59] Kubota A., Kato H., and Yamaguchi H. A new modeling of cavitating flows: Anumerical study of unsteady cavitation on a hydrofoil section [J]. J. Fluid Mech.,1992,240:59-96.
    [60] Kubota A., Kato H., Yamauchi H., Maeda M. Unsteady structure measurement ofcloud cavitation on a foil section using conditional sampling technique [J]. J.Fluids Eng.,1989,111:204-10.
    [61] Deshpande M., Feng J., and Merkle C. L. Cavity flow predictions based on theeuler equations [J]. J. Fluid Mech.,1994,113(1):36-44.
    [62] Goel T., Thakur S., Haftka1R. T., et al. Surrogate model-based strategy forcryogenic cavitation model validation and sensitivity evaluation [J]. Internationaljournal for numerical methods in fluids,2008,58:969-1007.
    [63] Utturkar Y. Computational modeling of thermodynamic effects in cryogeniccavitation [D]. Ph.D. Dissertation, University of Florida, Gainesville, FL,2005.
    [64] Hosangadi A., Ahuja V. Numerical study of cavitation in cryogenic fluids [J].Journal of Fluids Engineering,2005,127(2):267-281.
    [65] Hosangadi A., Ahuja V. and Arunajatesan S. A generalized compressiblecavitation model [C]//CAV2001: sessionB4.003.
    [66] Hosangadi A., Ahuja V. and Ungewitter R. J. Simulations of cavitating flows inturbopumps [J]. Journal of propulsion and power.2004,20(4):604-611.
    [67] Hosangadi A., Ahuja V. and Ungewitter R. J. Analysis of thermal effects incavitating liquid hydrogen inducers [J]. Journal of propulsion and power,2007,23(6):1225-1234.
    [68] Kunz R. F., Boger D. A., Stinebring D. R., et al. A preconditioned Navier-Stokesmethod for two-phase fows with application to cavitation prediction [J].Computers&Fluids2000,29(8):849-875.
    [69] Neaves M. D. Edwards J. R. All-Speed Time-Accurate underwater projectilecalculations using a preconditioning algorithm [J]. Journal of Fluids Engineering,2006,128(2):284-296.
    [70] Nouri N.M., Moghimi M. and Mirsaeedi S. M. H. Numerical simulation ofunsteady cavitating flow over a disc [C]//Proc. IMechE Part C: J. MechanicalEngineering Science.2009,224:1245-1253.
    [71] Passandideh-Fard M. and Roohi E. A Computational Model for Cavitation UsingVolume-of-Fluid Method: http://profdoc.um.ac.ir/articles/a/1021242.pdf
    [72] De Giorgi M. G., Ficarella A. and Rodio M. G. Cavitation modeling in cryogenicfluids for liquid rocket engine applications [C]//38th Fluid Dynamics Conferenceand Exhibit,2008, Seattle, Washington.
    [73] Zhu Z., Fang S.&Wang X. Characteristic analysis of unsteady viscous flowaround a cavitating propeller [J]. Sci China-Tech Sci,2010,53(7):1983-1992.
    [74] Kawamura T, Sakoda M. Comparison of bubble and sheet cavitation models forsimulation of cavitating flow over a hydrofoil [C]//Fifth InternationalSymposium on Cavitation (cav2003), Osaka, Japan, Nov1-4,2003,Cav03-OS-1-008.
    [75] Zhang X.B., Qiu L.M., Gao Y., et al. Computational fluid dynamic study oncavitation in liquid nitrogen [J]. Cryogenics,2008,48(9-10):432-438.
    [76] Giannadakis E., Papoulias D., Gavaises M. et al. Evaluation of the PredictiveCapability of Diesel Nozzle Cavitation Models [C]//SAE Technical Paper,2007-01-0245,2007.
    [77] Arazgaldi R., Hajilouy A. and Farhannieh B. Experimental and numericalinvestigation of marine propeller cavitation [J]. Transaction B: MechanicalEngineering,2009,16(6):525-533.
    [78] Dular M., Bachert R., Stoffel B., irok B. Experimental evaluation of numericalsimulation of cavitating flow around hydrofoil [J]. European Journal of MechanicsB/Fluids,2005,24(4):522-538.
    [79] Rautová J., Kozubková M. Influence of air content in water on cavitation region inmathematical model [J]. Transactions of the V B-Technical University ofOstrava, Mechanical Series No.1,2010, LVI: No.1768.
    [80] De Giorgi M. G., Ficarella A. and Laforgia D. Modeling nucleation phenomena incavitating flow [C]//18th AIAA Computational Fluid Dynamics ConferenceAIAA-2007-4459, Miami, FL.
    [81] Athavale M. M. and Singhal A. K.. Numerical analysis of cavitating flows inrocket turbopump elements [C]//37th AIAA/ASME/SAE/ASEE Joint PropulsionConference AIAA2001-3400Salt Lake City, UT.
    [82] Xing T. and Frankel S. H. Effect of cavitation on vortex dynamics in a submergedlaminar jet [J]. AIAA Journal,2002,40(11):2266-2276.
    [83] Xu, J. L., Chen, T. K. and Chen X. J., Critical Flow in Convergent-divergentnozzles with cavity nucleation model [J]. Experimental Thermal and Fluid Science,1997,14(2),166-173.
    [84] Mu oz-Cobo, J. L., Cerezo E. and Verdu G. Development and Validation ofEVAPCOND1D-1and EVAPCOND1D-2Models for the flashing phenomena inpipes of variable area AMIF-ESF Computing methods for two-phase flow2000.
    [85] Elias E. and Chambre P. L. Bubble Transport in Flashing Flow [J]. Int. Journal ofMultiphase Flow,2000,26(2):191-206.
    [86] Xing T. Effect of Cavitation on Vortex Dynamics in a Submerged Laminar Jet
    [D]. ph.D Thesis, Purdue University, West Lafayette, Indiana,2002.
    [87] Salvador G. P., Frankel S. H. Numerical modeling of cavitation using fluent:validation and parametric studies [C]//34th AIAA Fluid Dynamics Conferenceand Exhibit28June-1July2004, Portland, Oregon.
    [88] Zhou L., Wang Z. Numerical Simulation of Cavitation Around a Hydrofoil andEvaluation of a RNG k-e Model [J]. Journal of Fluids Engineering,2008,130(1):011302-1.
    [89] Cai J., Huai X., Yan R., et al. Numerical simulation on enhancement of naturalconvection heat transfer by acoustic cavitation in a square enclosure [J]. AppliedThermal Engineering,2009,29(10):1973-1982.
    [90] Watanabe T., Kawamura T., Takekoshi Y., et al. Simulation of steady andunsteady cavitation on a marine propeller using a rans cfd code [C]//FifthInternational Symposium on Cavitation (CAV2003) Osaka, Japan, Nov,2003.
    [91] Liu D., Hong F., Lu F. The numerical and experimental research on unsteadycloud cavitating flow of3D elliptical hydrofoil [C]//9th International Conferenceon Hydrodynamics Oct,2010Shanghai, China.
    [92] Cao X., Zhang X., Qiu l.&Gan Z. Validation of full cavitation model incryogenic fluids [J]. Chinese Sci Bull,2009,54(10):1633-1640.
    [93] Xu, J. L., Chen, T. K. and Chen X. J. Critical Flow in Convergent-divergentnozzles with cavity nucleation model [J]. Experimental Thermal and Fluid Science,1997,14(2):166-173.
    [94] Frank Th., Lifante C., Jebauer S. et al. CFD Simulation of Cloud and Tip VortexCavitation on Hydrofoils [C]//6th International Conference on Multiphase Flow,ICMF2007, Leipzig, Germany, Jul,2007: Paper No.134.
    [95] Morgut M., Nobile E., Bilu I. Comparison of mass transfer models for thenumerical prediction of sheet cavitation around a hydrofoil [J]. InternationalJournal of Multiphase Flow,2011,37(6):620-626.
    [96] Mejri I., Bakir F., Rey R., et al. Comparison of Computational Results ObtainedFrom a Homogeneous Cavitation Model With Experimental Investigations ofThree Inducers [J]. J. Fluids Eng,2006,128(6):1308-1323.
    [97] Martynov S. B., Mason D. J. and Heikal M. R. Numerical simulation of cavitationflows based on their hydrodynamic similarity [J]. Int. J. Engine Res.2006,7(3):283-296.
    [98] Carey V. P. Liquid-Vapour Phase-Change Phenomena [M]. Hemisphere:Washington, DC,1992.
    [99] Senocak I. and Shyy W. Interfacial dynamics-based modeling of turbulentcavitating flows, Part-1: Model development and steady-state Computations [J].International journal for numerical methods in fluids,2004,44:975-995.
    [100]Senocak I. and Shyy W. Interfacial dynamics-based modeling of turbulentcavitating flows, Part-2: Time-dependent computations [J]. International journalfor numerical methods in fluids,2004,44:997-1016.
    [101]Wu J., Wang G. and Shyy W. Time-dependent turbulent cavitating flowcomputations with interfacial transport and filter-based models [J]. Internationaljournal for numerical methods in fluids,2005,49:739-761.
    [102]Sarosdy L. R, Acosta A. J. Note on observations of cavitation in different fluids [C]//In: ASME winter annual meeting, New York, USA, Paper60-WA-83,1961.
    [103]Hord J. Cavitation in liquid cryogens, II-Hydrofoil. NASA CR-2156,1973.
    [104]Hord J. Cavitation in liquid cryogens, III-Ogives. NASA CR-2242,1973.
    [105]Utturkar Y., Wu J., Wang G., et al. Recent progress in modeling of cryogeniccavitation for liquid rocket propulsion [J]. Progress in Aerospace Sciences,2005,41(7):558-608.
    [106]Plesset M. S. The Dynamics of Cavitation Bubbles. ASME J. Appl. Mech.,1949,16:228-231.
    [107]黄景泉.空泡溃灭时的流场.应用数学和力学[J],1989,10(3):247-251.
    [108]Wallis GB. One-dimensional Two-phase Flow. McGraw-Hill: New York,1969.
    [109]Keller, A. P., and Rott, H. K. The Effect of Flow Turbulence on CavitationInception [C]//ASME FED Meeting, Vancouver, Canada,1997.
    [110]Stoffel, B., and Schuller, W. Investigations Concerning the Influence of PressureDistribution and Cavity Length on Hydrodynamic Cavitation Intensity [C]//ASME Fluids Eng. Conf., Hilton Head, SC,1995.
    [111]Singhal A. K., Vaidya N. and Leonard A. D. Multi-Dimensional Simulation ofCavitating Flows Using a PDF Model for Phase Change [C]//ASME FEDMeeting, Paper No. FEDSM’97-3272, Vancouver, Canada,1997.
    [112]何春涛.超空泡射弹结构参数设计与数值模拟研究[D].哈尔滨:哈尔滨工业大学,2009:27-28.
    [113]黄海龙,王聪,黄文虎等.变攻角圆盘空化器生成自然超空泡数值模拟[J].北京理工大学学报,2008,28(2):100-103.
    [114]Rand R., Pratap R., Ramani D., et al. Impact dynamics of a supercavitatingunderwater projectile [C]//1997ASME Design Engineering TechnicalConferences. California:1997:1-11.
    [115]杨启仁,徐直军著.脱壳动力学[M].北京:国防工业出版社,1996.
    [116]于煜斌,张靖,王克勤.新型有翼弹托脱壳机理研究[J].兵工学报,2009,30(6):668-671.
    [117]武频,王福华,赵润祥,等.弹托分离干扰风洞试验装置[J].弹道学报,2000,12(3):59-63.
    [118]臧涛成,杨启仁,胡焕性.弹托与弹丸有相互机械作用时的脱壳运动研究[J].弹道学报,1998,10(3):33-36.
    [119]武频,赵润祥,郭锡福.脱壳穿甲弹弹托分离二维数值模拟[J].弹舰与制导学报,2001,21(2):27-29.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700